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Taylor-Galerkin Method For Wind Wave Propagation !
H. §. Chen 2

Abstract

Recently Taylor-Galerkin method has been used to successfully solve advection-
dominated flow problems. This method performs quite well in reducing numerical
dissipation and numerical dispersion of model solutions. In this paper we explore
feasibility of applying this method to wind wave propagation.

Introduction

In recent decades wind wave modeling has developed significantly from the
empirical approaches of Sverdrup and Munk (1947) and Bretschneider (1958) for ex-
ample , to spectral approaches including directionality using the radiative transfer
equation (e.g. SWAMP Group 1985). At present, the most advanced directionaily
spectral model is the so-called third generation wave model of which the WAM mode)
is an example (WAMDI Group, 1988). Although these directionally spectral models
achieve a significant increase in reliability and computational complexity in wind wave
prediction, many uncertainties still remain. Wind waves result from the interaction
of several physical processes, specifically propagation, refraction, and source func-
tions. The source functions include atmospheric generation, wave-wave interaction,
wave-current interaction, and dissipation. Some of those physical processes can be
described with adequate precision, but others like almospheric generation and dissi-
pation require empirical correction to fit field data. Thus it becomes imperative that
numerical errors in model solutions should be not large enough to be attributable
to physical processes. Numerical errors in wave models are mainly due to numerical
dissipation and numerical dispersion which are associated with the numerical scheme
used for wave propagation. At present, no numerical scheme in a fixed grid system
can completely avoid this kind of error. In this regard, the WAM model uses the up-
wind numerical scheme for propagation. This scheme produces significant numerical
dissipation and results in a misinterpretation of the physical processes represented by
the model. (Tolman 1991)

In this paper we explore the feasibility of applying  the Taylor-Galerkin
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method to wave propagation in wave modeling. Recently, the Taylor-Galerkin method
has been used to successfully solve advection-dominated flow problems (Donea (1984),
Lghner, et al (1984), Peraire, et al (1986), Baker and Kim (1987}, Lee, et al (1987)).
In this method, a temporal discretization precedes the spatial one, which in essence
is considered along the characteristics to achieve a self-adjoint form. This method
performs quite well in reducing numerical dissipation and numerical dispersion. In
addition, the method employs finite element discretization; this is particularly useful
in dealing with a flexible grid system.

Governing Equation and Numerical Solution

The governing equation for the energy density spectrum F(z,y,1, f,8) can be
simply written as
aF m..nﬂh..?%niﬁ mmmmﬂ_ql.m. (1)
at dz Ay a8
where (z,y) are the horizontal spatial coordinates, ¢ is time, f is the frequency, #
is the direction, and (czycy,¢0) ate the propagation velocities in the corresponding
coordinates. § is the source term consjsting of atmospheric input, nonlinear wave.
wave interaction, and dissipation due to whitecapping and bottom friction, Empirical
formulations of the physical processes of the atmospheric input and dissipation are one
source of model inaccuracy and the discrote interaction approximation for calculating
wave-wave inferaction is another source of model inaccuracy; these inaccuracies have
little to do with the numerical scheme used for propagation. Therefore, we may set
the source term S = 0 in the following numerical examples.

In the numerical solution of (1), we consider splitting the solution into two
modes; first mode corresponds to solving (1) without its fourth term, followed by sec-
ond mode to solving (1) without its second and third terms. Hence, in the following
numerical formulations we only consider the first mode equation and, in a numerical
sense, the second mode equation is a one dimensional case of the first mode formu-
lation, The Taylor-Galerkin method is employed to numerically solve the first mode
equation. In this method a temporal discretization up to O(A#?) is followed by a
finite element method for spatial discretization.
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where the &; are the shape functions, Q = (c.F, ¢, "), and ¢, represents propagation
velocity normal to #9. For computational efficiency, a lumped mass procedure is
further invoked. We rewrite (2) as MAF = ", where M is a mass matrix and the
Superscript n is the time step. We use the lumped form of M} and obtain the solution
by a simple iteration according to the following equation,

MIAF: = ¢* — (M — M) AR 3

where the superscript k is the iteration step, Two or three iterations for (3) is generally
sufficient for an acceptable solution.
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Results

As a first example we study one dimensional propagation of an initial wave
fleld F = mﬁunlhm%ﬁv. Figure 1 illustrates the result for the Courant ::B.vmn
Cr = 0.25 and the number of iterations k = 2 for (3). It indicates that the numerical
dissipation and numerical dispersion start to show up only at time step n = 200.
The second example is a two-dimensional rotating propagation of a cone-shaped wave
field F = exp(— %v Figure 2 illustrates the result after one complete rotation at
n = 200 for the maximum C; = 0.2513 and k = 2. It has reduced the the peak only
about § percent with no phase shift. Numerical dispersion is barely discernible in the
near field. The third example is for wave field propagation in the # coordinate only.
The initial mean direction is #,, = 60° and the initial distribution is cos?(6 — 8,,).
The maximum C} = 0.38 and the directional increment A6 = 15°, The results are
shown in Figures 3 and 4 and are in agreement with semi-analytical solution. Umnm—_ﬁ_
information for this example will be presented at the conference. More tests are still
underway and well be reported at the conference.
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semi—analytical solulion
50000 Toylor—Galerkin
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Figure 4.
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