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Abstract 

Background: Multiple imputation is frequently used to address missing data when conducting statistical analyses. 
There is a paucity of research into the performance of multiple imputation when the prevalence of missing data is 
very high. Our objective was to assess the performance of multiple imputation when estimating a logistic regression 
model when the prevalence of missing data for predictor variables is very high.

Methods: Monte Carlo simulations were used to examine the performance of multiple imputation when estimating 
a multivariable logistic regression model. We varied the size of the analysis samples (N = 500, 1,000, 5,000, 10,000, and 
25,000) and the prevalence of missing data (5–95% in increments of 5%).

Results: In general, multiple imputation performed well across the range of scenarios. The exceptions were in sce-
narios when the sample size was 500 or 1,000 and the prevalence of missing data was at least 90%. In these scenarios, 
the estimated standard errors of the log-odds ratios were very large and did not accurately estimate the standard 
deviation of the sampling distribution of the log-odds ratio. Furthermore, in these settings, estimated confidence 
intervals tended to be conservative. In all other settings (i.e., sample sizes > 1,000 or when the prevalence of missing 
data was less than 90%), then multiple imputation allowed for accurate estimation of a logistic regression model.

Conclusions: Multiple imputation can be used in many scenarios with a very high prevalence of missing data.

Keywords: Missing data, Multiple imputation, Monte Carlo simulations

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Missing data is common in biomedical and epidemiologi-
cal research. Missing data occurs when the value of a var-
iable is recorded for some subjects in the sample, but not 
for all subjects. Multiple Imputation (MI), developed by 
Rubin, has become a popular method for addressing the 
presence of missing data [1]. Multiple imputation entails 
the creation of M complete datasets, in which missing 

values have been replaced by plausible values generated 
from an imputation model.

An issue that has received relatively little attention in 
the methodologic literature is the effect of the prevalence 
of missing data on the quality of inferences made in the 
imputed datasets. In particular, little research has been 
conducted on the performance of MI when there is a 
high rate of missing data.
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Methods
We conducted an extensive series of Monte Carlo simula-
tions to examine the effect of the percentage of subjects 
with missing data on one independent or explanatory 
variable on inferences about regression coefficients in a 
multivariable logistic regression model. The design of the 
simulations was informed by empirical analyses of patients 
hospitalized with acute myocardial infarction (AMI).

Data for empirical analyses to inform the Monte Carlo 
simulations
We used data from the Enhanced Feedback for Effective Car-
diac Treatment (EFFECT) Study [2], which collected data on 
patients hospitalized with AMI in Ontario, Canada between 
April 1, 1999 and March 31, 2001 and between April, 2004 
and March 31, 2005. For the current study, data were avail-
able on 19,395 patients hospitalized with a diagnosis of AMI.

The outcome was a binary variable denoting death 
within one year of hospital admission. Outcome ascer-
tainment was through linkage with the provincial death 
registry. Of the 19,395 patients, 3,898 (20.1%) died within 
one year of hospital admission.

We considered 10 variables for predicting 1-year 
mortality: age, systolic blood pressure at admission, 
heart rate at admission, hemoglobin (first recorded 
laboratory value after hospitalization), cholesterol 
(first recorded laboratory value after hospitalization), 
sex, angina, diabetes, history of previous AMI, and 
current smoker. The first five are continuous, while the 
last five are binary.

The outcome (one-year mortality), age, and sex were not 
subject to missing data (as they can be ascertained through 
linkages to provincial health insurance registries). Over-
all, 48.1% of patients were subject to missing data. The 
percentage of subjects who had missing data for the eight 
variables that were subject to missing data were: 0.9% (sys-
tolic blood pressure), 1.2% (heart rate), 1.2% (hemoglobin), 
40.5% (cholesterol), 1.4% (angina), 0.4% (diabetes), 1.6% 
(previous AMI), and 13.4% (current smoker).

Multiple imputation in empirical data
We used the multivariate imputation using chained equa-
tions (MICE) algorithm to create 48 complete datasets 
[3–5]. Predictive mean matching (PMM) was used for 

Fig. 1 Mean estimated regression coefficient (when cholesterol is subject to missingness)



Page 3 of 14Austin and van Buuren  BMC Medical Research Methodology          (2022) 22:196  

imputing missing continuous variables, while logistic 
regression was used for imputing missing binary vari-
ables. Based on a rule-of-thumb that the number of com-
plete datasets should equal the percentage of subjects 
with any missing data, 48 complete datasets were cre-
ated [6]. The imputation model for each variable that was 
subject to missingness used as predictors the other nine 
baseline covariates and the outcome for the final analy-
sis model (1-year mortality). For example, the imputation 
model for current smoker used the other nine baseline 
covariates and 1-year mortality.

Statistical analyses in the imputed empirical data to inform 
the design of the simulations
We conducted four sets of analyses in the complete data-
sets: (i) estimating the coefficients of the analysis model in 
which the odds of 1-year mortality was regressed on the 
10 baseline covariates; (ii) estimating missing data mod-
els in which the odds of a variable being missing were 
regressed on the nine other baseline covariates and 1-year 
mortality; (iii) estimating the variance-covariance matrix 
of the ten baseline covariates; (iv) estimating the means 
and prevalence of each of the ten baseline variables.

In each of the 48 complete datasets, we regressed the 
binary outcome (1-year mortality) on the 10 baseline 
covariates described above. For simplicity, we assumed 
a linear relationship between each of the five continuous 
variables and the log-odds of mortality. The estimated 
regression coefficients and their standard errors were 
pooled across the 48 fitted models using Rubin’s Rules 
[1]. The resultant model will be used to generate out-
comes in the simulations described below.

In each complete dataset, for each of the eight vari-
ables that had been subject to missingness in the origi-
nal sample, we created a binary missing data indicator 
denoting whether that variable had been missing for the 
corresponding record in the original sample. We then 
estimated eight missing data models in each of the 48 
complete datasets. Using logistic regression, the given 
missing data indicator was regressed on the other nine 
baseline covariates and the binary outcome variable 
from our analysis model (1-year mortality). Thus, in the 
case of systolic blood pressure, the binary indicator vari-
able denoting whether systolic blood pressure was miss-
ing in the original sample was regressed on: age, heart 
rate at admission, hemoglobin, cholesterol, sex, angina, 

Fig. 2 Relative bias in estimated regression coefficients (%) (when cholesterol is subject to missingness)



Page 4 of 14Austin and van Buuren  BMC Medical Research Methodology          (2022) 22:196 

diabetes, history of previous AMI, current smoker, and 
1-year mortality. Note that, in the case of systolic blood 
pressure, systolic blood pressure was not a covariate or 
predictor variable in the missing data model for systolic 
blood pressure. For a given variable, the coefficients of 
the missing data model were pooled across the 48 com-
plete datasets using Rubin’s Rules. In the simulations 
described below, we will induce missingness in two 
variables using the cholesterol and smoking status miss-
ing data models. The c-statistics for these two models 
(pooled across the 48 complete datasets) were 0.67 and 
0.71, respectively. The generalized  R2 index for these two 
models were 0.12 and 0.11, respectively.

In each of the 48 complete datasets we computed the 
variance-covariance matrix of the 10 baseline covariates. 
These were then averaged across the 48 complete data-
sets. Finally, in each of the 48 complete datasets we deter-
mined the mean (for continuous variables) or prevalence 
(for binary variables) of the baseline covariates. These 
estimated means and prevalences were then averaged 
across the 48 complete datasets. The pooled prevalence 
of female sex, angina, diabetes, previous AMI, and cur-
rent smoker were 36%, 32%, 27%, 24%, and 33%, respec-
tively, across the 48 imputed datasets.

Monte Carlo simulations: simulating a super‑population
We designed a series of Monte Carlo simulations in which 
we examined the effect of the prevalence of missing data 
for one variable, with all other variables not being sub-
ject to  missingness. This was done twice: first allowing 
only a continuous variable (cholesterol) to be subject to 
missingness; second allowing only a binary variable (cur-
rent smoker) to be subject to missingness. The simulated 
super-population was designed to resemble the empirical 
data described in Data for empirical analyses to inform 
the Monte Carlo simulations and Multiple imputation in 
empirical data  section. We simulate 10 baseline covari-
ates and one binary outcome. For ease of description, we 
refer to each of the 10 simulated baseline covariates using 
the name of the variable in the empirical data that that 
simulated variable was intended to mimic.

For each subject in a super-population of size 1,000,000 
we simulated 10 baseline covariates from a multivari-
ate normal distribution with mean vector and vari-
ance-covariance matrix equal to those estimated in the 
previous section. The first five variables were retained 
as continuous while the last five variables were dichot-
omized. These last five variables were dichotomized 
using a threshold selected so that the prevalence of the 

Fig. 3 Standard deviation of estimated coefficient across simulation replicates (when cholesterol is subject to missingness)
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resultant binary variable was equal to the prevalence of 
the corresponding binary variable estimated above. Thus, 
in the super-population, the 10 simulated baseline covar-
iates had a multivariate distribution that was similar to 
that observed in the EFFECT AMI sample.

We then generated a binary outcome for each subject 
in the super-population. To do so, we applied the out-
comes model (whose coefficients had been estimated in 
the empirical data above) to each subject in the super-
population and computed the probability of the occur-
rence of the binary outcome. We then simulated a binary 
outcome from a Bernoulli distribution with this subject-
specific parameter. We then fit the outcomes model in the 
simulated super-population by regressing the simulated 
binary outcome on the 10 simulated baseline covariates. 
The estimated regression coefficients will be considered 
the ‘true’ values of the regression coefficients to which 
the coefficients estimated below will be compared.

We then set the value of the cholesterol variable to 
missing for some subjects in the super-population. To do 
so, we used an iterative procedure to modify the inter-
cept of the missing-data model for cholesterol, so that 
when the modified model was applied to the super-pop-
ulation, the prevalence of subjects with missing data on 

cholesterol was equal to the desired prevalence ( pmissing ). 
The prevalence of missing cholesterol data in the super-
population was determined as follows: for a given 
modified missing-data model, we applied the modified 
missing-data model for cholesterol to each subject in the 
super-population. We determined each subject’s prob-
ability of having missing cholesterol based on the applied 
model and generated a missing cholesterol indicator 
variable from a Bernoulli distribution with this subject-
specific parameter. We then determined the proportion 
of subjects in the super-population for whom choles-
terol was missing. Once the intercept of the missing data 
model had been determined, subjects for whom the miss-
ing data indicator was equal to 1 had their cholesterol 
value set to missing. The nine other baseline covariates 
were not subject to missingness. Using this approach, the 
relationship between the probability of cholesterol being 
missing and the nine other baseline covariates and the 
binary outcome reflected the relationships observed in 
the EFFECT AMI sample. The only difference was that 
the prevalence of missing data was set to a specified fixed 
prevalence. The missing data model for cholesterol con-
tained the other nine baseline covariates and the binary 
outcome variable. Thus, the missing data mechanism for 

Fig. 4 Estimated standard error (when cholesterol is subject to missingness)
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cholesterol was missing at random (MAR), as the prob-
ability of cholesterol was related to the other variables, 
but not to cholesterol itself.

The rationale for simulating a super-population from 
which subjects would be sampled was that this super-
population could be constructed such that the prevalence 
of missing data was equal to a specified value.

Monte Carlo simulations: statistical analyses
We drew a random sample of size  Nsample without 
replacement from the super-population. Sampling with-
out replacement was used to mimic what would be done 
in applied research, where random samples are typically 
drawn without replacement from the target population. 
As only one variable was subject to missingness, we used 
univariate imputation to impute the missing values of 
cholesterol in the random sample. The imputation model 
for cholesterol used the other 9 baseline covariates and 
the binary outcome. The number of complete datasets 
was set equal to the percentage of subjects with missing 
data [6] (to assess the validity of this approach when there 
was a high proportion of missing data, we examined one 
scenario with a sample size of 1,000, with 80% of the sub-
jects were missing the continuous variable cholesterol 

and when parametric imputation was used. We then 
compared the use of M = 80, 160, and 240 imputed data-
sets. At most trivial differences in performance on all 
six performance metrics (see below for the six metrics) 
was observed). In each of the complete datasets we fit 
the analysis model in which a logistic regression model 
was used to regress the binary outcome variable on the 
10 baseline covariates. The estimated regression coeffi-
cients and their standard errors were pooled across the 
complete datasets using Rubin’s Rules. Ninety-five per-
cent confidence intervals were computed for each of the 
10 estimated regression coefficients using  Barnard and 
Rubin’s small-sample degrees of freedom [7]. This pro-
cess was repeated 1,000 times.

 The following analyses were then conducted: (i) com-
puted the mean regression coefficient for each of the 10 
baseline covariates across the 1,000 simulation repli-
cates; (ii) determined the relative bias of the estimated 
regression coefficient for each of the 10 baseline covari-
ates (by comparing the mean estimated regression coef-
ficient across the 1,000 simulation replicates to the 
corresponding regression parameter that was used in 
the data-generating process); (iii) computed the stand-
ard deviation of the estimated regression coefficients for 

Fig. 5 Ratio of estimated to empirical SE (when cholesterol is subject to missingness)
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The simulations were conducted using the R statistical 
programming language (version 3.6.3). Univariate impu-
tation was implemented using the mice function from 
the mice package (version 3.13.0).

Results of Monte Carlo simulations
A continuous covariate was subject to missing data
Results on estimation of the logistic regression model 
when a single continuous covariate (cholesterol) was sub-
ject to missingness are reported in Fig. 1 (mean estimated 
regression coefficient), Fig. 2 (relative bias), Fig. 3 (stand-
ard deviation of estimated regression coefficients across 
the 1,000 simulation replicates), Fig.  4 (mean estimated 
standard error of the estimated regression coefficients 
across the 1,000 simulation replicates), Fig.  5 (ratio of 
estimated to empirical standard error), Fig. 6 (MSE), and 
Fig.  7 (coverage of empirical 95% confidence intervals). 
We report on estimation of all 10 regression coefficients in 
the analysis model, not just the covariate that was subject 
to missingness. Each figure consists of 10 panels, one for 
each of the covariates in the analysis model. Note that in 
many panels we have truncated the vertical axes in order 
to improve legibility and the ability to discern trends.

On Fig.  1 we have superimposed a horizontal line on 
each panel denoting the true regression parameter when 
the regression model was fit to the super-population with 
no missing data, while on Fig.  2 we have superimposed 
three horizontal lines denoting relative biases of -10%, 
0%, and 10%. In general, for those variables not subject 
to missingness (i.e., for all nine covariates apart from 
cholesterol), bias in the estimated regression coefficient 
tended to be minimal. The exception to this observation 
was when parametric imputation was used and the sam-
ple size was 500 and 95% of subjects were missing data 
on cholesterol. In general, across these nine covariates, 
bias tended to increase when the sample size was 500 or 
1,000 and the prevalence of missing data was very high 
(≥ 90%). The regression coefficient for the variable sub-
ject to missingness (cholesterol) tended to be subject to 
moderate to large bias when the sample size was 500 or 
1,000 and the prevalence of missing data was at least 85%. 
Moderate bias was observed even with very large sample 
sizes. For instance, when the sample size was 25,000 and 
the prevalence of missing data was 85%, the use of PMM 
resulted in a relative bias of -31.4% when estimating the 
regression coefficient for cholesterol.

Fig. 7 Empirical coverage rates of 95% CIs (when cholesterol is subject to missingness)
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In Fig.  3, we observe, as anticipated, that the stand-
ard deviation of the estimated regression coefficient 
across simulation replicates decreased with increas-
ing sample size. When the sample size was 500 or 
1,000, the standard deviation of the estimated regres-
sion coefficient tended to be substantially larger when 
parametric imputation was used and the prevalence 
of missing data was 95% compared to when the preva-
lence of missing data was less than 95%. This was true 
for all regression coefficients, not just for the regression 
coefficient for cholesterol. These results are mirrored 
by those observed in Fig. 4, in which the results for the 
mean estimated standard error are displayed. The esti-
mated standard error increased exponentially when the 
sample size was 500 or 1,000 and parametric imputa-
tion was used when the prevalence of missing data was 
90% or greater (when sample size was equal to 500) and 
when the prevalence of missing data was 95% (when 
sample size was equal to 1,000).

On Fig.  5 we have superimposed a horizontal line 
denoting a ratio of 1, indicating that the estimated stand-
ard error is accurately estimating the standard deviation 
of the sampling distribution of the regression coefficient. 

Our results suggest that estimation of the standard error 
is poor when the sample size was 500 or 1,000 and par-
ametric imputation was used when the prevalence of 
missing data was 95%. Apart from this one scenario, our 
results suggest that estimation of standard errors tended 
to be relatively accurate even when the prevalence of 
missing data was very high.

The results for MSE (Fig. 6) suggest that MSE increased 
rapidly when the sample size was 500 or 1,000 and the 
prevalence of missing data was at least 90%. With all 
other sample sizes, MSE increased very gradually with 
increasing prevalence of missing data.

On Fig.  7 we have superimposed three horizon-
tal lines denoting empirical coverage rates of 93.65%, 
95%, and 96.35%. Given our use of 1,000 simulation 
replicates, empirical coverage rates that are less than 
93.65% or greater than 96.35% are statistically signifi-
cantly different from the advertised rate of 95% using 
a standard normal-theory test. In general, empiri-
cal coverage rates did not differ from their advertised 
rate except when the prevalence of missing data was 
very high. In these settings, coverage rates tended 
to be conservative, with the empirical coverage rate 

Fig. 8 Mean estimated regression coefficient (when smoking is subject to missingness)
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exceeding 95%. The degree of conservatism was 
greater when sample sizes were small.

A binary covariate was subject to missing data
Results on estimation of the logistic regression model 
when a single binary covariate (current smoker) was sub-
ject to missingness are reported in Figs. 8, 9, 10, 11, 12, 
13 and 14. These figures have a similar structure to those 
described above. Note that when imputing a missing 
binary variable, only parametric imputation was used and 
PMM was not used. In general, findings mirrored those 
observed in the preceding section when a continuous 
covariate was subject to missingness.

Discussion
We examined the effect of the prevalence of missing data 
when estimating multivariable logistic regression models 
in samples created using multiple imputation. In general, 
we observed minimal bias in estimated regression coeffi-
cients regardless of the prevalence of missing data. When 
the sample size was small (1,000), the relative bias tended 
to increase when the prevalence of missing data was very 
high (≥ 90%). The standard deviation of the estimated 

regression coefficients across simulation replicates and 
the mean estimated standard errors tended to be very 
large when parametric imputation was used and the sam-
ple size was small (≤ 1,000) and the prevalence of miss-
ing data was 90% or greater. The standard errors were 
systematically mis-estimated in this specific scenario. In 
all other scenarios, standard errors were accurately esti-
mated and were representative of the standard deviation 
of the sampling distribution of the regression coefficients. 
Finally, the empirical coverage rates of confidence inter-
vals were close to the advertised levels, except when the 
prevalence of missing data was very high, in which case 
the estimated confidence intervals were conservative.

The mis-estimation of standard errors in the 95% miss-
ing scenario might not be the fault of multiple imputation 
and could well result from limitations of the complete-
data analysis. For example, with n = 1,000 and with 95% 
of subjects missing data on smoking status, we have 
n = 50 subjects with observed data on smoking status. If 
20% of the population smokes, then we expect n = 10 sub-
jects who are current smokers. In that case, in about half 
of the 1,000 replications the number of observed smok-
ers would be less than 10. A rule of thumb was proposed 

Fig. 9 Relative bias in estimated regression coefficients (%) (when smoking is subject to missingness)
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by Peduzzi and colleagues, who suggested that at least 10 
outcome events were required for accurate estimation of 
the coefficients and standard errors in a logistic regres-
sion model [9]. In the setting described above, with, 
on average ten outcome events (current smoker) in the 
imputation model for smoking status, there may be an 
insufficient number of outcome events (current smoker) 
to result in accurate estimation of the regression coef-
ficients and their associated standard errors. One needs 
only a handful of erratic estimates across the M imputed 
datasets to affect the overall estimate.

There is a limited literature on the use of MI in the 
presence of a high proportion of missing data. In a Mas-
ter’s thesis, Lee examined the performance of MI when 
estimating a single mean [10]. The author considered 
a setting with sample sizes of 3,000 subjects and seven 
continuous variables that followed a multivariate normal 
distribution with mean zero and a specified variance-
covariance matrix. The first variable was subject to miss-
ingness while the other six variables were not subject to 
missing data. The focus was on estimating the mean of 
the continuous variable that was subject to missingness. 
The percentage of missing data for this single variable 

ranged from 10 to 80% in increments of 10%. The author 
found the MI performed well, even when the prevalence 
of missing data was high, when the data were missing 
under a missing completely at random (MCAR) mecha-
nism or a missing at random (MAR) mechanism. In a 
recent study, Madley-Dowd and colleagues examined the 
use of MI in the presence of a high prevalence of miss-
ing data [11]. They examined estimation of an analysis 
model using samples of size 1,000 in which the outcome 
variable was subject to missingness under either a MCAR 
or MAR mechanism; however, neither the single predic-
tor variable nor the auxiliary variables were subject to 
missingness. The analysis model was a univariate linear 
regression model. The prevalence of missing data for 
the continuous outcome took on the following values: 
1%, 5%, 10%, 20%, 40%, 60%, 80%, and 90%. They found 
that MI performed well at all levels of missingness. To 
the best of our knowledge, these are the only two stud-
ies that address the use of MI in settings which a high 
rate of missing data. Limitations of the first study include 
its focus on the estimation of a mean and that there was 
no examination of estimation of an analysis or outcome 
model. In many medical and epidemiological applications 

Fig. 10 Standard deviation of estimated coefficient across simulation replicates (when smoking is subject to missingness)
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Fig. 11 Estimated standard error (when smoking is subject to missingness)

Fig. 12 Ratio of estimated to empirical SE (when smoking is subject to missingness)
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there is an outcomes model that is the primary focus of 
the research question. While the second study focused 
on an analysis model, the model was a univariate lin-
ear model and only the outcome variable was subject to 
missingness. In clinical research, the predictors are often 
subject to missingness. Thus, our current study fills a gap 
in the literature by considering a complex multivariable 
analysis model in settings in which one predictor variable 
was subject to missing data.

The current study is subject to certain limitations. 
First, like the two other studies described in the previous 
paragraph, our study relied on Monte Carlo simulations, 
and are thus dependent on the data-generating process 
that was used. However, a strength of our simulations 
was the use of a data-generating process that was based 
on empirical analyses of patients hospitalized with heart 
disease. Furthermore, we included both binary and con-
tinuous covariates, as these occur frequently in medical 

Fig. 13 Mean squared error (when smoking is subject to missingness)

Fig. 14 Empirical coverage rates of 95% CIs (when smoking is subject to missingness)
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and epidemiological applications. A second limitation 
was that in all our simulations we fit a correctly specified 
imputation model. We thought that it was important to 
do so, as our intent was to examine the performance of 
MI in settings with a high prevalence of missing data. To 
do so, it is important to consider the ideal setting where 
everything is done correctly, and the only factor that 
varies is the proportion of missing data. In subsequent 
research, it would be important to consider the impact of 
using a mis-specified imputation model. We hypothesize 
that the effect of the rate of missing data will be ampli-
fied when a mis-specified imputation model is used. In 
other words, MI will perform relatively well when there 
is little missing data and a mis-specified imputation 
model is used, whereas it will perform poorly when there 
is a high rate of missingness and a mis-specified imputa-
tion model is used.

Conclusions
Multiple imputation can be used to estimate the coeffi-
cients of a logistic regression model except when the sam-
ple is small and the prevalence of missing data is very high.

Abbreviations
AMI: Acute myocardial infarction; EFFECT: Enhanced Feedback for Effective 
Cardiac Treatment; MAR: Missing at random; MCAR : Missing completely at 
random; MI: Multiple imputation; MICE: Multivariate imputation using chained 
equations; MSE: Mean squared error; PMM: Predictive mean matching.

Acknowledgements
Not applicable.

Authors’ contributions
PA conceived the study and conducted the simulations. PA wrote the first draft 
of the manuscript while SvB revised the manuscript for important intellectual 
content. All authors read and approved the final manuscript.

Authors’ information
Not applicable.

Funding
 ICES is an independent, non-profit research institute funded by an annual 
grant from the Ontario Ministry of Health (MOH) and the Ministry of Long-
Term Care (MLTC). As a prescribed entity under Ontario’s privacy legislation, 
ICES is authorized to collect and use health care data for the purposes of 
health system analysis, evaluation and decision support. Secure access to 
these data is governed by policies and procedures that are approved by the 
Information and Privacy Commissioner of Ontario. The opinions, results and 
conclusions reported in this paper are those of the authors and are independ-
ent from the funding sources. No endorsement by ICES or the Ontario MOH 
or MLTC is intended or should be inferred. The dataset from this study is held 
securely in coded form at ICES. This research was supported by operating 
grant from the Canadian Institutes of Health Research (CIHR) (PJT 166161).  Dr. 
Austin is supported in part by a Mid-Career Investigator award from the Heart 
and Stroke Foundation of Ontario.

Availability of data and materials
The dataset from this study is held securely in coded form at ICES. While legal 
data sharing agreements between ICES and data providers (e.g., healthcare 
organizations and government) prohibit ICES from making the dataset 
publicly available, access may be granted to those who meet pre-specified 

criteria for confidential access, available at www. ices. on. ca/ DAS (email: das@
ices.on.ca).

Declarations

Ethics approval and consent to participate
The use of the data in this project is authorized under section 45 of Ontario’s 
Personal Health Information Protection Act (PHIPA) and does not require 
review by a Research Ethics Board. Written permission from one of two 
Institute for Clinical Evaluative Sciences (ICES) Core Scientists is required to use 
the EFFECT dataset, and a privacy impact assessment for the overall project 
was submitted to and reviewed by ICES’ Privacy & Legal Office. Project team 
members are provided varying degrees of encoded data (i.e., direct personal 
identifiers removed and replaced with a confidential ICES code that enables 
linkages across datasets) based on the level of access their role permits.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 ICES, G106, 2075 Bayview Avenue, Toronto M4N 3M5, ON, Canada. 2 Institute 
of Health Policy, Management, and Evaluation, University of Toronto, Toronto, 
ON, Canada. 3 Sunnybrook Research Institute, Toronto, ON, Canada. 4 University 
of Utrecht, Padualaan 14, 3584 CH Utrecht, The Netherlands. 5 Netherlands 
Organisation for Applied Scientific Research TNO, Leiden, The Netherlands. 

Received: 5 January 2022   Accepted: 30 June 2022

References
 1. Rubin DB. Multiple Imputation for Nonresponse in Surveys. New York: 

Wiley; 1987.
 2. Tu JV, Donovan LR, Lee DS, Wang JT, Austin PC, Alter DA, et al. Effective-

ness of public report cards for improving the quality of cardiac care: the 
EFFECT study: a randomized trial. J Am Med Assoc. 2009;302(21):2330–7.

 3. van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate Imputation by 
Chained Equations in R. J Stat Softw. 2011;45(3).

 4. van Buuren S. Flexible imputation of missing data. 2nd ed. Boca Raton: 
CRC Press; 2018.

 5. van Buuren S. Multiple imputation of multilevel data. In: Hox JJ, Roberts 
JK, editors. Handbook of Advanced Multilevel Analysis. New York: Rout-
ledge; 2011. p. 173–96.

 6. White IR, Royston P, Wood AM. Multiple imputation using chained equa-
tions: issues and guidance for practice. StatMed. 2011;30(4):377–99.

 7. Barnard J, Rubin DB. Small-sample degrees of freedom with multiple 
imputation. Biometrika. 1999;86(4):948–55.

 8. Morris TP, White IR, Royston P. Tuning multiple imputation by predic-
tive mean matching and localresidual draws. BMC Med Res Methodol. 
2014;14:75.

 9. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation 
study of the number of events per variable in logistic regression analysis. 
JClin Epidemiol. 1996;49(12):1373–9.

 10. Lee JH. Multiple imputation with large proportions of missing data: how 
much is too much? 2011. Texas A&M Health Science Center.

 11. Madley-Dowd P, Hughes R, Tilling K, Heron J. The proportion of missing 
data should not be used to guide decisions on multiple imputation. J 
Clin Epidemiol. 2019;110:63–73.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://www.ices.on.ca/DAS

	The effect of high prevalence of missing data on estimation of the coefficients of a logistic regression model when using multiple imputation
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Data for empirical analyses to inform the Monte Carlo simulations
	Multiple imputation in empirical data
	Statistical analyses in the imputed empirical data to inform the design of the simulations
	Monte Carlo simulations: simulating a super-population
	Monte Carlo simulations: statistical analyses
	Factors in the Monte Carlo simulations

	Results of Monte Carlo simulations
	A continuous covariate was subject to missing data
	A binary covariate was subject to missing data

	Discussion
	Conclusions
	Acknowledgements
	References


