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Abstract

This study further develops and finally validates the Climate Model Confidence Index (CMCI) as a simple and effective metric
for evaluating and ranking the ability of climate models to reproduce historical climate conditions. Modelled daily climate data
outputs from two different statistical downscaling techniques (PCIC: Pacific Climate Impacts Consortium; SDSM: Statistical
Down-Scaling Model) are compared with observational data recorded by Environment Canada weather stations located in
Kelowna, BC (Canada), for the period from 1969 to 2005. Using daily data (N > 13,000), Student’s #-tests determined if there
were statistically significant differences between the modelled and observed means while ANOVA F-tests identified differences
between variances. Using aggregated annual data (N = 37), CMCI values were also calculated for the individual model runs from
each statistical downscaling technique. Climate model outputs were ranked according to the absolute value of the ¢ statistics. The
20 SDSM ensembles outperformed the 27 PCIC models for both minimum and maximum temperatures, while PCIC
outperformed SDSM for total precipitation. Linear regression determined the correlation between the absolute value of the ¢
statistics and the corresponding CMCI values (R2 >0.99, P <0.001). Rare discrepancies (< 10% of all model rankings) between
the ¢ statistic and CMCI rankings occurred at the third decimal place and resulted in a one rank difference between models. These
discrepancies are attributed to the precision of the ¢ tests which rely on daily data and consider observed as well as modelled
variance, whereas the simplicity and utility of the CMCI are demonstrated by only requiring annual data and observed variance to
calculate.

1 Introduction

The earth’s climate is changing, and surface temperatures are
rapidly increasing. According to the Intergovernmental Panel
on Climate Change (IPCC 2019), since the pre-industrial pe-
riod (1850-1900), land surface air temperatures have risen
even faster than global surface air temperatures (which include
air temperatures above both land and ocean surfaces).
Comparing 1850-1900 with 2006-2015, mean land surface
air temperatures have increased by 1.53 °C while mean global
surface air temperatures have increased by 0.87 °C (IPCC
2019). This observed warming has resulted in an increased
frequency, intensity and duration of heat-related events, in-
cluding heatwaves over most land regions (IPCC 2019).
While the frequency and intensity of droughts have increased
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in some regions, there has also been an increase in the inten-
sity of heavy precipitation events on a global scale (IPCC
2019). Global warming has led to shifts of climate zones in
many world regions, including the expansion of arid climate
zones and the contraction of polar climate zones, which has
led to changes in the ranges and abundances of plant and
animal species as well as shifts in their seasonal activities
(IPCC 2019).

Canada’s climate is no exception to this global phenome-
non, but rather, has been warming at an even greater rate in
many regions across the country. A reconstruction of global
surface air temperatures from 1901 to 2012 by Vose et al.
(2012) found that the greatest warming across the globe has
occurred over northwestern North America and over central
Eurasia. In Canada, significant warming trends in annual
mean temperatures ranging from 1.8 to 3.8 °C were reported
by Vincent et al. (2015), within almost every region across the
nation from 1948 to 2012. The observed anomalies averaged
over the country indicate a significant increase of 1.78 °C over
the past 65 years (Vincent et al. 2015). Precipitation totals
have also increased across Canada, principally in the northern
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areas and across all four seasons (Vincent et al. 2015).
However, winter season precipitation has decreased in the
southwestern region of Canada (British Columbia and
Alberta), and there have been widespread decreases in the
amount of precipitation falling as snow across the southern
regions of Canada (Vincent et al. 2015). Furthermore, spring
precipitation has been shifting from snow to rain across
Canada and the duration of snow cover has also been decreas-
ing (Brown et al. 2010; Mekis and Vincent 2011).

Due to regional and activity-specific differences, Warren
and Lemmen (2014) conclude that climate change can have
both positive and negative effects on Canadian communities
and economies. Vincent et al. (2018) suggest that longer and
warmer growing seasons across Canada may allow crops to be
grown further north (where soil conditions permit). Campbell
et al. (2014) indicate that outdoor feeding seasons for live-
stock may also expand in a warmer climate. However, a
warmer climate in Canada may introduce new pests and dis-
eases as well that could negatively affect agriculture
(Campbell et al. 2014). Blankinship and Hart (2012) suggest
that declining snowfall and reduced snowpack in a warmer
climate may reduce water availability for agriculture,
especially in southern regions of Canada. While Casati et al.
(2013) advise that a warmer climate is characterised by more
hot days and hot nights which are associated with negative
human health effects including heat-related human mortality,
Berardi and Jafarpur (2020) project decreased energy demand
for heating buildings during warmer winters in Canada but
project an equal or greater increase in energy demand for
cooling buildings during hotter summers. Increased freeze-
thaw days (that is, more days with daytime temperatures
above 0 °C, while nighttime temperatures remain below freez-
ing) in central Canada (Vincent et al. 2018) may have a neg-
ative impact on road maintenance (Hershfield 1979;
Schmidlin et al. 1987; Ho and Gough 2006). However, posi-
tive impacts on road maintenance due to fewer freeze-thaw
days may be experienced in other areas of the country, such as
BC, Ontario, Quebec and the Maritime provinces (Vincent
et al. 2018). A warmer climate in Canada could be beneficial
for shipping due to less ice coverage on lakes and other water
passages (Hewer and Gough 2019a); however, warming tem-
peratures can also limit transportation in areas that depend on
ice roads (Hori et al. 2017, 2018). Furthermore, a warmer
climate can extend camping seasons (Hewer et al. 2016;
Hewer and Gough 2019b) and other warm weather tourism
activities (Hewer and Gough 2016a, b), but will be detrimental
to many winter season tourism activities, especially those de-
pendent on snow and ice (Hewer and Gough 2018).

The activity being assessed and the location of the assessment
often determine whether climate change impacts will be benefi-
cial or detrimental. Some activities will see greater opportunities
while the sustainability of others will be threatened, and those
same activities may be affected differently across various
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locations. For this reason, activity specific, locally focused, cli-
mate change impact assessments (CCIAs) are of great impor-
tance and utility for adaptation planning and policy develop-
ment. Global climate models (GCMs) provide important infor-
mation regarding how large-scale climate conditions are likely
to change over the course of the 21* century (Taylor et al. 2012);
however, activity specific, locally focused CCIAs require cli-
mate change projections at finer temporal (Zhang et al. 2011)
and spatial (Murdock et al. 2016; Kopparla et al. 2013; Salathe
et al. 2007) scales. For this reason, downscaling of GCM pro-
jections is a vital step within CCIA (Hewer et al. 2016; Hewer
and Gough 2016a, 2020; Hewer and Brunette 2020).
Downscaling uses large-scale atmospheric variables to predict
local meteorological conditions, which is appealing to CCIA
due to the added details that inform site-specific assessment
and management of climatic risk (Biirger et al. 2012; Sobie
and Murdock 2017). This can be done using dynamical down-
scaling resulting in regional climate models (Mearns et al. 2012)
or through statistical downscaling to create local point, daily
timescale climate change scenarios (Wilby et al. 2004).
Depending on the scale and scope of the exposure unit being
assessed, and the resources available to the researchers, either
downscaling approach may be appropriate for a given CCIA.
Regardless, decisions often must be made around which GCM
outputs to use, or which RCMs to rely upon, or which statisti-
cally downscaled climate scenario to base projected impacts
upon. It is this need that led to the creation of the Climate
Model Confidence Index (CMCI), initially conceived to guide
decisions around which GCMs to use in CCIA (Hewer and
Gough 2016a, b, 2019a, b, 2020; Hewer and Brunette 2020);
but through the current study, now shows utility for comparing
statistical downscaling techniques, and for selecting specific
model runs from among statistically downscaled climate change
scenarios.

To further illustrate the utility of a metric like the CMCI,
there are 41 GCMs available as part of the Coupled Model
Intercomparison Project Phase 5 (CMIPS5), but which model
output should researchers use to inform a CCIA? Some have
suggested using a “full ensemble” of all GCM outputs by
averaging the anomalies across each model (Fenech et al.
2007; IPCC 2010; Hewer et al. 2016). While others have been
more inclined to try and capture the full range of uncertainty
associated with future climates by selecting the two models
that represent the least and greatest projected change (Scott
et al. 2002, 2003). Conversely, Hewer and Gough (2016a, b,
2019a, b, 2020; Hewer and Brunette 2020) used the CMCI to
rank the available GCMs from CMIPS5, based on their ability
to reproduce historical climate conditions, then selected the
top three models and created a “selective ensemble” by aver-
aging the anomalies across those three models. Nonetheless,
the “full” versus “selective” ensemble debate becomes a moot
point when deciding which statistically downscaled scenario
to use in a CCIA because you cannot average the daily outputs
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from across different models or model runs without losing the
natural day-to-day variability associated with the local clima-
tology (Gough 2008). Thus, when deciding which statistical
downscaling technique, or which specific model run to use,
the CMCI is a useful tool within the practice of CCIA.

This paper will present the CMCI as a tool for measuring the
ability of climate models to reproduce historical climate condi-
tions. It will review the way in which the CMCI has been previ-
ously measured then present a newly devised scheme for the
interpretation of CMCI values. The CMCI, which only requires
average annual climate data for its calculation, will then be vali-
dated using daily observational data and established statistical
tests, based on a case study approach for comparing the perfor-
mance of two statistical downscaling techniques in Kelowna, BC,
Canada, a town centred within the Okanagan Valley. Finally, the
utility of this metric and its limitations will be discussed.

2 Methods
2.1 Goal and objectives

The purpose of this study is to further develop and finally
validate the Climate Model Confidence Index (CMCI). This
study goal will be guided by the following research objectives:

(a) Determine historical climate conditions (minimum and
maximum temperatures as well as total precipitation)
for Kelowna, BC; based on daily weather station data
recorded by Environment Canada (available from
January 1969 to December 2019).

(b) Access statistically downscaled historical climate condi-
tions for Kelowna, BC, from the Pacific Climate Impacts
Consortium (PCIC) at the University of Victoria (PCIC’s
historical baseline runs from 1950 to 2005).

(c) Perform statistical downscaling using the Statistical
Down-Scaling Model (SDSM) to reproduce historical cli-
mate conditions in Kelowna, BC for the overlapping his-
torical time-period covered by both the Kelowna weather
stations and the PCIC historical baseline (1969 to 2005).

(d) Evaluate and compare the ability of both PCIC and
SDSM to reproduce historical daily climate conditions
in Kelowna, BC, by using Student’s # tests to determine
if there are significant differences between modelled and
observed means as well as ANOVA F-tests to determine
if there are significant differences between modelled and
observed variances.

(e) Finally, calculate the CMCI and compare its ranking of
PCIC models and SDSM ensembles to the results from
the ¢ tests to determine if the index ranks climate models
in a similar way, while also employing linear regression
analysis to determine correlation between the two
measures.

2.2 Study area

The Okanagan Valley in British Columbia is an area of con-
siderable social, economic and environmental significance
within a Canadian context. The valley is a major agricultural
area within the province, associated with the growth and pro-
duction of numerous fruit crops including apples (Caprio and
Quamme 1999), grapes (Caprio and Quamme 2002), pears
(Quamme et al. 2010), as well as apricots, peaches and
cherries (Caprio and Quamme 2006). This location is also
unique climatologically. The Okanagan Valley is located
within the south-central region of the Canadian province
British Columbia. This long narrow valley is approximately
300 km east of the Pacific Ocean, beginning at the USA/
Canada border and running northward for approximately
160 km. The region lies in a rain shadow between two
north-south trending mountain ranges, resulting in low annual
average precipitation that is distributed evenly throughout the
year, with only modest winds being typical (Rayne and Forest
2016). Summers in the Okanagan Valley are hot, with long
day-light hours and high light intensity, being associated with
average temperatures around 21 °C and maximum tempera-
tures reaching 40 °C, including prolonged periods with days
above 30 °C (Rayne and Forest 2016). Winters are generally
cold, with temperatures dropping below freezing for long pe-
riods, and with extreme cold events bringing temperatures as
low as — 25°C (Rayne and Forest 2016). However, the val-
ley’s extensive lakes are key physiographic features responsi-
ble for moderating the otherwise mountainous/continental cli-
mate that is typically characterised by extreme heat in the
summer and extreme cold in the winter (Rayne and Forest
2016). Kelowna is a town located in the centre of the
Okanagan Valley. This site was selected to represent the re-
gion due to its central location and the availability of a long
historical climate record from the Environment Canada weath-
er stations located there (1969 to the present day).

2.3 Statistical downscaling

The Pacific Climate Impacts Consortium (PCIC) at the
University of Victoria offers statistically downscaled daily
Canada-wide climate scenarios, at a gridded resolution of ap-
proximately 10 km for the simulated period of 1950-2100,
where 1950 to 2005 represents the historical baseline. These
statistically downscaled outputs are based on Global Climate
Model (GCM) projections from the Coupled Model
Intercomparison Project Phase 5 (CMIPS) (Taylor et al. 2012),
along with historical daily gridded climate data for Canada
(McKenney et al. 2011; Hopkinson et al. 2011). PCIC acknowl-
edges that gridded values may differ from local climate stations
and biases may be present at high elevations or in areas with low
station density (Eum et al. 2014). PCIC downscales GCM data to
a finer resolution using two different methods: the first is Bias-
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Correction Spatial Disaggregation (BCSD) (Wood et al. 2004),
following the modifications proposed by Maurer and Hidalgo
(2008), which include the incorporation of minimum and
maximum temperature instead of mean temperature, as
suggested by Biirger et al. (2012) and bias correction using
detrended quantile mapping with delta method extrapolation
(Birger et al. 2013). The BCSD downscaling algorithm has been
analysed and validated for British Columbia by Werner (2011),
Biirger et al. (2012, 2013) as well as Werner and Cannon (2016).
In addition to BCSD, PCIC projections are also available using
Bias Correction/Constructed Analogues with Quantile mapping
reordering (BCCAQ). BCCAQ is a hybrid method that combines
results from BCCA (Maurer et al. 2010) and quantile mapping
(QMAP) (Gudmundsson et al. 2012). According to PCIC
(2021), BCCA uses similar spatial aggregation and quantile map-
ping steps as BCSD but obtains spatial information from a linear
combination of historical analogues for daily large-scale fields,
avoiding the need for monthly aggregates. Furthermore, PCIC
(2021) states that QMAP applies quantile mapping to daily cli-
mate model outputs that have been interpolated to the high-
resolution grid using the climate imprint method of Hunter and
Meentemeyer (2005). Historical climate data (1950 to 2005) for
each of the available 27 GCMs was retrieved from the PCIC
website for the grid box associated with Kelowna, BC, Canada
(119.38° W, 49.96° N) (https://data.pacificclimate.org/portal/
downscaled gems/mapy/).

The Statistical DownScaling Model (SDSM) introduced by
Wilby et al. (2002) is a hybrid of the stochastic weather generator
and transfer function methods. SDSM uses large-scale circula-
tion patterns and atmospheric moisture variables to condition
local-scale weather generator parameters (Wilby et al. 2002).
Additionally, stochastic techniques are used to artificially inflate
the variance of the downscaled daily time series to better accord
with site-specific observations (Wilby et al. 2002). The theoret-
ical origins of SDSM lie in a series of papers that explored
statistical relationships between indices of atmospheric circula-
tion and local meteorology (Wilby 1994, 1995, 1997, 1998;
Conway et al. 1996). The SDSM algorithm (Narula and
Wellington 1977) is a conditional weather generator since atmo-
spheric circulation indices and regional moisture variables are
used to estimate time-varying parameters describing daily weath-
er at individual sites (Wilby and Dawson 2013). SDSM relies on
reanalysis data from the National Centers for Environmental
Prediction and the National Center for Atmospheric Research,
which represents the state of the Earth’s atmosphere during the
baseline time-period, to identify relevant atmospheric predictor
variables and create predictive models to generate synthetic
weather data capable of reproducing past climate conditions for
a specific location (Wilby et al. 2002). From 2001 to 2012, over
170 studies were documented using SDSM within the field of
applied climatology (Wilby and Dawson 2013), not including
more recent publications such as several CCIAs (Hewer et al.
2016; Hewer and Gough 2016a, 2020; Hewer and Brunette

@ Springer

2020). NCEP data was downloaded from the SDSM website
for the grid box associated with Kelowna, BC (https://sdsm.
org.uk/data.html). SDSM was then calibrated with this NCEP
reanalysis data and the weather station data from Environment
Canada’s Kelowna weather stations. Kelowna station data was
retrieved from Environment Canada’s historical climate archive
for the period from when the record began in 1969 up to the
present day (https://climate.weather.gc.ca/historical data/). The
historical baseline within SDSM was then set to match the
overlapping time period between both the station data (1960 to
2019) and the PCIC historical baseline (1950 to 2005), resulting
in a common baseline period from 1969 to 2005 (37 years).

2.4 Evaluating ability to reproduce historical climate

Both PCIC and SDSM generated synthetic climate data at the
daily timescale for the period from 1969 to 2005 for maximum
temperatures (7;,.x), minimum temperatures (7,,;,) and total pre-
cipitation (Py,). This modelled data was then compared with the
observational data recorded at the Kelowna weather stations. The
37 years of observational data, along with the modelled SDSM
data (including 20 individual ensembles), contained a total of
13,514 days. However, due to differences in the ways various
GCMs define year lengths: 360 day years, 365 day years and
calendar years (which include leap days), the modelled outputs
from PCIC for this same 37-year time-period varied in length
from 13,320 days (360 day year), to 13,505 days (365 day year),
to 13,514 days (calendar year). The modelled data for the 27
different PCIC models and the 20 different SDSM ensembles
were then compared with the observational record to evaluate
the performance of these two statistical downscaling techniques
regarding their ability to reproduce historical climate conditions
in Kelowna, BC. It is generally accepted that climate models can
be evaluated based on their ability to reproduce historical climate
conditions (Randall et al. 2007) and acknowledged that some
models perform better in certain regions than they do in others
(Macadam et al. 2010). Student’s ¢ tests were used to determine if
there were statistically significant differences at the 95% confi-
dence level (P < 0.05) between the modelled and observed
means, based on the daily data from 1969 to 2005 (N = 13,320
to N = 13,505). The formula for the two sample ¢ tests assuming
unequal variances used in this study was as follows:

Hobs™ Fmod

2
O obs
+
\/N obs_1

The ¢ statistic can be either negative or positive, indicating
whether the modelled data overestimated (—) or underestimated
(+) baseline conditions, when compared with the observational
data. The absolute value of the ¢ statistic (| t| ) was then used to
ignore the direction of the recorded difference and rank the ability
of these PCIC models and SDSM ensembles for reproducing
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local climate conditions, where the lower that | t| was, the closer
the modelled data was to the observational record. Furthermore,
ANOVA F-tests were used to determine if there were statistically
significant differences between the modelled and observed vari-
ances within the daily data for this same baseline time-period. The
formula for the two sample F-tests used in this study were as
follows:
Tinod

i O%bs

The F statistic is centred on the value of 1, where if the
modelled variance is equal to the observed variance, then the
F statistic is equal to 1. Whereas if the modelled variance is
greater than the observed variance, then the F statistic will be
less than 1, and if the modelled variance is less than the observed
variance, then the F' statistic will be greater than 1. Finally, the
magnitude of departure away from 1 (whether above or below)
indicates the significance of the differences between the ob-
served and modelled variance and is expressed by the P value,
where when P < 0.05 differences were considered statistically
significant at the 95% confidence level.

2.5 Climate Model Confidence Index
2.5.1 Measurement

The Climate Model Confidence Index (CMCI) has its origins
traced back to a doctoral thesis at the University of Toronto
(Fenech 2009). The index was subsequently taught for several
years to follow as a metric for evaluating and ranking GCM
performance for use in CCIAs during graduate courses within
the Department of Physical and Environmental Sciences at the
University of Toronto (Canada). However, the index was not
formally published within the academic literature until it was
utilised as part of a series of CCIAs conducted by Hewer and
Gough (20164, b), where it first appeared under the name of the
Gough-Fenech Confidence Index (GFCI). Hewer and Gough
(2019a, b, 2020) continued to champion the use of this index
in what was referred to as the “selective ensemble’ approach for
creating GCM climate change projections and subsequently
renamed it the Global Climate Model Confidence Index
(GCM-CI). The rationale behind the creation and use of the
GCM-CI was again that climate models can be evaluated based
on their ability to reproduce baseline climate conditions and that
some models perform better in certain regions than others
(Randall et al. 2007; Macadam et al. 2010). The GCM-CI was
therefore used to evaluate and rank GCMs available within
CMIP5 and create selective ensembles of GCM outputs to gen-
erate climate change projections for a particular region, or for a
specific location (in which case, GCM outputs were then used to
force statistically downscaled climate change scenarios). Since
this paper is not evaluating the ability of GCMs to reproduce

historical climate conditions, but rather, the ability of statistical
downscaling techniques to do the same (although still validating
the metric for use on both scales), the index name has been
shortened to the Climate Model Confidence Index (CMCI).
We believe this name is more encompassing of the index’s utility
and also hope will stand as its final name of reference. Regardless
of the name of reference or the publication in which it appeared,
the formula of the CMCI has always remained the same:

CMCI = ‘ Hobs™ Fmod ‘
Oobs

Calculation of the CMCI simply requires taking the absolute
value of the observed baseline mean minus the modelled baseline
mean then dividing by the standard deviation of the annual
means over that same baseline time-period; which in this case
was 1969 to 2005 (N = 37), but elsewhere has always been 1981
t0 2010 (N = 30). The CMCI numerator is derived from the mean
absolute error (MAE: Willmott and Matsuura 2005), an
established method for evaluating the ability of modelled predic-
tions to replicate observational data, while the CMCI denomina-
tor is derived from the process of standardization (Z score: Clark-
Carte 2014), which allows for comparison of CMCI values
across difference units of measurement (e.g. temperature and
precipitation). Through the process of this study, we concluded
that it is critical for the CMCI to be calculated with the aggregate
terms described above and does not perform the same way if it is
calculated at the daily time scale, primarily because the standard
deviation of daily data is not as meaningful as the standard de-
viation of annual data (from a climate perspective), but also
because daily total precipitation data does not follow a normal
distribution while annual total precipitation data does.

2.5.2 Interpretation

From 2016 to 2020, while the CMCI was under development
and being utilized within published CCIAs, there was no clear
means devised by which to interpret the resulting values, other
than to state that the lower the value the better the model perfor-
mance is in relation to reproducing historical climate
conditions. The current study sets forward the following four
categories associated with CMCI values to describe the ability
of climate models to reproduce historical climate conditions in a
particular location: “good” (CMCI: 0.00 to 0.25), “satisfactory”
(CMCT: 0.26 to 0.50), “poor” (CMCI: 0.51 to 1.00) and “unac-
ceptable” (CMCI > 1.00). Previously, the index has always been
used to evaluate and rank GCMs and then select and average the
outputs from the best three (those with the lowest three values) to
create a “selective ensemble” (Hewer and Gough 2016a, b,
2019a, b, 2020). However, over the years, thought had been
given to expanding the selection process to include more
GCMs within the ensemble through the process of exclusion
rather than selection (i.e. rather than selecting the best three,
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exclude the worst or unacceptable models), thereby creating what
would have been referred to as an “optimal ensemble” (Hewer
and Brunette 2020). The main barrier to this development was
the lack of a clear indication of which models were acceptable
and which models were unacceptable, for a particular study area;
and because no consensus was formed, the projects often
defaulted back to the selective ensemble approach.
Furthermore, because these previous studies were always work-
ing with averages over the 30-year baseline or annual averages
and the standard deviation of those annual averages, there was
little ability to further develop the index or validate its results
against more robust statistical methods. However, the current
study was able to compare the results and ranks associated with
| t| for each of the 27 PCIC models and each of the 20 SDSM
ensembles with the corresponding CMCI values. It is from this
process that the “good” category was defined in that this was the
range of CMCI vales, on average, associated with ¢ statistics that
demonstrated no statistically significant differences (at the 95%
confidence level), between the modelled and observed baseline.

The rationale behind the other three categories is based on the
calculation of the CMCI itself and the premise that it is a ratio
value describing what percentage of the standard deviation of
annual averages over the baseline period is represented by the
absolute value of the differences between modelled and observed
baseline means. Therefore, CMCI values < 0.50 are considered
“satisfactory” in that the difference between modelled and ob-
served baseline means is less than or equal to half the standard
deviation of annual means (thereby representing natural interan-
nual climate variability across the baseline period). CMCI values
> (.50 but < 1.00 are considered “poor” (yet still acceptable, by
implication), in that the differences between means (whether
positive or negative) are greater than half but less than one stan-
dard deviation away from the interannual mean. Finally, CMCI
values > 1.00 were considered “unacceptable” in that the differ-
ences between modelled and observed baseline means were
greater than the standard deviation of annual means during that
period (therefore being considered outside the scope of historical
interannual climate variability).

2.5.3 Validation

The ranking of PCIC models and SDSM ensembles based on
CMCI values was finally compared with the rankings based on
| ¢| , thus validating the index as a simple and accurate method
for evaluating the ability of climate models to reproduce histor-
ical climate conditions. The accompanying ANOVA F-tests
demonstrating if there were statistically significant differences
between observed and modelled variances were not used to
rank the models, but rather, in an effort to further examine
any potential discrepancies between the ranking of models
based on | t| and the ranking of models based on CMCI
values. Finally, the coefficient of determination (R?) from linear
regression analysis was also used to determine the relationship
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between | ¢| and corresponding CMCI values between the
PCIC models and the SDSM ensembles for each climate vari-
able. High correlations (R* > 0.95) between these two measures
of the ability of climate models to reproduce baseline conditions
would thereby further validate this metric.

3 Results
3.1 Maximum temperature

When evaluating the ability of PCIC models and SDSM ensem-
bles to reproduce baseline conditions (1969 to 2005) for maximum
daily temperature (7,,,,) in Kelowna, BC (Fig. 1), it was apparent
that the SDSM ensembles considerably outperformed the PCIC
models. To such a degree that the worst SDSM ensembles still
outperformed the best PCIC models. Most of the PCIC models
(25 of 27) were characterised with “poor” performance (CMCI:
0.51 to 1.00), with only one model being considered “satisfactory”
(CMCT: 0.26 to 0.50) and one model being considered “unaccept-
able” (CMCI > 1.00). In comparison, most of the SDSM ensem-
bles (18 of 20) were characterised with “good” performance
(CMC: 0.00 to 0.25), with the remaining two ensembles being
considered “satisfactory” (CMCI: 0.26 to 0.50). Nonetheless, it is
interesting to note that of all PCIC climate models, the Beijing
Climate Center’s Climate System Model (BCC-CSM version 1.1)
was most capable (CMCI: 0.48) of reproducing baseline condi-
tions for T, in Kelowna. However, the modelled mean was 0.4
°C cooler than the observed mean, a difference that was statisti-
cally significant (f = —2.984, P < 0.001). In comparison, the best
performing SDSM ensemble recorded a CMCI value of 0.0005,
generating a modelled mean only 0.0004 °C warmer than the
observed mean, a difference that was not statistically significant
(¢ =0.003, P = 0.499). It is also worthy to note that the twenty
SDSM ensembles had a much smaller range of performance
(CMCT: 0.00 to 0.31), compared with the larger range of CMCI
values associated with the twenty-seven PCIC models (0.48 to
1.09). Finally, the SDSM ensembles also did a better job repro-
ducing the observed variability of 7;,, in Kelowna, compared
with the PCIC models (see Appendix Tables 1 and 2 for full
results of all statistical tests for 7;,,.x). In this regard, 18 of the 27
PCIC models (67%) reported statistically significant differences
between the modelled and observed variances, compared with
only 2 of the 20 SDSM ensembles (10%); these results are based
on ANOVA F-tests for differences between variances, considering
the 95% confidence level (P > 0.05).

3.2 Minimum temperature

Looking at the ability of PCIC models and SDSM ensembles to
reproduce baseline conditions for minimum daily temperatures
(Tmin) in Kelowna, BC (Fig. 2), it was evident that the SDSM
ensembles considerably outperformed the PCIC models, once



Development and validation of the Climate Model Confidence Index (CMCI): measuring ability to reproduce... 1065
PCIC: Tmax y =0.1597x-0.0011
R? =0.9996, P<0.001
1.20
MIROCS
1.10 N
1.00 g
3
=
LY
©
£ 090
7]
= ..~ MIROC-ESM
Y
g "~ MIROC-ESM-CHEM
= a8 ‘,Q*ZgadGEMZ—AO
S HadGEM2-CC @ CSIRO-Mk3-6
o .-® MRI-CGCM3
= CCSM4 ©~~ GFDL-ESM2G
2 FGOALS-g2 ﬁr NorESM1-M
0.70 CanESM2 —¢ > .
@ IPSL-CM5A-MR AL
® nmcma \’g MPI-ESM-MR
£ R HadGEM2-ES
= LRI AGRYE "~ GFDL-ESM2M
“ 060 CNRM"CM5_7(— ACCESS1-0
) GFDL-CM3 c\ :
MPI-ESM-LR
.< bcc-csm1-M
050 q IPSL-CM5A-LR
e BNU-ESM
bcc-csm1-1
0.40
25 3.0 3.5 40 45 5.0 55 6.0 6.5 7.0
Absolute Value of t Statistic
SDSM: Tmax y =0.1607x - 6E-05
R? =0.99997, P <0.001
035
@8
030
3
¥ 025
x
Y
b=] e
£
8 @10
¥ ]
€ 020 o7 11
=
€ o719
o
o 1
] |
0.15 -
3 &3
= 2 “15
v A
*g = 11
5 0.10 216
713
...‘- 9
<\ 17
05 1.0 15 2.0 2.5

Absolute Value of t Statistic

Fig. 1 Comparing the ability of PCIC models and SDSM ensembles to reproduce baseline conditions (1969 to 2005) for maximum daily temperatures

(T1nax) in Kelowna (BC), based on differences between means (| t| ) and the CMCI
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again. As was the case for 7., S0 it is for 7, as well: even the
worst SDSM ensembles outperformed the best PCIC models.
Most of the PCIC models (18 of 27) were characterised with
“poor” performance (CMCIL: 0.51 to 1.00), while the remaining
nine models were considered “unacceptable” (CMCI > 1.00),
whereas most of the SDSM ensembles (19 of 20) were
characterised with “good” performance (CMCIL: 0.00 to 0.25),
with the only remaining ensemble being considered “satisfactory”
(CMCI: 0.26 to 0.50). Overall, both the PCIC models and the
SDSM ensembles performed better for 7, than they did for
Trnin, for this location. For example, at least one PCIC model
was considered “satisfactory” for 7., while for T}, even the
best PCIC model was still considered “poor”. Nonetheless, of all
the PCIC climate models, the University of Tokyo’s Center for
Climate System Research’s Model for Interdisciplinary Research
On Climate (MIROCS), came closest to reproducing baseline
conditions for 7,,;, in Kelowna (CMCI: 0.70). However, the
modelled mean was 0.7 °C warmer than the observed mean, a
difference that was statistically significant (z = 8.023, P < 0.001).
In comparison, the best performing SDSM ensemble for 7,
recorded a CMCI value of 0.0002, generating a modelled mean
only 0.0002 °C cooler than the observed mean, a difference that
was not statistically significant (r =—0.002, P = 0.499). While the
PCIC models performed considerably better for 7}, than they
did for T, the SDSM ensembles performed similarly for both
temperature variables, with performance being only slightly better
for T, than for T, Furthermore, the twenty SDSM ensembles
had a much smaller range of performance (CMCI: 0.00 to 0.28),
compared with much higher and larger range of CMCI values
associated with the twenty-seven PCIC models (0.70 to 1.18).
Finally, the PCIC models did a better job of reproducing the
observed variability of minimum daily temperatures in
Kelowna, performing much better than they did for 7},,,c and also
slightly outperforming the SDSM ensembles for 7,,;, (see
Appendix Tables 3 and 4 for results of all statistical tests for
Tmin)- More specifically, only 11 of the 27 PCIC models (41%)
reported statistically significant differences between the modelled
and observed variance for 7;;,, compared with 9 of the 20 SDSM
ensembles (45%) for Ty,

3.3 Total precipitation

Considering the ability of PCIC models and SDSM ensembles to
reproduce baseline conditions for total daily precipitation (Py,) in
Kelowna, BC (Fig. 3), this time, the PCIC models considerably
outperformed the SDSM ensembles. For Py, the worst PCIC
models still outperformed the best SDSM ensembles. In this
case, a slight majority of the PCIC models (14 of 27) were
characterised with “good” performance (CMCI: 0.00 to 0.25),
while the remaining 13 models were considered “satisfactory”
(CMCI: 0.26 to 0.50), whereas all twenty SDSM ensembles were
characterised by “poor” performance (CMCI: 0.51 to 1.00). Of
all the PCIC climate models, the US National Center for
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Atmospheric Research’s Community Earth System Model ver-
sion 1 including the Community Atmospheric Model version 5
(CESM1-CAMS) was most capable of reproducing baseline con-
ditions for Py in Kelowna (CMCI: 0.04). Although the modelled
mean was 0.01 mm wetter than the observed mean, this differ-
ence was not statistically significant (¢ = 0.277, P = 0.391).
Whereas the best performing SDSM ensemble recorded a
CMCI value of 0.51, generating a modelled mean 0.1 mm wetter
than the observed mean, a difference that was statistically signif-
icant (¢ = 3.212, P = 0.001). The 27 PCIC models and the 20
SDSM ensembles were both associated with a similar range of
performance based on CMCI values (0.04 to 0.43 and 0.51 to
0.91, respectively), but with the SDSM ensembles having much
higher values. Finally, it is worthy to note that neither the PCIC
modes nor SDSM ensembles were able to reproduce the ob-
served variability of Py, with all the models and ensembles
reporting statistically significant differences between observed
and modelled variances (see Appendix Tables 5 and 6 for full
results of all the statistical tests for Piy).

3.4 CMClI validation

For all climate variables considered (7inax, Timin and Py, regard-
less of the statistical downscaling technique employed (PCIC or
SDSM), it was found that the CMCI values shared a nearly
perfect correlation (R* > 0.99, P < 0.001) with | ¢| (Figs. 1, 2
and 3). Furthermore, there was a strong agreement in the order of
magnitude between CMCI values and | t| , which was accurate
up to the second decimal place (Appendices 1, 2 and 3).
However, since the correlation between the CMCI and | |

was not entirely perfect (R? = 1), there was some confusion in
the order of magnitude, with the discrepancy typically occurring
at the third decimal place. Therefore, the 7 test remains the more
accurate measure for ranking climate model performance based
on the ability to reproduce average climate conditions, when
compared with the CMCI. However, the calculation of # statistics
in this case required daily data, while the CMCI was calculated
using aggregated annual data, clearly demonstrating the utility of
such a metric, while still remaining highly accurate (only 14 out
of 141 model runs were ranked one position higher by CMCI
than by | t| ). Thus, the CMCI was shown to be an effective and
efficient tool for evaluating and ranking the ability of climate
models for reproducing local historical climate conditions.
When discrepancies between | ¢| and the CMCI value were
observed, the corresponding F statistic gave us the clarifying
information we initially expected, but the direction of influence
we had hoped for was inverted. The model which received a one
position higher rank according to the CMCI was always associ-
ated with a higher F statistic than the model that received the
lower rank, indicting that | t| more accurately identifies and
ranks models regarding both differences between means and
differences between variances. The reason for this discrepancy
is because the ¢ test considers both observed and modelled
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variance within its calculation while the CMCI only considers
observed variance. Furthermore, the better the models/ensembles
performed at reproducing baseline climate conditions within a
variable grouping (e.g. SDSM temperature ensembles), the more
accurate the CMCI was in comparison with | t| . To such a
degree that most of the discrepancies between CMCI values
and | t| were observed among the PCIC temperature models,
which were also associated with the most statistically significant
differences between modelled and observed means, whereas the
only discrepancies reported among the SDSM ensemble rank-
ings were for precipitation, the variable that SDSM performed
the worst for.

4 Discussion and conclusions

This study further develops and validates the CMCI previously
published within several CCIAs (Hewer and Gough 2016a, b,
2019a, b, 2020; Hewer and Brunette 2020) as an effective and
efficient tool for measuring and ranking the ability of climate
models to reproduce historical climate conditions. This was ac-
complished by comparing statistically downscaled baseline cli-
mate scenarios from PCIC models and SDSM ensembles in
Kelowna, BC (Canada) for the period from 1969 to 2005.
Student’s ¢ tests (N> 13,000) were used to determine if there were
statistically significant differences between modelled and ob-
served means on the daily time scale; then, the CMCI was calcu-
lated using aggregated annual values to validate this metric for
evaluating and ranking climate model performance. It was shown
that the CMCI values were in close agreement with the rank order
of | t| (99% confidence level). Furthermore, of the 141 rankings
determined, 127 model runs (90.1%) were ordered in the same
way as the | t| rankings and the 14 model runs that were in
discrepancy were only slightly different (realised at the third dec-
imal place and resulting in the model being ranked one position
higher than the ranking according to | t| ). Finally, it was deter-
mined that this discrepancy was explained by differences between
the observed and modelled variances, as illustrated by the
resulting F statistic. The ¢ test considers both modelled and ob-
served variance within its calculation, whereas the CMCI only
considers (and requires) observed variance for its calculation.
Although this is a slight shortcoming relating to precision, it still
demonstrates increased utility since the CMCI can be calculated
without requiring modelled variance, which is often not readily
available to researchers trying to determine which climate models
to use in an impact assessment, especially when considering the
wide array of GCMs available from CMIP5 (Taylor et al. 2012).
The utility of this metric is further seen in that the CMCl is easy to
calculate, operates with readily available climate inputs (annual
data) and small sample sizes (N > 30), while the more sophisti-
cated Student’s ¢ tests are more effective with larger sample sizes,
which often demands access to monthly or daily data, and typi-
cally requires some form of statistical software for calculation.

Previously, the CMCI has been employed to evaluate and rank
GCMs in an effort to create multi-model ensembles made up of
the best performing GCMs, referred to as the selective ensemble
approach (Hewer and Gough 2016a, b, 2019a, b), an alternative to
the more common full ensemble approach (Fenech et al. 2007;
IPCC 2010; Hewer et al. 2016). In this study, the CMCI has also
been shown to be an effective tool for evaluating, ranking, and
selecting individual model runs from statistically downscaled cli-
mate scenarios. This is another important utility that the CMCI
offers, especially for localised climate change impact assessments
that require daily data for the assessment (Hewer and Gough
2020; Hewer and Brunette 2020); in that, these studies should
select one scenario to base the assessment upon, since averaging
multiple daily scenarios eliminates day-to-day variability associat-
ed with local climatology (Gough 2008). For example, if a study
elected to average the daily output from all the available PCIC
models or from all the available SDSM ensembles, then the oc-
currence of extreme temperature events would be considerably
diminished and essentially every day in the scenario would show
average conditions. This concern is exacerbated with precipitation
scenarios as each day would then record some small amount of
rain rather than having many days with no rain and other days
with varying amounts of rain (from trace amounts up to heavy rain
events). Developing and validating a metric to aid researchers in
ranking and selecting which statistically downscaled climate
change scenario to use within a CCIA has even greater utility
within the field of applied climatology when considering critical
thresholds associated with daily weather events (Vincent et al.
2018; Hewer 2020). Some further examples of potential
applications include thresholds and indicators associated with cli-
matic suitability for agriculture (Caprio and Quamme 1999, 2002,
2006; Rayne and Forest 2016); the survival of pests and insects
(Campbell et al. 2014); thermal stress on human health due to
extreme temperatures (Casati et al. 2013); or the effect of freeze
thaw events on road maintenance (Ho and Gough 2006).

The main limitation associated with the CMCI is that it was
shown to only be accurate up to the second decimal place and if
the CMCI was rounded to the second decimal place to smooth out
any discrepancies occurring at the third decimal place, then on
those occasions, the models would be ranked with a tie, which
was never the case for the more precise ¢ statistic. Also, the worse
that the models being evaluated performed at reproducing local
historical climate conditions, the more prone to error the CMCI
became. However, it is worthy to note that the CMCI was still
always able to effectively determine the particular model/ensemble
that performed best (no ties or discrepancies reported among the
top models for each climate variable within this study), thus
supporting its effective use in the selection of which climate sce-
nario to use within an impact assessment. More generally, further
development and validation of the CMCI is also limited by the
scope of this study that only considered one location (Kelowna,
BC), which is also associated with a unique microclimate within
the Okanagan Valley (Rayne and Forest 2016). Therefore, future
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research is required to expand this analysis across other locations
(Sobie and Murdock 2017), to confirm the findings of this study
with more data and with more site-specific applications.
Although it was not the primary purpose of the paper, some
conclusions can also be drawn about the performance of the
two different statistical downscaling techniques employed in
this study. In the case of Kelowna, BC (Canada), the results of
this study suggest that SDSM was more effective at reproduc-
ing local temperature conditions from 1969 to 2005, while
PCIC was more effective at reproducing local precipitation
conditions. This could be explained by the parametric nature
of the SDSM modelling approach (Wilby et al. 2002) com-
pared with the nonparametric quantile mapping approach of
PCIC (Gudmundsson et al. 2012; Hunter and Meentemeyer
2005). Furthermore, it could be argued that SDSM is a more
appropriate method for localised assessments since it is cali-
brated with weather station data (Wilby and Dawson 2013;

Eum et al. 2014), while PCIC may be more appropriate for
regional assessments, since it is calibrated with 10-km gridded
climate data (McKenney etal. 2011; Hopkinson etal. 2011). It
is also important to note that SDSM is a skill-based program
whose output is dependent upon the ability of the user, while
PCIC is a point and click platform that should generate the
same quality of output regardless of the user’s skill. Therefore,
other researchers may generate better of worse SDSM models
in comparison with those analysed in this study, which could
skew the results in comparison with the performance of the
PCIC models, which should remain constant (assuming the
same grid box is properly selected for download). Finally, to
draw more generalizable conclusions about the performance
of SDSM compared with PCIC, additional study sites across
diverse climates would be required and is therefore an impor-
tant area of future research.

Appendix

Table 1 PCIC models for T}y«

Tnax PCIC model Var. Mod. Var. Obs. F P(F) Mean Mod. Mean Obs. t P> CMCI
bec-csml-1 117.3 118.9 0.987 0217 13.72 14.12 - 2.984 0.001 0.478
BNU-ESM 1149 118.9 0.967 0.024 13.69 14.12 - 3.231 0.001 0.515

IPSL-CM5A-LR 1142 118.9 0.961 0.010 13.67 14.12 - 3.403 0.000 0.542
bec-csm1-M 112.5 118.9 0.946 0.001 13.67 14.12 - 3.404 0.000 0.540
MPI-ESM-LR 1149 118.8 0.967 0.025 13.63 14.11 - 3.669 0.000 0.585

CNRM-CM5 116.7 118.8 0.982 0.150 13.61 14.11 - 3.817 0.000 0.610
ACCESSI1-0 114.5 118.8 0.964 0.016 13.61 14.11 - 3.818 0.000 0.608
GFDL-CM3 114.8 118.9 0.966 0.021 13.61 14.12 - 3.851 0.000 0.614
CESM1-CAMS 113.8 118.9 0.958 0.006 13.60 14.12 - 3.933 0.000 0.625

GFDL-ESM2M 114.6 118.9 0.964 0.017 13.60 14.12 - 3.940 0.000 0.628
inmecm4 1144 118.9 0.962 0.013 13.60 14.12 —3.943 0.000 0.628
IPSL-CM5A-MR 115.7 118.9 0.973 0.056 13.58 14.12 - 4.075 0.000 0.650
HadGEM2-ES 116.6 117.8 0.990 0.275 13.56 14.10 - 4.100 0.000 0.659
MPI-ESM-MR 114.0 118.8 0.959 0.008 13.55 14.11 —4.316 0.000 0.686
NorESM1-ME 113.3 118.9 0.953 0.003 13.54 14.12 —4.394 0.000 0.698
FGOALS-g2 116.9 118.9 0.983 0.164 13.53 14.12 —4.44] 0.000 0.711

CanESM2 114.0 118.9 0.959 0.008 13.53 14.12 — 4.458 0.000 0.709
NorESM1-M 114.5 118.9 0.963 0.015 13.53 14.12 — 4.496 0.000 0.716
CCSM4 114.5 118.9 0.964 0.015 13.53 14.12 —4.515 0.000 0.719
GFDL-ESM2G 116.8 118.9 0.983 0.156 13.51 14.12 —4.618 0.000 0.739
MRI-CGCM3 113.0 118.8 0.951 0.002 13.49 14.11 —4.791 0.000 0.760
HadGEM2-CC 1135 117.8 0.964 0.016 13.47 14.10 —4.807 0.000 0.768
CSIRO-Mk3-6 116.6 118.9 0.981 0.135 13.47 14.12 —4.885 0.000 0.781

HadGEM2-A0 116.0 118.1 0.982 0.152 13.40 14.07 - 5.075 0.000 0.815

MIROC-ESM-CH 1143 118.8 0.962 0.012 13.45 14.11 - 5.088 0.000 0.810
MIROC-ESM 113.5 118.8 0.955 0.004 13.41 14.11 - 5.366 0.000 0.852
MIROC5 115.6 118.9 0.972 0.051 13.22 14.12 - 6.836 0.000 1.091

Values in italics indicate that differences were statistically significant at the 95% confidence level (P < 0.05)
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Table2 SDSM ensembles for 7T,
Tinax SDSM ensemble Var. Mod. Var. Obs. F P(F) Mean Mod. Mean Obs. t P CMCI
14 118.9 118.8 1.001 0.482 14.11 14.11 0.003 0.499 0.000
5 118.0 118.8 0.993 0.335 14.09 14.11 —0.148 0.441 0.024
20 121.8 118.8 1.025 0.076 14.09 14.11 —0.161 0.436 0.026
6 120.9 118.8 1.018 0.156 14.08 14.11 -0.222 0412 0.036
4 119.1 118.8 1.002 0.456 14.14 14.11 0.231 0.409 0.037
2 112.1 118.8 0.943 0.000 14.14 14.11 0.233 0.408 0.037
17 118.7 118.8 0.999 0.470 14.06 14.11 —0.405 0.343 0.065
9 116.3 118.8 0.978 0.102 14.17 14.11 0.437 0.331 0.070
13 120.2 118.8 1.012 0.248 14.05 14.11 —0.511 0.305 0.082
16 119.7 118.8 1.007 0.345 14.03 14.11 —0.643 0.260 0.103
12 119.2 118.8 1.003 0.436 14.22 14.11 0.828 0.204 0.133
15 120.6 118.8 1.015 0.193 13.99 14.11 —0.903 0.183 0.146
18 117.9 118.8 0.992 0.321 14.23 14.11 0912 0.181 0.146
1 119.7 118.8 1.007 0.332 14.24 14.11 0.958 0.169 0.154
19 121.3 118.8 1.021 0.116 14.26 14.11 1.099 0.136 0.177
7 119.8 118.8 1.008 0.324 14.27 14.11 1.208 0.114 0.194
11 117.0 118.8 0.984 0.178 14.28 14.11 1.260 0.104 0.202
10 114.8 118.8 0.966 0.022 14.29 14.11 1.329 0.092 0.212
3 120.3 118.8 1.012 0.237 14.37 14.11 1.912 0.028 0.308
8 119.1 118.8 1.002 0.457 14.37 14.11 1.927 0.027 0.310
Values in italics indicate that differences were statistically significant at the 95% confidence level (P < 0.05)
Table 3 PCIC models for Ty,
Tinin PCIC model ~ Var. Var. F P(F)  Mean Mean t P@) CMCI
Mod. Obs. Mod. Obs.
MIROCS5 58.1 579 1.004 0407 221 1.47 8.023 0.000  0.698
MIROC-ESM 55.6 57.9 0.961 0.011 233 1.46 9.490 0.000  0.816
HadGEM2-AO 583 57.5 1.013 0221 235 1.44 9.761 0.000  0.854
CSIRO-MKk3-6 57.8 57.9 0.999 0479 237 1.47 9.800 0.000  0.851
GFDL-ESM2G 58.4 579 1.009 0293 241 1.47 10.188  0.000  0.887
MIROC-ESM-CH ~ 56.7 57.9 0.980 0.126 242 1.46 10.339  0.000 0.894
HadGEM2-CC 559 57.3 0976 0.078 243 1.46 10.495  0.000  0.909
HadGEM2-ES 57.6 57.3 1.004 0406 245 1.46 10.608  0.000 0926
NorESM1-M 56.3 57.9 0973  0.058 2.45 1.47 10.654  0.000  0.920
MRI-CGCM3 55.1 57.9 0.953  0.002 245 1.46 10.818  0.000 0928
CESM1-CAMS5 54.1 579 0.935  0.000 245 1.47 10.848  0.000  0.927
FGOALS-g2 582 57.9 1.005 0380 2.47 1.47 10.871  0.000  0.946
GFDL-CM3 56.0 57.9 0.968 0.029 247 1.47 10.963  0.000 0945
NorESM1-ME 56.0 579 0.968 0.028  2.49 1.47 11.095  0.000  0.956
GFDL-ESM2M 56.3 57.9 0973  0.058  2.50 1.47 11.187  0.000  0.966
bee-csm1-M 56.2 579 0.971  0.001  2.50 1.46 11.269  0.000 0972
ACCESS1-0 56.2 57.9 0.971  0.046  2.50 1.46 11.269  0.000 0972
IPSL-CM5A-MR  57.6 57.9 0.996 0409 2.52 1.47 11.389  0.000 0989
CanESM2 56.5 579 0976 0.075 2.53 1.47 11.548  0.000  0.997
inmem4 542 57.9 0.937  0.000 2.53 1.47 11.625  0.000 0994
CNRM-CM5 57.8 579 0.999 0467 2.54 1.46 11.656  0.000 1.012
MPI-ESM-LR 56.3 57.9 0973 0.058 2.53 1.46 11.659  0.000 1.006
CCSM4 57.4 57.9 0992 0.121  2.56 1.47 11.795  0.000 1.023
bee-csml-1 574 579 0992 0317 2.56 1.47 11.795  0.000 1.023
IPSL-CMS5A-LR 56.0 579 0.968 0.030 2.61 1.47 12.431  0.000 1.072
BNU-ESM 554 57.9 0.957  0.005  2.68 1.47 13.258  0.000 1.140
MPI-ESM-MR 55.5 57.9 0.958  0.007 2.72 1.46 13.754  0.000 1.182

Values in italics indicate that differences were statistically significant at the 95% confidence level (P < 0.05)
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Table 4 SDSM ensembles for 7,

Tmin SDSM ensemble Var. Mod. Var. Obs. F P(F) Mean Mod. Mean Obs. t P(0) CMCI
15 55.9 57.9 0.967 0.025 1.46 1.46 —0.002 0.499 0.000
1 58.7 57.9 1.015 0.192 1.46 1.46 0.009 0.497 0.001
9 58.9 57.9 1.018 0.148 1.46 1.46 —0.034 0.486 0.003
3 56.2 57.9 0.972 0.049 1.48 1.46 0.234 0.407 0.023
16 58.2 57.9 1.005 0.377 1.43 1.46 -0.323 0.373 0.031
14 56.0 57.9 0.967 0.027 1.50 1.46 0.406 0.342 0.039
19 57.5 57.9 0.994 0.361 1.50 1.46 0.413 0.340 0.040
10 59.8 57.9 1.034 0.025 1.42 1.46 -0.429 0.334 0.042
5 57.7 57.9 0.997 0.436 1.42 1.46 —0.491 0312 0.047
12 57.3 57.9 0.990 0.273 1.41 1.46 —0.578 0.282 0.056
20 56.3 57.9 0.972 0.052 1.53 1.46 0.685 0.247 0.066
59.6 57.9 1.030 0.041 1.39 1.46 —0.787 0.216 0.077
58.7 57.9 1.015 0.197 1.38 1.46 —0.884 0.188 0.086
17 57.4 57.9 0.992 0.323 1.57 1.46 1.119 0.132 0.108
55.2 57.9 0.954 0.003 1.57 1.46 1.189 0.117 0.114
54.8 57.9 0.947 0.001 1.57 1.46 1.216 0.112 0.116
4 59.4 57.9 1.027 0.059 1.33 1.46 —1.431 0.076 0.139
11 58.6 57.9 1.012 0.242 1.29 1.46 - 1.835 0.033 0.178
13 55.5 57.9 0.959 0.008 1.67 1.46 2.209 0.014 0.212
18 55.3 57.9 0.955 0.004 1.74 1.46 3.011 0.001 0.288
Values in italics indicate that differences were statistically significant at the 95% confidence level (P < 0.05)
Table 5 PCIC models for P
P PCIC model  Var. Var. F P(F)  Mean Mean t P CMCI
Mod. Obs. Mod. Obs.
CESM1-CAM5 5.01 6.38 0.785  0.000 1.02 1.01 0.277 0391  0.043
ACCESSI1-0 498 6.37 0.782  0.000 1.03 1.01 0.662 0254  0.102
MIROC-ESM 5.11 6.37 0.801  0.000 1.04 1.01 0.880  0.189  0.137
HadGEM2-ES 5.14 643 0.800  0.000 1.04 1.01 0.919 0.179 0.144
GFDL-CM3 5.05 6.38 0.792  0.000 1.04 1.01 0.975 0.165 0.151
bee-csm1-M 532 6.38 0.835 0.000 1.04 1.01 1.043  0.149 0.163
GFDL-ESM2G 5.19 6.38 0.814  0.000 1.04 1.01 1.095 0.137  0.170
CSIRO-Mk3-6 5.06 6.38 0.794  0.000 1.05 1.01 1.201  0.115 0.186
MIROC5 5.30 6.38 0.832  0.000 1.05 1.01 1.281  0.100  0.200
CanESM2 5.20 6.38 0.816 0.000 1.05 1.01 1.313  0.095 0.205
inmem4 5.18 6.38 0.812  0.000 1.05 1.01 1.326 0.092  0.206
MPI-ESM-LR 5.22 6.37 0.818 0.000 1.05 1.01 1.484  0.069 0.231
MRI-CGCM3 5.37 6.37 0.843  0.000 1.06 1.01 1.605 0.054 0.252
BNU-ESM 5.19 6.38 0.814  0.000 1.06 1.01 1.614  0.053  0.251
HadGEM2-CC 541 6.43 0.841  0.000 1.06 1.01 1.616  0.053  0.257
IPSL-CM5A-MR 527 6.38 0.826  0.000 1.06 1.01 1.640  0.051 0.256
GFDL-ESM2M 5.14 6.38 0.807  0.000 1.06 1.01 1.700  0.045 0.264
CNRM-CM5 542 6.37 0.851  0.000 1.07 1.01 1.927  0.027 0303
NorESM1-M 5.64 6.38 0.885  0.000 1.07 1.01 1.992  0.023 0316
MPI-ESM-MR 532 6.37 0.834  0.000 1.07 1.01 2,027 0.021 0317
MIROC-ESM-CH ~ 5.50 6.37 0.863  0.000 1.07 1.01 2.077  0.019 0328
HadGEM2-AO 5.54 6.42 0.862  0.000 1.08 1.01 2086 0.018 0.333
FGOALS-g2 5.45 6.38 0.854  0.000 1.08 1.01 2171 0.015 0342
bee-csml-1 545 6.38 0.855  0.000 1.08 1.01 2192 0.014 0345
CCSM4 5.21 6.38 0.817  0.000 1.08 1.01 2.347  0.009 0.366
NorESM1-ME 5.63 6.38 0.883  0.000 1.09 1.01 2696 0.004 0428
IPSL-CM5A-LR 5.51 6.38 0.863  0.000 1.09 1.01 2711 0.003  0.696
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Table 6 SDSM ensembles for
Pt P,o: SDSM Var. Var. F P(F) Mean Mean t P(f) CMCI
ensemble Mod. Obs. Mod. Obs.
6 5.52 6.37 0.866  0.000 1.11 1.01 3212 0.001 0.507
11 542 6.37 0.851  0.000 1.11 1.01 3.300  0.000 0.519
5.67 6.37 0.889  0.000 1.12 1.01 3.567 0.000 0.566
5.52 6.37 0.866  0.000 1.12 1.01 3.742  0.000 0.591
5.60 6.37 0.879  0.000 1.12 1.01 3.796  0.000 0.601
19 5.68 6.37 0.891 0.000 1.13 1.01 4.089  0.000 0.650
13 5.66 6.37 0.889 0.000 1.14 1.01 4.384  0.000 0.696
14 577 6.37 0.905 0.000 1.14 1.01 4475  0.000 0.714
18 5.86 6.37 0.920  0.000 1.15 1.01 4.553  0.000 0.729
5 5.88 6.37 0.923  0.000 1.15 1.01 4.562  0.000 0.731
16 5.70 6.37 0.894  0.000 1.15 1.01 4.579  0.000 0.728
5.80 6.37 0.911 0.000 1.15 1.01 4.587  0.000 0.733
5.90 6.37 0.926  0.000 1.15 1.01 4.605 0.000 0.738
5.68 6.37 0.891 0.000 1.15 1.01 4.648  0.000 0.739
12 5.77 6.37 0.906 0.000 1.15 1.01 4.709  0.000 0.751
10 5.80 6.37 0.911 0.000 1.16 1.01 4.907  0.000 0.784
17 5.95 6.37 0.934  0.000 1.16 1.01 4.986  0.000 0.801
20 5.95 6.37 0.933  0.000 1.17 1.01 5430 0.000 0.872
15 5.94 6.37 0.931 0.000 1.18 1.01 5509 0.000 0.885
1 5.95 6.37 0.934 0.000 1.18 1.01 5.650  0.000 0.908

Values in italics indicate that differences were statistically significant at the 95% confidence level (P < 0.05)
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