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Abstract. We show that a.s. all of the connected components of the Wired Spanning Forest
are recurrent, proving a conjecture of Benjamini, Lyons, Peres and Schramm. Our analysis
relies on a simple martingale involving the effective conductance between the endpoints of
an edge in a uniform spanning tree. We believe that this martingale is of independent interest
and will find further applications in the study of uniform spanning trees and forests.

1. Introduction

1.1. Uniform Spanning Forests

A fascinating field that has emerged recently is the study of uniform spanning for-
est measures for infinite graphs, which are weak limits of uniform spanning tree
measures on finite subgraphs. We will now give a brief introduction to this topic.
The reader should see [BLPS] for a comprehensive study; for a survey, see [L].

Let G be an infinite graph which is exhausted by finite subgraphs Gn. Pemantle
[P] showed that the uniform distributions on spanning trees of Gn converge weakly
to a distribution which is supported on spanning forests of G. We call this measure
the free spanning forest (FSF). There is another natural construction in which the
exterior of Gn is contracted to a single vertex before taking the limit. This second
construction, which is called the wired spanning forest (WSF), was implicit in
Pemantle’s paper and was made explicit by Häggström [H].

In this paper, we prove that a.s. every connected component of the wired span-
ning forest is recurrent for simple random walk. This was conjectured by [BLPS],
who proved the result in the special cases where G is a transitive graph with uni-
modular automorphism group, where G is a tree, and where G is a graph whose
spectral radius ρ < 1.

Our proof uses a martingale which involves the effective conductance between
the endpoints of an edge in a uniform spanning tree: For a finite graph G, let T e be a
uniform spanning tree which is conditioned to contain a particular edge e = (s, t).
Suppose that we contract or delete the edges in G one-by-one, according to whether
each is in T e or not, respectively. This produces a sequence of graphs

〈
Gk

〉
. Then the

sequence
〈CGk (s ↔ t)

〉
of effective conductances between s and t is a martingale.
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This surprising fact can be generalized to infinite graphs, where analogous mar-
tingales can be obtained involving uniform spanning forest measures. In the case
of the wired spanning forest this leads to an easy proof that all components are
recurrent.

1.2. Random walks and electric networks

Our proofs rely on some well-known connections between random walks and elec-
tric networks (see e.g. [DS] or [LP]). We will now give some brief background and
definitions. A network is a pair (G, C) where G is a graph and C is a map from
the unoriented edges of G to the non-negative real numbers. The quantity C(e)

is called the conductance of the edge e. Define the resistance R(e) = 1/C(e).
Define network random walk as the usual random walk on a weighted graph: if
the current state is v, traverse edge e incident to v with probability proportional to
C(e). By contracting an edge we mean identifying its endpoints. This may result
in parallel edges and self-loops.

Random Spanning Trees and Forests on a Network. For a finite net-
work G, a natural probability measure on spanning trees of G chooses each tree
with probability proportional to its weight, where for spanning trees T we define
weight(T ) = ∏

e∈T C(e). When we say random spanning tree we will mean a tree
with this distribution. By analogy with the definitions in the case of unweighted
graphs, if G is an infinite network, we define the WSF and FSF as weak limits of
random spanning tree measures for finite subnetworks.

Let G be a finite network and fix an edge e = (s, t). For unit flows θ from s to
t , define the energy

E(θ) = (θ, θ)R =
∑

f

θ(f )2R(f ),

where the sum is over unoriented edges f . Thomson’s principle states that the
unit flow θ that minimizes E(θ) is the unit electrical current flow I e from s to t .
Furthermore, E(I e) = Reff(s ↔ t), the effective resistance between s and t .

Thomson’s principle can be used to define electrical currents on an infinite net-
works (see [S], Chapter 3 or [BLPS] for more details). Let G be an infinite network
and let e = (s, t) be an edge in G. By analogy with the finite case, we wish to
define the electrical current I e between the endpoints of e as the unit s–t flow θ

that minimizes E(θ). But first, we must define what is meant by a “unit s–t flow”
for an infinite graph. It turns out there are two natural definitions:

“Free” definition. Say an antisymmetric function θ of the oriented edges of
G is a unit s–t flow if it is a weighted average of s–t paths, i.e., θ is of the form∑

i αiPi , where αi > 0,
∑

i αi = 1, and the Pi are s–t paths.
“Wired” definition. Say θ is a unit s–t flow if it satisfies Kirchhoff’s node law,

i.e., for any vertex w we have

(amount of flow leaving w) − (amount of flow entering w) =





1, w = s;
−1, w = t ;

0, else.
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Note that these definitions are not equivalent, since in the second definition we al-
low flow to “pass through infinity.” (E.g., let G = Z and suppose that θ(j, j −1) =
1 − δ1 (j). Then θ is a unit flow from 0 to 1 in the wired sense but not in the free
sense.)

Following [BLPS], we will call the the energy-minimizing “free” unit flow
free current and the energy-minimizing “wired” flow wired current and denote
them by I e

F and I e
W , respectively. Define free and wired effective resistance by

RF
eff (s ↔ t) = E (

I e
F

)
and RW

eff (s ↔ t) = E (
I e
W

)
, respectively.

For an infinite network G and a vertex s, define a unit flow from s to infinity
as a flow with a source at s and no sink (i.e., excise the case w = t in the wired
definition of a unit s ↔ t flow). Define the resistance R (s ↔ ∞) between s and
∞ by R (s ↔ ∞) = infθ E(θ), where the infimum is over unit flows from s to ∞.
We will need the following easy proposition, which follows from the “minimum
energy” definition of resistance.

Proposition 1. Let G be an infinite network and let s and t be two vertices. Then

RW
eff(s ↔ t) ≤ 2 (R(s ↔ ∞) + R(t ↔ ∞)) .

(By the triangle inequality for resistances, the constant 2 above is not necessary.)
We will also use the following well-known (see, e.g., [LP]) relationship between
resistance to ∞ and transience of network random walk:

Proposition 2. Let (G, C) be an infinite network and let s be a vertex in G. Then the
component of G containing s is transient for network random walk iff R(s ↔ ∞)

is finite.

This has the following easy consequence:

Lemma 3. Let (G, C) be an infinite network and suppose that the component of
G containing v is transient. Let {ei}∞i=1 be an enumeration of the edges in G, and
let Gk be the graph obtained from G by contracting the edges e1, . . . , ek . Then
RGk (v ↔ ∞) → 0 as k → ∞.

Proof. Since RG(v ↔ ∞) is finite, there is a unit flow θ on G from v to ∞ such
that

E(θ) =
∑

e∈E

θ(e)2R(e) < ∞.

For all k, let θk be the unit flow on Gk which is induced by θ , and let Ek =
E − {e1, . . . , ek}. Then RGk (v ↔ ∞) ≤ E(θk) = ∑

e∈Ek
θ(e)2R(e) → 0 as

k → ∞. ��

2. Main Theorem

We will use the following lemma, which was first proved by Kirchhoff [K].
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Lemma 4. Let G be a finite network and let e = (s, t) be an edge in G. Let T be
a random spanning tree of G. Then

CG(s ↔ t) = 1

P(e ∈ T )
.

We will also need the following easy and well-known proposition. Denote by
G/f and G–f the graphs obtained from G by contracting f and deleting f , re-
spectively, and write TG for a random spanning tree of G.

Proposition 5. Let G be a finite network and let f be an edge in G. Then

• the conditional distribution of TG given f ∈ TG is the same as the distribution
of {f } ∪ TG/f .

• the conditional distribution of TG given f /∈ TG is the same as the distribution
of TG−f .

We are now ready to prove the existence of the conductance martingales de-
scribed in the introduction. I thank Russell Lyons for simplifying my original proofs.

Theorem 6. Let G be a finite network and let T e be a random spanning tree condi-
tioned to contain e = (s, t). Let G0, G1, . . . be a sequence of networks constructed
as follows. Define G0 = G, and for i > 0 form Gi from Gi−1 by choosing an edge
ei which is not parallel to e and contracting or deleting it according to whether it is
in T e or not, respectively. Then the sequence CGn(s ↔ t) of effective conductances
between s and t is a martingale.

Proof. Let T be a random spanning tree of G and let f = e1 be the edge which
is contracted or deleted from G to obtain G1. By Lemma 4 and Proposition 5, the
random variable CG1(s ↔ t) is either 1/P(e ∈ T |f ∈ T ) or 1/P(e ∈ T |f /∈ T ),
depending on whether f is in T e or not, respectively. Thus, we have

E(CG1(s ↔ t)) = P(f ∈ T |e ∈ T )

P(e ∈ T |f ∈ T )
+ P(f /∈ T |e ∈ T )

P(e ∈ T |f /∈ T )

= P(f ∈ T )

P(e ∈ T )
+ P(f /∈ T )

P(e ∈ T )

= 1

P(e ∈ T )

= CG(s ↔ t),

and a similar argument shows that E
(CGn+1(s ↔ t)|Gn

) = CGn(s ↔ t) for all n.
Hence CGn is a martingale. ��
To derive corresponding conductance martingales for infinite graphs, we will need
the following extension of Lemma 4, which is proved in [BLPS].

Lemma 7. Let G be an infinite network and let e = (s, t) be an edge in G. Let F

be a forest with the WSF distribution. Then

CW
G (s ↔ t) = 1

P(e ∈ F)
.
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This statement also holds when FSF replaces WSF and free conductance replaces
wired conductance.

Now we can prove:

Theorem 8. Let G be an infinite network and let Fe be a spanning forest with the
WSF distribution, conditioned to contain e = (s, t). Let G0, G1, . . . be a sequence
of networks constructed as follows. Define G0 = G, and for i > 0 form Gi from
Gi−1 by choosing an edge which is not parallel to e and contracting or deleting it
according to whether it is in Fe or not, respectively. Then the sequence CW

Gn(s ↔ t)

of wired effective conductances between s and t is a martingale. If we replace WSF
by FSF, then the sequence CF

Gn(s ↔ t) of free effective conductances between s

and t is a martingale.

Proof. The proof is nearly the same as the proof of Theorem 6. Consider first the
wired case. Let f = e1 and let F be a random forest with the WSF distribution.
Using Lemma 7 and an argument similar that in the proof of Theorem 6, we have

E(CW
G1

(s ↔ t)) = P(f ∈ F |e ∈ F)

P(e ∈ F |f ∈ F)
+ P(f /∈ F |e ∈ F)

P(e ∈ F |f /∈ F)

= 1

P(e ∈ F)

= CW
G (s ↔ t),

and a similar argument shows that E
(
CW

Gn+1
(s ↔ t)|Gn

)
= CW

Gn
(s ↔ t) for all n.

Hence CW
Gn

is a martingale. A similar argument holds when FSF replaces WSF. ��
We are now ready to prove the [BLPS] conjecture. We will actually prove the
following stronger theorem:

Theorem 9. Let (G, C) be an infinite network. Then WSF2(G) = WSF(G), i.e.,
almost surely every component tree of the WSF of G is its own WSF.

Proof. Let (G, C) be an infinite network and let F be a spanning forest with the
WSF distribution. Fix an edge e = (s, t). By Lemma 7, it’s enough to show that
almost surely either e /∈ F or the wired effective resistance in F between s and t is
1 (i.e., in F all of the wired current between s and t passes through e).

Let G0, G1, . . . be a sequence of networks constructed as follows. Define G0 =
G, and for i > 0 form Gi from Gi−1 by choosing an edge which is not parallel to
e and contracting or deleting it according to whether it is in F or not. Suppose also
that the edges are chosen exhaustively in the sense that every edge in G is either ei

for some i or parallel to e in one of the Gi .
Let Ae be the event that the wired effective resistance in F − {e} between the

endpoints of e is finite. Then by Propositions 1 and 2, Ae is the event that in F −{e}
both the component of s and the component of t are transient. Let Hn be the net-
work obtained from F by contracting the edges in F ∩ {e1, . . . , en}. On the event
Ae, we can apply Lemma 3 twice (once to each side of e), to get

lim
n→∞ RHn(s ↔ ∞) = lim

n→∞ RHn(t ↔ ∞) = 0.
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Hence Proposition 1 implies that limn→∞ RW
Hn(s ↔ t) = 0. Since Gn has the same

vertex set as Hn, and at least as many edges, we have limn→∞ RW
Gn(s ↔ t) = 0

and hence limn→∞ CW
Gn(s ↔ t) = ∞.

But CW
Gk(s ↔ t) has a finite limit a.s. on the event {e ∈ F } since by Theorem 8

it is a non-negative martingale conditional on this event. Hence P(e ∈ F, Ae) = 0.
It follows that almost surely, either e /∈ F or the wired effective resistance in F

between s and t is 1 and the proof is complete. ��

Remark. There is a direct argument that P(e ∈ F, Ae) = 0 for all e which does not
use the conductance martingale. For positive integers k, let Fk be a forest distrib-
uted according to the WSF of Gk . Then the distribution of Fk corresponds to the
conditional distribution of F , given {e1, . . . , ek} ∩ F . Denote by Ik the wired unit
current flow between the endpoints of e in the graph Gk . Then P(e ∈ Fk) = Ik(e)

(see [BLPS]). But

R(e)Ik(e)
2 ≤ E(Ik) = RW

Gk(s ↔ t) → 0

on Ae. It follows that

P(e ∈ F |e1, . . . , ek) = P(e ∈ Fk) = Ik(e) → 0

on Ae, hence P(e ∈ F, Ae) = 0. ��
Our main result now follows as a corollary:

Corollary 10. Let (G, C) be an infinite network with supe∈E C(e) < ∞. Then the
connected components of the WSF are almost surely recurrent for network random
walk.

Proof. It’s enough to show that if T is a transient tree with bounded degree then the
WSF of T is not almost surely equal to T . Let T be a transient tree with bounded
degree. Then by Proposition 2 there is a finite-energy unit flow θ from some vertex
to ∞. Let e = (s, t) be an edge in T such that 0 < θ(e) < 1. Then in T − {e}
there is a finite-energy flow from s to ∞ and one from t to ∞. It follows that
RW

eff(s ↔ t) < 1, and hence e is not a.s. in the WSF of T . ��

Remark. The WSF of a recurrent tree is the whole tree itself. Thus, in the setting of
graphs with bounded conductance, the class of trees which can be a component of
the WSF is exactly the class of recurrent trees. ��
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