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Abstract. Image stitching is used to combine several individual images having
some overlap into a composite image. The quality of image stitching is measured
by the similarity of the stitched image to each of the input images, and by the
visibility of the seam between the stitched images.
In order to define and get the best possible stitching, we introduce several formal
cost functions for the evaluation of the quality of stitching. In these cost functions,
the similarity to the input images and the visibility of the seam are defined in
the gradient domain, minimizing the disturbing edges along the seam. A good
image stitching will optimize these cost functions, overcoming both photometric
inconsistencies and geometric misalignments between the stitched images.
This approach is demonstrated in the generation of panoramic images and in ob-
ject blending. Comparisons with existing methods show the benefits of optimiz-
ing the measures in the gradient domain.

1 Introduction
Image stitching is a common practice in the generation of panoramic images and ap-
plications such as object insertion, super resolution [1] and texture synthesis [2]. An
example of image stitching is shown in Figure 1. Two images ��,�� capture different
portions of the same scene, with an overlap region viewed in both images. The images
should be stitched to generate a mosaic image � . A simple pasting of a left region from
�� and a right region from �� produces visible artificial edges in the seam between the
images, due to differences in camera gain, scene illumination or geometrical misalign-
ments.

The aim of a stitching algorithm is to produce a visually plausible mosaic with
two desirable properties: First, the mosaic should be as similar as possible to the input
images, both geometrically and photometrically. Second, the seam between the stitched
images should be invisible. While these requirements are widely acceptable for visual
examination of a stitching result, their definition as quality criteria was either limited or
implicit in previous approaches.

In this work we present several cost functions for these requirements, and define the
mosaic image as their optimum. The stitching quality in the seam region is measured
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Fig. 1. Image stitching. On the left are the input images. � is the overlap region. On top right is a
simple pasting of the input images. On the bottom right is the result of the GIST1 algorithm.

in the gradient domain. The mosaic image should contain a minimal amount of seam
artifacts, i.e. a seam should not introduce a new edge that does not appear in either � � or
��. As image dissimilarity, the gradients of the mosaic image � are compared with the
gradients of ��� ��. This reduces the effects caused by global inconsistencies between
the stitched images. We call our framework GIST: Gradient-domain Image STitching.

We demonstrate this approach in panoramic mosaicing and object blending. An-
alytical and experimental comparisons of our approach to existing methods show the
benefits in working in the gradient domain, and in directly minimizing gradient arti-
facts.

1.1 Related Work

There are two main approaches to image stitching in the literature, assuming that the
images have already been aligned. Optimal seam algorithms[3, 2, 4] search for a curve
in the overlap region on which the differences between � �� �� are minimal. Then each
image is copied to the corresponding side of the seam. In case the difference between
��� �� on the curve is zero, no seam gradients are produced in the mosaic image � .
However, the seam is visible when there is no such curve, for example when there is
a global intensity difference between the images. This is illustrated on the first row of
Figure 2. In addition, optimal seam methods are less appropriate when thin strips are
taken from the input images, as in the case of manifold mosaicing [5].

The second approach minimizes seam artifacts by smoothing the transition between
the images. In Feathering [6] or alpha blending, the mosaic image � is a weighted com-
bination of the input images ��� ��. The weighting coefficients (alpha mask) vary as
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Fig. 2. Comparing stitching methods with various sources for inconsistencies between the input
images. The left side of �� is stitched to right side of ��. Optimal seam methods produce a seam
artifact in case of photometric inconsistencies between the images (first row). Feathering and
pyramid blending produce double edges in case of horizontal misalignments (second row). In
case there is a vertical misalignments (third row), the stitching is less visible with Feathering and
GIST.

a function of the distance from the seam. In pyramid blending[7], different frequency
bands are combined with different alpha masks. Lower frequencies are mixed over a
wide region, and fine details are mixed in a narrow region. This produces gradual tran-
sition in lower frequencies, while reducing edge duplications in textured regions. A
related approach was suggested in [8], where a smooth function was added to the input
images to force a consistency between the images in the seam curve. In case there are
misalignments between the images[6], these methods leave artifacts in the mosaic such
as double edges, as shown in Figure 2.

In our approach we compute the mosaic image � by an optimization process that
uses image gradients. Computation in the gradient domain was recently used in com-
pression of dynamic range[9], image editing [10], image inpainting [11] and separation
of images to layers [12–15]. The closest work to ours was done by Perez et. al. [10],
who suggest to edit images by manipulating their gradients. One application is object
insertion, where an object is cut from an image, and inserted to a new background im-
age. The insertion is done by optimizing over the derivatives of the inserted object, with
the boundary determined by the background image. In sections 4,5 we compare our
approach to [10].

2 GIST: Image Stitching in the Gradient Domain

We describe two approaches to image stitching in the gradient domain. Section 2.1
describes GIST1, where the mosaic image is inferred directly from the derivatives of
the input images. Section 2.2 describes GIST2, a two-steps approach to image stitching.
Section 2.3 compares the two approaches to each other, and with other methods.

2.1 GIST1: Optimizing a Cost Function over Image Derivatives

The first approach, GIST1, computes the stitched image by minimizing a cost function
��. �� is a dissimilarity measure between the derivatives of the stitched image and the



derivatives of the input images.
Specifically, let ��� �� be two aligned input images. Let �� (�� resp.) be the region
viewed exclusively in image �� (�� resp.), and let � be the overlap region, as shown
in Figure 1, with �� � �� � �� � � � �� � � � �. Let � be a weighting mask image.

The stitching result � of GIST1 is defined as the minimum of �� with respect to �� :

��

�
��� ��� ����

�
� ����������� �� � ��� � � ����������� �� � ��� �� � (1)

where � is a uniform image, and ������ ��� 	�� � is the distance between ��� �� on 	:

������ ��� 	�� � �
�
���

� ��� � ������ ����� �
�
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with � � �� denoting the ��-norm.
The dissimilarity �� between the images is defined by the distance between their

derivatives. A dissimilarity in the gradient domain is invariant to the mean intensity
of the image. In addition it is less sensitive to smooth global differences between the
input images, e.g. due to non-uniformness in the camera photometric response and due
to scene shading variations. On the overlap region �, the cost function � � penalizes
for derivatives which are inconsistent with any of the input images. In image locations
where both �� and �� have low gradients, �� penalizes for high gradient values in the
mosaic image. This property is useful in eliminating false stitching edges.

The choice of norm (parameter �) has implications on both the optimization algo-
rithm and the mosaic image. The minimization of �� (Equation 1) for � � � is convex,
and hence efficient optimization algorithms can be used. Section 3 describes a mini-
mization scheme for �� by existing algorithms, and a novel fast minimization scheme
for ��. The mask image � was either a uniform mask (for ��) or the Feathering mask
(for ��), which is linear with the signed-distance from the seam. The influence of the
choice of � on the result image is addressed in the following sections, with the intro-
duction of alternative stitching algorithms in the gradient domain.

2.2 GIST2: Stitching Derivative Images

A simpler approach is to stitch the derivatives of the input images:

1. Compute the derivatives of the input images ���
��

,���
��

,���
��

,���
��

.

2. Stitch the derivative images to form a field � � ���� ���. �� is obtained by stitch-
ing ���

��
and ���

��
, and �� is obtained by stitching ���

��
and ���

��
.

3. Find the mosaic image whose gradients are closest to � . This is equivalent to mini-
mizing 	����� �� 
� �� where 
 is the entire image area and� is a uniform image.

In stage (2) above, any stitching algorithm may be used. We have experimented with
Feathering, pyramid blending [7], and optimal seam. For the optimal seam we used
the algorithm in [2], finding the curve � � 
��� that minimizes the sum of absolute
differences in the input images. Stage (3), the optimization under � �� ��, is described
in Section 3. Unlike the GIST1 algorithm described in the previous section, we found
minor differences in the result images when minimizing 	� under �� and ��.



Optimal seam Optimal seam on the gradients

Pyramid blending Pyramid blending on the gradients

Feathering GIST1

Fig. 3. Stitching in the gradient domain. The input images appear in Figure 1, with the overlap
region marked by a black rectangle. With the image domain methods (top panels) the stitching is
observable. Gradient-domain methods (bottom panels) overcome global inconsistencies.

2.3 Which Method to Use ?

In the previous sections we presented several stitching methods. Since stitching results
are tested visually, selecting the most appropriate method may be subject to personal
taste. However, a formal analysis of properties of these methods is provided below.
Based on those properties in conjunction with the experiments in Section 4, we recom-
mend using GIST1 under ��.

Theorem 1. Let ��� �� be two input images for a stitching algorithm, and assume there
is a curve � � 
���, such that for each � � ��
���� ���, ����� � �����. Let � be a
uniform image. Then the optimal seam solution � , defined below, is a global minimum
of ���� � ��� ��� �� defined in Eq.1, for any � � � 	 �.

� �

�
����� �� � � 
���
����� �� � � 
���

The reader is referred to [16] for a proof. The theorem implies that GIST1 under � � is
as good as the optimal seam methods when a perfect seam exists. Hence the power of
GIST1 under �� to overcome geometric misalignments similarly to the optimal seam
methods. The advantage of GIST1 over optimal seam methods is when there is no
perfect seam, for example due to photometric inconsistencies between the input images.
This was validated in the experiments.



We also show an equivalence between GIST1 under �� and Feathering of deriva-
tives (GIST2) under �� (Note that feathering derivatives is different from Feathering the
images).

Theorem 2. Let ��� �� be two input images for a stitching algorithm, and let � be a
Feathering mask. Let �, the overlap region of ��� ��, be the entire image (without loss of
generality, as � ��� � � for � � ��, and � � � for � � ��). Let ����	 be the minimum
of ���� � ��� ���� � defined in Eq. 1. Let � be the following field:

� � � ��������� � ��
� ����������

Then ����	 is the image with the closest gradient field to � under ��.
The proof can be found in [16] as well. This provides insight into the difference between
GIST1 under �� and under ��: Under ��, the algorithm tends to mix the derivatives and
hence blur the texture in the overlap region. Under � �, the algorithm tends to behave
similarly to the optimal seam methods, while reducing photometric inconsistencies.

3 Implementation details

We have implemented a minimization for Equation 1 under � � and under ��.
Equation 1 defines a set of linear equations in the image intensities, with the deriva-

tive filters as the coefficients. Similarly to [12, 13], we found that good results are ob-
tained when the derivatives are approximated by forward-differencingfilters �

�
	� 
�
 .

In the �� case, the results were further enhanced by incorporating additional equations
using derivative filters in multiple scales. In our experiments we added the filter cor-
responding to forward-differencing in the 2nd level of a Gaussian pyramid, obtained
by convolving the filter 	� � 
�
 with a vertical and a horizontal Gaussian filter
( �
�
	� � �
 ). Color images were handled by applying the algorithm to each of the color

channels separately.
The minimum to Equation 1 under �� with mask� is shown in [16] to be the image

with the closest derivatives under �� to � , the weighted combination of the derivatives
of the input images:


 �

�
� ��������� � � ��

� ��������� �� � ���� ���������� ��� � � �
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The solution can be obtained by various methods, e.g. de-convolution [12], FFT [17] or multigrid
solvers [18]. The results presented in this paper were obtained by FFT.

As for the 
� optimization, we found using a uniform mask � to be sufficient. Solving the
linear equations under 
� can be done by linear programming[19]:

��� �
�

�
���� � ��� �

������� �� � ��� ��� � ��� � �� � � �� �� � �� �� � �

The entries in matrix � are defined by the coefficients of the derivative filters, and the vector �
contains the derivatives of ��� ��. �, is a vectorization of the result image.

The linear program was solved using LOQO[20]. A typical execution time for a 	�� � 
��
image on a Pentium 4 was around 2 minutes. Since no boundary conditions were used, the solu-
tion was determined up to a uniform intensity shift. This shift can be determined in various ways.
We chose to set it according to the median of the values of the input image �� and the median of
the corresponding region in the mosaic image.



3.1 Iterative �� Optimization

A faster 
� optimization can be achieved by an iterative algorithm in the image domain. One way
to perform this optimization is described in the following. Due to space limitation, we describe
the algorithm when the forward differencing derivatives are used with kernel �

�
�� ��� . The

generalization to other filters and a parallel implementation appear in [16]. Let ��� � ��� be the
forward-differences of input image �� . The optimization is performed as follows:

– Initialize the solution image �
– Iterate until convergence:

	 for all x,y in the image, update ���� �� to be:

	 
����������
���� �� ��������� ������� �� ��������� �� ���
���� � � ��������� ��� ���� � � ��������� � � ��

�� (3)

For an even number of samples, the median is taken to be the average of the two middle samples.
In regions �� where a single image �� is used, the median is taken on the predictions of ���� ��
given its four neighbours and the derivatives of image �� . For example, when the derivatives of
image �� are 0, the algorithm performs an iterated median filter of the neighbouring pixels. In the
overlap region � of ��� ��, the median is taken over the predictions from both images.

At every iteration, the algorithm performs a coordinate descent and improves the cost func-
tion until convergence. As the cost function is bounded by zero, the algorithm always converges.
However, although the cost function is convex, the algorithm does not always converge to the
global optimum1. To improve the algorithm convergence and speed, we combined it in a multi-
resolution scheme using multigrid [18]. In extensive experiments with the multi-resolution exten-
sion the algorithm always converged to the global optimum.

4 Experiments

We have implemented various versions of GIST and applied them to panoramic mosaicing and
object blending.

First, we compared GIST to existing image stitching techniques, which work on the image
intensity domain: Feathering [6], Pyramid Blending [7], and ’optimal seam’ (Implemented as in
[2]). The experiments (Figure 3) validated the advantage in working in the gradient for overcom-
ing photometric inconsistencies. Second, we compared the results of GIST1 (Section 2.1), GIST2
(Section 2.2) and the method by Perez. et. al. [10]. Results of these comparisons are shown, for
example, in Figures 4,5, and analyzed in the following sections.

4.1 Stitching Panoramic Views
The natural application for image stitching is the construction of panoramic pictures from mul-
tiple input pictures. Geometrical misalignments between input images are caused by lens distor-
tions, by the presence of moving objects, and by motion parallax. Photometric inconsistencies be-
tween input images may be caused by a varying gain, by lens vignetting, by illumination changes,
etc.

The input images for our experiments were captured from different camera positions, and
were aligned by a 	� parametric transformation. The aligned images contained local misalign-
ments due to parallax, and photometric inconsistencies due to differences in illumination and in

1 Consider an image whose left part is white and the right part is black. When applying the
algorithm on the derivatives of this image, the uniform image is a stationary point.
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Fig. 4. Comparing various stitching methods. On top are the input image and the result of GIST1
under 
�. The images on bottom are cropped results of various methods. (a)-Optimal seam, (b)-
Feathering, (c)-Pyramid blending, (d)-Optimal seam on the gradients, (e)-Feathering on the gra-
dients, (f)-Pyramid blending on the gradients, (g)-Poisson editing [10] and (h) GIST1 - 
�. The
seam is visible in (a),(c),(d),(g).

camera gain. Mosaicing results are shown in Figures 3,4,5. Figure 3 compares gradient methods
vs. image domain methods. Figure 4,5 demonstrate the performance of the stitching algorithms
when the input images are misaligned. In all our experiments GIST1 under 
� gave the best re-
sults, in some cases comparable with other methods: In Figure 4 comparable with Feathering,
and in 5 comparable with ’optimal seam’. Whenever the input images were misaligned along the
seam, GIST1 under 
� was superior to [10].

4.2 Stitching Object Parts

Here we combined images of objects of the same class having different appearances. Objects
parts from different images were combined to generate the final image. This can be used, for
example, by the police, in the construction of a suspect’s composite portrait from parts of faces
in the database. Figure 6 shows an example for this application, where GIST1 is compared to
pyramid blending in the gradient domain. Another example for combination of parts is shown in
Figure 7.
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 5. A comparison between various image stitching methods. On top are the input image and
the result of GIST1 under 
�. The images on bottom are cropped from the results of various meth-
ods. (a)-Optimal seam, (b)-Feathering, (c)-Pyramid blending, (d)-Optimal seam on the gradients,
(e)-Feathering on the gradients, (f)-Pyramid blending on the gradients, (g)-Poisson editing [10]
and (h) GIST1 - 
�. When there are large misalignments, optimal seam and GIST1 produce less
artifacts.

5 Discussion

A novel approach to image stitching was presented, with two main components: First, images
are combined in the gradient domain rather than in the intensity domain. This reduces global
inconsistencies between the stitched parts due to illumination changes and changes in the camera
photometric response. Second, the mosaic image is inferred by optimization over image gradi-
ents, thus reducing seam artifacts and edge duplications. Experiments comparing gradient domain
stitching algorithms and existing image domain stitching show the benefit of stitching in the gra-
dient domain. Even though each stitching algorithm works better for some images and worse for
others, we found that GIST1 under 
� always worked well and we recommend it as the standard
stitching algorithm. The use of the 
� norm was especially valuable in overcoming geometrical
misalignments of the input images.



Fig. 6. A police application for generating composite portraits. The top panel shows the image
parts used in the composition, taken from the Yale database. The bottom panel shows, from left
to right, the results of pasting the original parts, GIST1 under 
�, GIST1 under 
� and pyramid
blending in the gradient domain. Note the discontinuities in the eyebrows.

(a) (b) (c) (d)

Fig. 7. A combination of images of George W. Bush taken at different ages. On top are the input
images and the combination pattern. On the bottom left are, from left to right, the results of GIST1
Stitching under 
� (a) and under 
� (b), the results of pyramid blending in the gradient domain
(c), and pyramid blending in the image domain(d).



The closest approach to ours was presented recently by Perez et. al. [10] for image editing.
There are two main differences with this work: First, in this work we use the gradients of both
images in the overlap region, while Perez et. al. use the gradients of the inserted object and the
intensities of the background image. Second, the optimization is done under different norms,
while Perez et. al. use the 
� norm. Both differences considerably influence the results, especially
in misaligned textured regions. This is shown in Figures 5,4.

Image stitching was presented as a search for an optimal solution to an image quality crite-
rion. The optimization of this criterion under norms 
�� 
� is convex, having a single solution.
Encouraged by the results obtained by this approach, we believe that it will be interesting to
explore alternative criteria for image quality. One direction can use results on statistics of filter
responses in natural images [21–23]. Another direction is to incorporate additional image fea-
tures in the quality criterion, such as local curvature. Successful results in image inpainting[11,
24] were obtained when image curvature was used in addition to image derivatives.
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