
2003 Special Issue

Some neural network applications in environmental sciences. Part II:

advancing computational efficiency of environmental numerical models

Vladimir M. Krasnopolskya,*, Frédéric Chevallierb

aScience Applications International Corporation at National Centers for Environmental Prediction, 5200 Auth Road, Camp Spring, MD 20746, USA
bEuropean Centre for Medium-Range Weather Forecasts, Reading, UK

Abstract

A new generic neural network (NN) application—improving computational efficiency of certain processes in numerical environmental

models—is considered. This approach can be used to accelerate the calculations and improve the accuracy of the parameterizations of several

types of physical processes which generally require computations involving complex mathematical expressions, including differential and

integral equations, rules, restrictions and highly nonlinear empirical relations based on physical or statistical models. It is shown that, from a

mathematical point of view, such parameterizations can usually be considered as continuous mappings (continuous dependencies between

two vectors) and, therefore, NNs can be used to replace primary parameterization algorithms. In addition to fast and accurate approximation

of the primary parameterization, NN also provides the entire Jacobian for very little computation cost.

Four particular real-life applications of the NN approach are presented here: for oceanic numerical models, a NN approximation of the

UNESCO equation of state of the sea water (NN for the density of the seawater) and an inversion of this equation (NN for the salinity of the

seawater); for atmospheric numerical models, a NN approximation for long wave radiative transfer code; and for wave models, a NN

approximation for the nonlinear wave–wave interaction. In all considered applications a significant acceleration of numerical computations

has been achieved. The first two of these NN applications have already been implemented in the multi-scale ocean forecast system at NCEP.

The NN approach introduced in this paper can provide numerically efficient solutions to a wide range of problems in numerical models

where lengthy, complicated calculations, which describe physical, chemical and/or biological processes, must be repeated frequently.
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1. Introduction

In this paper, we discuss a recently emerged application

of neural networks (NNs) for efficient (fast and accurate)

calculations of the computationally expensive and complex

mathematical formulations involved in environmental

numerical models. Any atmospheric or oceanic circulation

model is based on a set of prognostic and diagnostic

differential equations together with additional equations

required to obtain a mathematically closed system. Such a

system, in principle, can then be solved to predict the

evolution of the environment in time if the initial conditions

and any required external boundary conditions are pre-

scribed. Even though the forecast problem may now be

considered solvable in a theoretical sense, in the real world

of simulation, it is necessary to deal with practical aspects of

available computational resources and minimize the com-

puter time taken to produce a run, in particular in the context

of operational forecast systems.

The numerical model contains terms that appear in the

dynamical equations, representing the effects of unresol-

vable subgrid scale processes. These effects need to be

parameterized in terms of the dependent variables. Also,

implicitly contained in the system are processes that deal

with model physics such as radiation, convection, nonlinear

wave–wave interaction, etc. which need to be parameter-

ized. Accurate treatments of such parameterizations gener-

ally require computations involving complex mathematical

expressions, which may include differential and integral

equations, rules, restrictions, highly nonlinear empirical

expressions, etc. that are developed based on physical or

statistical models. The complex mathematical formulations

of these processes require considerable computational

resource.
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For example, a spectral atmospheric model with a well-

developed description of physics and subgrid scale para-

meterizations may spend up to 70% of calculation time for

simulating these processes (Estrade, Trémolet, & Sela,

2001). The infrared radiative heating/cooling code requires

more than 10% of the computing time in the European

Centre for Medium-Range Weather Forecast (ECMWF)

general circulation model and in the National Centers for

Environmental Prediction (NCEP) global model, even

though the computations are not afforded at every grid

point (at ECMWF) and at every time step.

In ocean models, the estimation of the full UNESCO

equation of state to compute the seawater density,

represented by an empirically derived highly nonlinear

equation relating density to pressure, salinity, and tempera-

ture, takes a very significant amount (,40% in high

resolution models) of the total computational effort. In

addition, most forecast models include data assimilation

procedures as an integral part of the forecast system to

improve the initial conditions of the model. When dealing

with ocean models, most often the data assimilation consists

of assimilating surface and subsurface temperature obser-

vations to correct the model’s thermal field. This tempera-

ture correction automatically makes it necessary to adjust

the salinity field in the ocean model in order to avoid

gravitational instabilities in the water column. This requires

inverting the complicated oceanic equation of state, which

makes the computational effort even more time-consuming

than the forward problem of computing the density itself.

Another example where intensive computations are needed

in a forecast model is the calculation of the land surface

temperature using a set of equations describing the

atmospheric boundary layer and physical processes in the

soil. Yet another example of intensive computational

problem in forecast models is the wind wave forecasting

problem in which an exact calculation of the nonlinear

wave–wave interactions using the formulation of Hassel-

mann (1963) takes a prohibitively long time.

In view of the constraints imposed on the available

computer resources, the calculation time allowed for each

parameterization is strictly limited in most operational

forecast models. Hence, very often it is necessary to use

simplified forms of these complex representations in

carrying out the time integrations in a forecast model,

thereby sacrificing the accuracy of forecasts. For example,

the nonlinear wave interactions in a wave forecast model are

replaced by a simplified discrete interaction approximation

(DIA) (Hasselmann et al., 1985). Similarly, simplified fast

parameterizations of physics are used in many parts of

atmospheric and oceanic models. In most of these cases,

accurate physical models have been developed, but they

cannot be used because they are computationally too

expensive. Often simplified (even oversimplified due to

computational efficiency requirements) parameterizations

are obtained, for example, by neglecting higher order terms

of perturbation theory, by using empirical approximations,

or simply by neglecting the effects, which complicate the

calculations. It is common in many parameterization

schemes that the number of input and output variables is

relatively small, whereas the volume of internal calculations

is large. A typical example is the parameterization of the

radiative fluxes in the atmosphere. Indeed, accurate

treatment of cloud- and aerosol-radiation interactions

involves elaborate and numerically onerous 3D scattering

methods. Hence, most often the specific parameterization is

a result of a compromise between accuracy and compu-

tational efficiency with an (sometimes) unpredictable effect

on the forecast.

Improvements in forecast modeling can be achieved not

only by improving the representation of such parameteriza-

tions as our understanding of the underlying physical

processes increases but also by improving our ability to

compute these parameterizations accurately within the

constraints imposed by the available computer resources.

In this paper we present some of the problems dealing

with physical parameterizations and their computations

from a different (formal mathematical) point of view,

namely that of improving the computational efficiency of

available algorithms. We propose a generic approach, which

is based on developing fast and accurate parameterizations

of physics by approximating solutions of exact physical

models using NNs. From this formal point of view an exact

(best known) physical model representing a physical

process performs a smooth conversion of an input vector

of parameters, X ¼ {x1; x2;…; xn}; X [ Rn into an output

vector of parameters, Y ¼ {y1; y2;…; ym}; Y [ Rm: Thus,

each output parameter yi is a continuous function of

multiple input variables x1; x2;…; xn (input vector X).

Symbolically this input–output dependence is depicted in

Fig. 1.a and can be written as

Y ¼ FðXÞ; X [ R
n
; Y [ R

m ð1aÞ

If X and Y are related through a cause and effect principle,

the forward parameterization, Eq. (1a), can be derived from

first principles. It is usually a well-posed problem. If the

inverse dependence

X ¼ f ðYÞ; X [ R
n
; Y [ R

m ð1bÞ

is required (Fig. 1b) in a numerical model, the inverse

problem should be solved, which implies that Eq. (1a)

should be inverted. A solution of the inverse problem (1b) or

an inverse parameterization provides each output parameter

xi as a continuous function of multiple input variables

y1; y2;…; ym (vector Y is an input vector now). Often the

inverse parameterization (1b) is an ill-posed problem, and

sometimes multiple values of X can correspond to a single

Y : Forward, Eq. (1a), and inverse, Eq. (1b), parameteriza-

tions represent the same mathematical object—a continuous

mapping which is a continuous relationship between two

vectors. Usually these input/output relationships are highly

complex and nonlinear, but continuous or almost continuous

(with a finite number of finite discontinuities), for physical
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processes taken into account in atmospheric, oceanic, and

wave models. Hence, if exact solutions to these complex

relationships are calculated, however expensive the com-

putational efforts may be, these solutions can be used by the

generic mathematical tool—that is, the NNs—to produce

fast and accurate approximations for continuous and almost

continuous mappings (Attali & Pagès, 1997; Chen & Chen

1995a,b; Cybenko, 1989; Funahashi, 1989). In this

approach, the costly exact calculation of the physics needs

to be performed only once and ‘off line’ to enable the

development of the fast and accurate approximation. After

that only this fast and accurate approximation will be used

to calculate the physics (coefficients of differential

equations) ‘on line’ in a numerical model.

We assume that the readers of this journal are well

familiar with the NN technique. Therefore we do not

describe this technique in the paper. We only present here a

brief list of main properties of NNs, which make them a very

suitable generic tool for our application.

† NNs are able to accurately approximate complicated

nonlinear input/output relationships (any continuous and

almost continuous nonlinear mappings).

† While training the NN is often time consuming, its

application is not. After the training is finished (it is

usually performed only once), each application of the

trained NN is an estimation of a simple algebraic

expression with known coefficients, which is practically

instantaneous (several tens of floating point additions and

multiplications).

† NNs are analytically differentiable, in a way that make

the calculation of entire Jacobian matrix cheap.

† NN technique is flexible enough to accommodate

various additional constraints, which may arise in this

application.

In Section 2 of this paper we present two (forward and

inverse) parameterizations for oceanic models, in Section 3

for atmospheric, and in Section 4 a parameterization for

wind wave models developed using NNs. In Section 5, we

discuss some important features of our approach and some

generalizations of standard NN techniques, which are

required to accommodate these features.

2. Oceanic applications: NNs for efficient calculation

of sea water density or salinity from the UNESCO

Equation of State

In this section, we apply a NN technique to two related

problems in the fast calculation of physics in oceanic

modeling and data assimilation. (i) In most ocean models,

the UNESCO International Equation of State for Seawater

(UNESCO, 1981) (UES) is used for the calculation of the

seawater density at each point of a 3D grid using a relatively

small time step. The frequency of updating the density

depends on specifics of the model. For high-resolution

models, the solution of this equation consumes a significant

part of the overall computation time. (ii) In the data

assimilation process, assimilation of temperature alone,

without making corresponding adjustments to salinity, in

ocean models, which employ the full equation of state, can

lead to problems of gravitational instabilities (Chalikov et al.

1998; Woodgate, 1998). To adjust the salinity, we need to

Fig. 1. Graphical representation of forward (a) and inverse (b) parameterizations.
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calculate the salinity from UES as a function of temperature,

density and depth (or pressure), i.e. solve an inverse

problem in many points. Numerical inversion of the UES

is an iterative procedure, which can consume several orders

of magnitude more time than solving of the UES itself.

The UES for seawater gives the following expression for

the density anomaly dr (kg/m3) as described by Fofonoff

and Millard (1983)

drðT ; S;PÞ ¼ rðT ; S;PÞ 2 1000 ð2Þ

rðT ; S;PÞ ¼
rðT ; S; 0Þ

1 2
P

KðT ; S;PÞ

where r is the density of seawater in kg/m3, T the

temperature in 8C, S the salinity in practical salinity units

(psu), P the pressure, and KðT ; S;PÞ is a bulk modulus

(UNESCO, 1981).

The UES (2) is empirically based and given over a 3D

domain D ¼ { 2 2 , T , 40 8C, 0 , S , 40 psu, and

0 , P , 10; 000 decibars}. This domain represents all

possible combinations of T ; S; and P; which are globally

encountered. Mathematically, the functions rðT ; S; 0Þ and

KðT ; S;PÞ are represented by multi-dimensional high degree

polynomials and, as a result, the density (2) is a ratio of two

3D polynomials which contain more than 40 parameters.

The UES has two major drawbacks when it is applied in

the context of ocean modeling. The first is its cumbersome

form. For high-resolution models, the solution of this

equation at each point of a 3D grid for each time step

consumes a significant part (up to 40%) of the overall

computation time. Second, it is not a simple matter using the

UES to obtain solutions for salinity of seawater, since this

solution represents an inverse dependence.

The UES determines the density field from observed

temperature, salinity, and pressure to within a standard error

of approximately 0.009 kg m23; however, there are several

natural processes (e.g. variations in the composition of

dissolved salts) (Apel, 1987), contributing to the uncertainty

in the density of natural seawater. The resulting natural

uncertainty in the density is of the order of 0.1 kg m23

(Krasnopolsky et al., 2000; Krasnopolsky, Chalikov, &

Tolman, 2003). Taking these uncertainties into account, it

does not make sense to use parameterization with higher

accuracy in numerical ocean models if accuracy and

computing time increase together. This is why the accuracy

of 0.1 kg m23 was selected as the expected accuracy for the

NN parameterization. The accuracy of the NN parameter-

ization for salinity expressed in terms of density was also

expected to be better than 0.1 kg m23.

Since the depth Z is used in NCEP ocean model as a

vertical coordinate, and there exist a simple pressure–depth

relationship (Krasnopolsky et al., 2003), we use Z instead of

P in our consideration. The UES defines two relationships

(second relationship for salinity through inversion)

r ¼ rðT ; S;ZÞ ð3aÞ

S ¼ SðT ; r; ZÞ ð3bÞ

which are continuous mappings (degenerated mappings

because 1D vectors are on the left). The NN technique was

applied to approximate Eqs. (3a) and (3b). To create a

training set for these NNs parameterizations in the 3D

domain D (see earlier), 4000 points ðTi; Si;ZiÞ were

generated on a grid. The UES was used to estimate the

density of seawater, ri; for each point. This simulated data

set {ri;Ti; Si;Zi} was used in order to train the NNs to

extract density and salinity. NNs with three nonlinear

neurons in one hidden layer and one linear neuron in the

output layers were selected. Two NN parameterizations

were obtained (Fig. 2)

r ¼ rNNðT ; S; ZÞ ð4aÞ

S ¼ SNNðT ; r; ZÞ ð4bÞ

where both rNN and SNN are expressed by

rðSÞNN ¼
Xk

j¼1

v
rðSÞ
j tanh

Xn

i¼1

V
rðSÞ
ji xi þ B

rðSÞ
j

 !" #
þ brðSÞ ð5Þ

where v;V;b; and B are NN weights and biases.

Derivatives (Jacobian matrix) shown in Fig. 2 as additional

NN outputs are not actual outputs, which are trained during

the NN training; they are calculated analytically through

direct differentiating Eq. (5). The NN parameterization (4a)

for the density is about two times faster then the UES. The

calculation of the Jacobian matrix with the NN parameter-

ization requires an additional time, which is about 70% of

time required for the calculation of density. The NN

parameterization (4b) for the salinity is several hundreds

Fig. 2. Schematic representation of NN parameterizations for the density

and salinity of seawater. Additional outputs for derivatives are not trained,

they are calculated.

V.M. Krasnopolsky, F. Chevallier / Neural Networks 16 (2003) 335–348338



times faster than an iterative numerical inversion of the

UES. In addition, the time required for the numerical

inversion of the UES (rate of conversion of the iteration

process) varies significantly. It strongly depends on

inversion algorithm and on the choice of the initial

approximation for the salinity.

To evaluate the accuracy of the NN approximation (4a)

and (4b), 16,000 points were generated within the domain D

on a grid, which did not include the training set points. The

density of seawater calculated from the UES (2) was

compared to that calculated from the NN, rNNðT ; S;ZÞ;

using Eq. (4a). Table 1 shows several statistical measures of

the differences (or errors) between the UES and the NN

estimates for density. In terms of the bias and the RMS

differences, the NN results for density clearly satisfy the

criterion mentioned earlier; both the bias and the RMS

values do not exceed the uncertainties indicated there and

are ,0.1 kg m23.

To evaluate the errors in using the NN approach to

estimate the salinity, we used the same 16,000 points

ðri;Ti; Si;ZiÞ which were used to estimate the density.

Initially, the NN for SNN Eq. (4b) was applied to calculate a

new salinity, si; using the corresponding values ðTi; ri;ZiÞ:

Then the differences ðSi 2 siÞ were utilized to estimate the

accuracy of the NN-derived salinities (first row of Table 2).

To further evaluate the quality of the NN-derived salinities,

the UES was applied again, this time to the triad ðTi; si;ZiÞ to

recalculate the density of seawater, r0
i: If the NN-obtained

values for salinity were perfect, then the density, r0
i; would

be equal to ri: The differences between these two values,

ðri 2 r0
iÞ; were then used to further estimate the accuracy of

the salinity-trained NN in terms of the density (second row

of Table 2).

Table 2 shows that the NN estimates of salinity (4b) have

an RMS error of 0.1 psu. In terms of the related error in

density, this accuracy corresponds to an RMS error of

0.08 kg m23, which again does not exceed the uncertainties

discussed earlier.

A substantial additional acceleration of calculations may

be achieved by the use of differential increments of density,

temperature, and salinity. Hence, we extend our approach to

estimate these quantities also. Additionally, an efficient way

of substantially reducing the computational burden is to

replace the calculations of density per se by calculations of

its total differential

Dr ¼
›r

›T
DT þ

›r

›S
DS ð6Þ

where DT and DS are increments of T and S; ›r=›T ; and

›r=›S are functions of T ; S; and z: In this approach, after the

density and its derivatives are calculated, Eq. (6) is used

during several (usually several tens) steps of integration to

estimate the new density. Then the density and its

derivatives are recalculated, using the UES or NN

approximation of the UES, to update the estimated values

obtained using Eq. (6).

The density and the derivatives ›r=›T and ›r=›S can be

accurately calculated from the NN rNN; Eq. (4a) (Fig. 2).

Thus, Eq. (6) can be reduced to

Dr ¼
›rNN

›T
DT þ

›rNN

›S
DS ð7Þ

The estimation of the density using Eq. (6) requires several

calculations of the UES (in that case the Jacobians are

computed by centered finite differences). The estimation of

the density using Eq. (7) requires one estimate of the NN

(4a) and its derivatives, which is faster than Eq. (6). If

›rNN=›z is also used in Eq. (7) for vertical integration, the

gain in the speed of calculations due to the use of the NN

increases.

Table 3 illustrates the accuracy of Jacobian calculations

using the NN parameterization (4a) with three neurons in

one hidden layer. All errors are estimated with respect to the

Jacobian calculated explicitly, using the UES (2). The

RMSN error is a relative error in percents with respect to

the norm of the corresponding derivative. Errors in

derivatives do not exceed 6%, which is acceptable for

calculation of density.

The NN approach (7) is used in the high resolution

Multiscale Ocean Forecast System (Chalikov, Rao, Rivin,

Krasnopolsky, & Grumbine, 2002). This use of NN and its

Table 1

Minimum, maximum, and mean (i.e. the bias) errors ðeÞ and the RMS error,

all expressed in kg m23 ðe ¼ rUES 2 rNNÞ

Min e Max e Bias RMS

20.12 0.15 0.00 0.04

Table 2

Accuracies of the salinities estimated by the NN in terms of salinity and

density

Units Min error Max error Mean error RMS error

psu 20.33 0.85 0.00 0.10

kg m23 20.27 0.71 0.00 0.08

Minimum, maximum, and mean errors together with the RMS errors are

presented.

Table 3

Accuracies of the Jacobian estimated by the NN in kg m23 K21,

kg m23 psu21, and kg m23 m21

Derivative Min error Max error Mean error RMS error RMSN error

›rNN=›T 20.04 0.06 0.01 0.02 6%

›rNN=›S 20.02 0.02 0.003 0.006 0.8%

›rNN=›z 20.0001 0.0001 0.0001 0.0001 2%

Minimum, maximum, and mean errors together with the RMS errors are

presented. RMSN error is the RMS error relative to the norm of the

corresponding derivative.
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derivatives has been shown to accelerate the density

calculations about 10 times with the error in the density

calculations not exceeding the natural uncertainty

0.1 kg m23. Therefore, the computational expense of

calculating density has decreased from 40% to about 4–

5% of the total time of integration as a result of using the NN

approximation in the model.

3. Atmospheric applications: NNs for efficient

calculation of infrared radiative fluxes

The next application that we present tackles the

problematic tradeoff between accuracy and speed in the

atmospheric infrared radiation computations. Transfer of

energy by infrared radiation significantly contributes to the

variations of atmospheric temperature. The infrared atmos-

pheric spectrum encompasses a wide range of variability,

from the slow-varying Planck function to the very detailed

structures of the individual absorption bands. As a

consequence, accurate modeling of the atmospheric radia-

tive processes requires a high spectral resolution, which

consumes a lot of computing time, and therefore can hardly

be used for simulation of the atmosphere. Radiation

computations also involve integrals over solid angle and

altitude, that cannot be analytically solved and therefore

significantly add to the computational burden. Two

strategies are used, often simultaneously, to make the

models affordable. On the one hand, statistical approaches

have been developed that simplify the calculations of the

three integrals (over solid angle, altitude and wave number)

and of the impact of clouds (Goody & Yung, 1989). On the

other hand, the computations are not performed at every

time step and at every grid point of the atmospheric model

(Morcrette, 2000). As an example, in the NCEP forecast

model, infrared radiation variables are updated every 3 h

only.

The computational efficiency is even more an issue in

elaborate 4D variational (4D-Var) analysis schemes.

These powerful data assimilation systems have been

developed in operational weather centers, like ECMWF

or MétéoFrance, to correct the atmospheric forecasts at

regular times with the observations that have been

received since the previous analysis: 4D-Var determines

a statistically optimum forecast, given the initial forecast

and its assumed error characteristics on the one side, and

the observations with their error specifications on the

other (Courtier, Thépaut, & Hollingsworth, 1994). To do

this, perturbations of the atmosphere need to be

propagated in time at every step of the minimization

process with a linearized physics. Only computationally

efficient parameterizations can be used for this purpose.

For instance, in the operational 4D-Var physics at

ECMWF, radiation perturbations are created by tempera-

ture changes only. Neither water vapor nor cloud

evolution is taken into account (Mahfouf, 1999).

NN-based radiative transfer models (Escobar-Munoz,

Chédin, Chéruy, & Scott, 1993; Faure, Isaka, & Guillemet,

2001; Key & Schweiger 1998; Schwander, Kaifel, Rugga-

ber, & Koepke, 2001) may be able to address these issues. In

particular, the NeuroFlux approach (Chéruy, Chevallier,

Scott, & Chédin, 1996; Chevallier, Chéruy, Scott, &

Chédin, 1998b) has been successively tested in the

Laboratoire de Météorologie Dynamique climate model

(Chevallier, Chéruy, Li, & Scott, 1998a), in the ECMWF

forecast model (Chevallier, Morcrette, Chéruy, & Scott,

2000b) and is currently being tested in the ECMWF 4D-Var

system. This section describes the method, updates the

results and summarizes the experience gained by this

approach on which considerable effort has been invested.

NeuroFlux is mainly a NN-based version of the broad-

band radiation model of Morcrette (1991), hereafter EC-

OPE, even though other models could be used in the

training. EC-OPE was the operational code at ECMWF in

the 1990s. The integration over wave number is performed

using a band emissivity method in six spectral regions

covering the long-wave spectrum. The transmission func-

tions for water vapor and carbon dioxide are fitted using

Padé approximants. Multi-layer gray bodies represent the

clouds (Washington & Williamson, 1977).

NeuroFlux has been derived from EC-OPE using the

same cloud representation and the multi-layer perceptron.

Consistently with the former, upward and downward fluxes

are computed in NeuroFlux as

FðPiÞ ¼
X

k

akðPiÞ·FkðPiÞ ð8Þ

where Pi is the pressure level, Fk the infrared flux in the

presence of a single layered black cloud in atmospheric

layer k or the clear-sky flux (with the convention k ¼ 0 for

clear sky), and ak is a weight. The aks are computed with a

simple parameterization as a function of the layered cloud

characteristics (cloud cover, liquid and ice water contents,

particle size, etc.) and depend on the way cloudy layers

overlap. In NeuroFlux, the Fks are computed with artificial

NNs with single hidden layers, whereas EC-OPE uses the

above-mentioned band-emissivity method.

To summarize, NeuroFlux is made of a battery of

specialized NNs (one for each atmospheric layer k and for

each type of flux, upward or downward), the inputs of which

include the temperature and gas (water vapor and ozone)

profiles, the surface characteristics and the mean carbon

dioxide concentration, whereas the cloud characteristics are

processed by a separate parameterization. This way of doing

reduces the dimension of the individual NNs, compared to a

system where all computations would be performed by a

single NN. With that design, NeuroFlux is about eight times

faster than EC-OPE.

The accuracy of NeuroFlux has been assessed through

code-by-code comparisons, climate simulations, and 10-day

forecasts. Figs. 3 and 4 illustrate the performance of the

version that fits the 50-level vertical resolution that was used
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in the ECMWF operational forecast system in 1999. The

accuracy of NeuroFlux is comparable to the accuracy of EC-

OPE, with a neutral impact on the simulations. In particular

the uncertainty introduced by NeuroFlux in the cloud cover

simulations was shown to be much smaller than that one

induced by the reduced temporal frequency of radiation

computation in the ECMWF climate simulations (Cheval-

lier et al., 2000b).

Even though the inputs of the NNs in NeuroFlux do not

include the cloud profiles, some of the NNs reach sizes that

are unusually large. For instance, the NN that compute the

clear-sky upward fluxes in a 60-layer vertical grid contains

about 200 inputs and 60 outputs. As a consequence of this

huge variable space, the set up of the training datasets is

particularly involving. It relies on the sampling of hundreds

of thousands of atmospheric profiles with a simple topologic

approach, as described by Chevallier, Chédin, Chéruy, and

Morcrette (2000a). Similar work is done each time the

vertical resolution is increased, because new levels are

expected to provide original information about the profiles

that cannot be obtained by a simple interpolation from the

lower resolution datasets. Each version of the training

datasets includes more than ten thousand profiles.

Despite the large number of synoptic weights in

NeuroFlux, the partial derivatives of the computed fluxes

with respect to atmospheric variables (i.e. the Jacobians)

contain features that are considered not to be realistic

(Chevallier & Mahfouf, 2001). The characteristics of the

small noise of the computed fluxes (Fig. 3) show up in

the flux Jacobians. This is different from the behavior of the

smaller NNs presented in Section 2 (Table 3). Regulariz-

ation techniques, such as that one proposed by Aires,

Schmitt, Chédin, and Scott (1999), only partially improve

the quality of the NN computation. Larger NNs may solve

the problem, but would complicate the training even more

and would slow down the code, making it less attractive.

This issue of having correct sensitivities is very important

for the application to 4D-Var where linearizations of

Fig. 3. Statistics of the differences between the computations of NeuroFlux and those of EC-OPE: cooling rates from NeuroFlux minus cooling rates from EC-

OPE. ECMWF 6-hour forecasts, L50 T319 (about 60 km horizontal resolution). 1 February 1999, 00, 06, 12 and 18 UTC. The infrared cooling rates are the

contribution of the infrared radiation to the variations of temperature over time. They are proportional to the derivative of the net fluxes with respect to pressure.
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the parameterizations are used. However, the approach of

NeuroFlux allows for an elegant solution. Eq. (8) is

differentiated as

dFðPiÞ ¼
X

k

akðPiÞ·dFkðPiÞ þ FkðPiÞ·dakðPiÞ ð9Þ

Eq. (9) is used to calculate the flux perturbations. Its terms

are determined as follows. The aks and the Fks are obtained

from NeuroFlux. A pre-computed mean Jacobian matrix,

instead of the unsatisfactory NeuroFlux Jacobians, allows

for a reasonably accurate estimation of the dFks using a first-

order Taylor approximation, since those partial fluxes are

weakly nonlinear. Finally, the daks are obtained analytically

from the tangent–linear version of the ak model.

This approach is faster than the full tangent–linear

model of NeuroFlux by almost a twofold factor, which

makes it even more attractive. It is being evaluated as part of

an improved version of the 4D-Var linearized physics at

ECMWF, which introduces the treatment of the interaction

between cloud and radiation (Janisková, Mahfouf, Morcr-

ette, & Chevallier, 2003). This package includes NeuroFlux,

a shortwave radiation model and a diagnostic cloud scheme,

on top of the currently operational simplified and linearized

physics. It is evaluated by studying the linearized time

evolution of analysis increments with reference to the

nonlinear computation using the full physics of the forecast

model. An improvement (respectively a degradation) of the

tangent–linear trajectory makes it closer to (respectively

further away from) the nonlinear one. Fig. 5 illustrates the

positive impact of the new physics on the wind increments

after a 12 h integration, with a global improvement of 3.3%.

Therefore the tangent–linear wind increments are more

realistic when the new physical package is used. Prelimi-

nary results show a subsequent improvement of the forecast

quality (Janisková et al., 2002).

4. Wave application: a NN approximation for nonlinear

interactions in wind wave models

Ocean wind wave modeling for hindcast and forecast

purposes has been at the center of interest of wave

forecasters for many decades. Numerical prediction models

are generally based on a form of the spectral energy or

action balance equation

DF

Dt
¼ Sin þ Snl þ Sds þ Ssw ð10Þ

where F is the spectrum, Sin the input source term, Snl the

nonlinear interaction source term, Sds the dissipation or

‘whitecapping’ source term, and Ssw represents additional

shallow water source terms. The JONSWAP study (Has-

selmann et al., 1973) identified the active role of the

nonlinear interactions in wave growth. The SWAMP study

(SWAMP Group, 1985) then identified the need for explicit

modeling of Snl in wave models. State-of-the-art or so-

called third generation wave models therefore explicitly

model this source term.

In its full form (Hasselmann & Hasselmann, 1985), the

calculation of the interactions Snl requires the integration of

Fig. 4. L50 T319 (about 60 km horizontal resolution) simulations: forecast verification for temperature expressed in terms of mean temperature bias over the

Northern Hemisphere (12 cases) The forecast system uses either EC-OPE (full lines) or NeuroFlux (circles).
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a 6D Bolzmann integral

Snlð~k4Þ ¼ T^Fð~kÞ

¼ v4

ð
Gð~k1;

~k2;
~k3;

~k4Þ·dð~k1 þ ~k2 2 ~k3

2 ~k4Þ·dðv1 þ v2 2 v3 2 v4Þ £ ½n1·n3·ðn4

2 n2Þ þ n2·n4·ðn3 2 n1Þ�d~k1 d~k2 d~k3

nð~kÞ ¼
Fð~kÞ

v
; v2 ¼ g·k·tanhðkhÞ

ð11Þ

where the complicated coupling coefficient G contains

moving singularities (Hasselmann, 1963). This integration

requires roughly 103–104 times more computational effort

than all other aspects of the wave model combined.

Present operational constraints require that the compu-

tational effort for the estimation of Snl should be of the

same order of magnitude as the remainder of the wave

model. This requirement was met with the development of

the DIA (Hasselmann et al., 1985). The development of

the DIA allowed for the successful development of the

first third-generation wave model WAM (Komen et al.,

1994; WAMDI Group, 1988). More than a decade of

experience with the WAM model and its derivatives has

identified shortcomings of the DIA. The DIA tends to

unrealistically increase the directional width of spectra,

has a systematic spurious impact on the shape of the

spectrum near the spectral peak frequency, and has a

much too strong signature at high frequencies. In present

third generation wave models, these deficiencies can be

countered at least in part by the dissipation source term

Sds; which is generally used for tuning the energy balance

in the Eq. (10). Although this approach often gives good

results, it is counterproductive, because it prohibits

development of dissipation source terms based on solid

physical considerations. With our increased understanding

in the physics of wave generation and dissipation, this

becomes an even bigger obstacle impeding further

development of third-generation wave models.

Considering the above, it is of crucial importance for

the development of third generation wave models to

develop an economical yet accurate approximation for

Snl: Here, we explore a neural network interaction

approximation (NNIA) to achieve this goal (Krasnopolsky

et al., 2001; Krasnopolsky, Chalikov, & Tolman, 2003).

NNs can be applied here because the nonlinear interaction

(11) is essentially a nonlinear mapping (symbolically

represented in Eq. (11) by T) which relates two vectors

(2D fields in this case). Thus, the nonlinear interaction

source term can be considered as a nonlinear mapping

between a spectrum F and a source term Snl

Snl ¼ TðFÞ; ð12Þ

where T is the exact nonlinear operator given by the full

Bolzmann interaction integral (11) (Hasselmann &

Hasselmann, 1985; Resio & Perrie, 1991). Discretization

of S and F (as is necessary in any numerical approach)

reduces Eq. (12) to continuous mapping of two vectors of

finite dimensions. Modern high resolution wind wave

models use discretization on a 2D grid which leads to

dimensions of S and F vectors of order of N . 600

(Tolman, 1999). It seems unreasonable to develop a NN

approximation of such a high dimensionality (more than

Fig. 5. L60 T159 (about 125 km horizontal resolution). Zonal mean impact of the new linearized physics (with NeuroFlux) on the zonal component of the wind,

in m s21, in a 12 h simulation starting on 15 March 2001 00 UTC. Negative (respectively positive) values indicate an improvement (respectively a degradation)

compared to the previous linearized physics. Both linearized physics are evaluated with reference to the nonlinear run.
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600 inputs and outputs). Moreover, such a NN will be

grid dependent.

In order to reduce the dimensionality of the NN and

convert the mapping (12) to a continuous mapping of two

finite vectors independent on the actual spectral discretiza-

tion, the spectrum F and source function Snl are expanded

using systems of 2D functions each of which (Fi and Cq)

creates a complete and orthogonal 2D basis

F <
Xn

i¼1

xiFi; Snl <
Xm
q¼1

yqCq; ð13Þ

where for xi and yq we have

xi ¼
ðð

FFi; yq ¼
ðð

SnlCq; ð14Þ

where the double integral identifies integration over the

spectral space. Because both sets of basis functions

{Fi}i¼1;…;n and {Cq}q¼1;…;m are complete, increasing n

and m in Eq. (13) improves the accuracy of approximation,

and any spectrum F and source function Snl can be

approximated by Eq. (13) with a required accuracy.

Substituting Eq. (13) into Eq. (12) we can get

Y ¼ TðXÞ; ð15Þ

which represents a continuous mapping of the finite vectors

X [ Rn and Y [ Rm; and where T still represents the full

nonlinear interaction operator. This operator can be

approximated with a NN with n inputs and m outputs and

k neurons in the hidden layer

Y ¼ TNNðXÞ: ð16Þ

The accuracy of this approximation ðTNNÞ is determined by

k; and can generally be improved by increasing k:

To train the NN approximation TNN of T ; a training set

has to be created that consists of pairs of vectors X and Y :

To create this training set, a representative set of spectra

Fp has to be generated with corresponding (exact)

interactions Snl;p using Eq. (11). For each pair ðF; SnlÞp;

the corresponding vectors ðX;YÞp are determined using Eq.

(14). These pairs of vectors are then used to train the NN

to obtain TNN:

After TNN has been obtained by training, the resulting

NN interaction approximation (NNIA) algorithm consists of

three steps: (1) decompose the input spectrum, F; by

applying Eq. (14) to calculate X; (2) estimate Y from X

using Eq. (16); and compose the output source function, Snl;

from Y using Eq. (13).

A graphical representation of the NNIA algorithm

is shown in Fig. 6. Development of an actual NNIA

requires the following steps: (1) select basis functions Fi

and Cq and the number of each ðn;mÞ; (2) design a NN

topology (number of neurons k); (3) construct a

representative training set; and (4) select training

strategies.

Fig. 6. Graphical representation of the NNIA algorithm.

Table 4

RMSE statistics for 10,000 Snl

Mean RMSE sRMSE Max RMSE

DIA 0.0133 0.0111 0.104

NNIA 0.0068 0.0063 0.065

V.M. Krasnopolsky, F. Chevallier / Neural Networks 16 (2003) 335–348344



The first three points all have a significant impact on both

accuracy and economy of a NNIA. Unfortunately, there is

no pre-defined way to tackle these issues as mentioned in

Section 2. It is therefore unavoidable that the development

of a NNIA involves multiple iterations. The first require-

ment for a NNIA to be potentially useful in operational

wave modeling is that the exact interactions Snl are closely

reproduced for computational costs comparable to that of

the DIA. The following shows the potential of this approach

with the design of a simple ad hoc NNIA.

To address the basic feasibility of a NNIA, we have

considered a NNIA to estimate the nonlinear interactions

Snlðf ; uÞ as a function of frequency f and direction u from the

corresponding spectrum Fðf ; uÞ: Here we present the major

results of this study to illustrate our approach (Krasnopolsky

et al., 2001a). To train and test this NNIA, we used a set of

about 20,000 simulated realistic spectra for Fðf ; uÞ; and the

corresponding exact estimates of Snlðf ; uÞ (Van Veldder

et al., 2000). Comparison of simulated spectra with spectra

generated by the WAVEWATCH model (Tolman, 1999;

Tolman & Chalikov, 1996) shows that the approach, which

we use for simulating spectra, allowed us to simulate

reasonably realistic and complicated spectra describing a

broad range of wave systems. Separate data sets have been

generated for training and validation.

As is common in parametric spectral descriptions, we

choose separable basis functions where frequency and

angular dependencies are separated. For Fi this implies:

Fiðf ; uÞ ) Fij ¼ ff ;iðf Þfu;jðuÞ ð17Þ

A similar separation is used for Cq: Considering the

strongly suppressed behavior of F and Snl for f ! 0; and the

quickly decreasing asymptotic behavior for f !1; gener-

alized Laguerre’s polynomials (Abramowitz & Stegun,

1964) are used to define ff and cf : Considering that no

directional preferences exist in F and Snl; Fourier decompo-

sition is used for fu and cu: The number of base functions is

chosen to be n ¼ 51 and m ¼ 64 to keep the accuracy of

approximation for F on average better than 2% and for Snl—

better than 5–6%. The number of hidden neurons was k ¼

30; which allows a satisfactory NN approximation of the

mapping (15) using Eq. (16).

Table 4 compares three important statistics for the source

function RMS errors (with respect to exact solution)

calculated using DIA and NNIA for 10,000 spectra

(independent validation set). The NNIA is nearly twice as

accurate as DIA.

Fig. 7 shows mean RMSE as functions of the frequency f

(left) and the angle u (right). It also illustrates the

improvement of the NNIA accuracy by increasing the

number of neurons, k; in the hidden layer from 20 to 30.

Numbers in Table 4 correspond to a NNIA with 30 neurons

in the hidden layer (51:30:64).

And finally, Fig. 8 compares the DIA, NNIA, and exact

algorithms in terms of the accuracy and computational

efficiency. The current preliminary version of the NNIA

algorithm is twice as accurate and only about five times

slower than the DIA algorithm. In the current version of

Fig. 7. RMSE as functions of frequency f and angle (averaged over entire test set). Dashed line-error of approximation (lower bound for all other errors). Solid

line-DIA, line with squares-NNIA ðn ¼ 51 : k ¼ 20 : m ¼ 64Þ; and line with triangles-NNIA (51:30:64).

Fig. 8. Comparison of the accuracy and computational efficiency of the

DIA, NNIA, and exact algorithms. The horizontal time scale is logarithmic.
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the wind wave models, an algorithm that is up to 20 times

slower than DIA can be accommodated; therefore, we still

have enough room for further improving the accuracy of the

NNIA. Considering that no optimization has yet been

applied in the development of the NNIA composition and

decomposition procedures, it appears reasonable to expect a

final NNIA algorithm with computation requirements

similar to DIA but with significantly higher accuracy.

5. Summary and discussion

In this paper we presented a recently emerged NN

application developed by the authors for simplifying and

accelerating time-consuming calculations in environmental

numerical models using NN techniques. Parameterizations

of physical, chemical, and biological processes, which occur

at different scales, constitute an important class of such

calculations. It is shown that, from a mathematical point of

view, descriptions of such processes can usually be

considered as continuous or almost continuous mappings

(dependencies between two vectors). It is known that NNs

are a generic tool for approximation of such mappings and,

therefore, can be used for fast and accurate approximation of

parameterizations of such processes. NNs can also easily

provide analytical Jacobians. Because the NN Jacobian is

computationally cheap, this approach is expected to be also

very beneficial when used in 3D and especially in 4D

variational data assimilation systems. We applied this

approach to four specific problems associated with oceanic,

atmospheric, and wave modeling.

The first and second applications considered in the paper

deal with the oceanic equation of state, which is used for

estimating the density and salinity of seawater in ocean

circulation models. Separate NNs for density and salinity

were developed using the UES as a basis. Although the

estimation of density represents a forward problem,

estimating salinity from the UES represents a complicated

inverse problem, which has been very efficiently solved

using the NN approach. The accuracy of the NN-generated

densities and salinities were of the same order as those

obtained directly from the UES itself. However, the time

required to perform the calculations of density using the NN

and the neural network Jacobian is several times less than

that for UES. The time required for calculating salinity

using the NN is several hundred times less than that required

for the numerical inversion of the USE. Consequently, this

approach has direct application to numerical ocean models

where the equation of state must be estimated repeatedly. At

NCEP, a NN equation for seawater density is currently used

in an oceanic model.

In the third application, the NN approach was shown to

successively handle the parameterization of infrared

radiation in atmospheric models and to improve the tradeoff

between speed and accuracy of such computation. In

particular, the scheme described allows speeding up

the computational time by a factor of eight compared to

the reference model, while not affecting the quality of

the atmosphere simulations. Further improvements of the

method include the use of a more accurate reference model

in the training phase, such as that currently operational at

ECMWF (Morcrette, Mlawer, Iacono, & Clough, 2001).

The high number of variables involved in this NN

application made it necessary to develop original

approaches, such as for the set-up of the training dataset.

Also, the model computations are split into several modules,

each one of them being parameterized by a specific NN.

Despite this strategy, the NNs used are still very large,

which affects the quality of the Jacobians, because it makes

the training more difficult. Further increase of the vertical

resolution, or the introduction of additional input or output

variables, might further reduce the robustness of the model.

This is an obvious limitation in the framework of the

forecast models, which complexity constantly increases.

However, the approach appears to be suitable for the

variational assimilation, where other parts of the physics are

very simplified and where the speed factor is crucial. Also,

some other aspects of the radiation computation, such as the

cloud horizontal heterogeneity, are crudely handled by

forecast models and may benefit from NN parameteriza-

tions, as illustrated by Faure et al. (2001).

The fourth application deals with the nonlinear wave–

wave interactions in wind wave models. A prototype of the

NN approximation for this interaction is presented in this

work. The NNIA calculations of Snl are about five orders of

magnitude faster than the exact computation. The NNIA

calculations are twice more accurate than those from DIA

(oversimplified approximation, which is currently used in

the wind wave models) and require only 4–5 times more

computational effort than the DIA calculations with less

than 5% of this time spent in the actual NN part of the

algorithm. Decomposition of the input spectra F and

composing the source function Snl from the NN output

accounts for the rest. This decomposition (i) significantly

reduces the size of the NN and (ii) makes the approach

practically independent on the model grid and resolution.

These four applications illustrate the strengths and

limitations of the NNs for the application to the fast

simulation of environmental processes. In the case of

retrievals, as discussed by Krasnopolsky (1997) and

Krasnopolsky and Schiller (2003), NNs compete with

other statistical methods, and usually perform better than

those. This is because NNs are able to optimize the

statistical link between the inputs and the outputs, provided

that a proper (i.e. diverse and regularly spread) training

dataset is gathered. In the present case, a sufficiently

accurate physically based direct model is usually available.

The NNs are likely to be faster, but significant speed gains

can also be obtained with more powerful computers, making

other parameterizations affordable. Also, the purely stat-

istical formulation of the NNs often makes the refinements

of their simulations, like additional inputs and outputs, or
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more complex physics, more difficult than with an explicit

physics.

The simulation of environmental processes may involve

a large number of inputs (i.e. several hundreds), which make

the NN too complex and complicates the training. For this

complexity problem, two possible solutions were developed

and illustrated: the input and output vectors may be

projected on a basis (e.g. the NNIA application) or a battery

of smaller NNs may be used (e.g. infrared radiation

application).

Finally, a cheap computation of Jacobian is one of the

advantages of the NN approach. Using this Jacobian in a

combination with the tangent–linear approximation can

additionally accelerate calculations (e.g. the seawater

density application). However, since the Jacobian is not

trained, it is simply calculated through direct differen-

tiation of a trained NN. For large NNs (e.g. infrared

radiation application) the accuracy of the NN Jacobian

may not be sufficient for using with the tangent–linear

approximation. Several solutions can be offered for this

problem. First, the mean Jacobian can be calculated and

used (e.g. infrared radiation application). Second, the

Jacobian can be trained if included as actual additional

outputs in the NN or if trained as a separate additional

NN. This solution, however, leads to an increase of the

NN complexity or to additional time for the Jacobian

calculations. Third, regularization techniques can be used

to stabilize the Jacobians (Aires et al., 1999). For instance,

the error (or cost) function, which is minimized in the

process of the NN training, can be modified to

accommodate the Jacobian. Mathematically speaking, the

Euclidian norm, which is usually used for calculating the

error function, should be changed to the first order

Sobolev norm. With such a change the NN is trained to

approximate not only the function (as with the Euclidian

norm) but also the function’s first derivatives. Therefore, a

new error function E can be expressed as a superposition

of a standard error function E0 and a Jacobian error

function EJ

EJ ¼
XN

i

›FNN

›xi

2
›Ft

›xi

� �2

where ›Ft=›xi is the first derivative’s training value

calculated from the exact function to be approximated.

This solution does not change the number of the NN

outputs; however, it may require more hidden neurons and

may significantly complicate the minimization during the

training since the complexity of the error function

increases. As a consequence, the Jacobian modeling for

large NNs remains an open issue. This reflects the fact

that one way of improving the computational efficiency of

a direct model is to degrade the quality of the derivatives,

while keeping the direct model within a given noise.

NNs obviously provide powerful solutions for

the simulation of environmental processes, but like any

other parameterization, their relevance needs to be

regularly re-evaluated with respect to the particular

computational and scientific contexts where they are

developed and used.
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