Using the Qpid Messaging API
Cross-Platform AMQP Messaging

Using the Qpid Messaging API: Cross-Platform AMQP Messaging

Table of Contents

1. Using the Qpid MeSSaging APloouuiiiiiii e ettt e 1
1.1. A Simple Messaging Program in C ... 1
1.2. A Simple Messaging Program in PYtRONcooouiiiiiiiii e 2
1.3. A Simple Messaging Program in NET CH ... 3
LA, AQAIESSES ...ttt ettt ettt e et e e e e en e eae 4

140 ACOrESS SENGS vttt ettt e et e e 6
L1422, SUDJECES ...t 6
1.4.3. Address Sting OPLIONScccuuuieiiiiiieieii ettt e e e 8
1.4.4. AdAress String GraMIMAEc.uuueeeeruneeeeiiie e et e e eett e eeri e e eeri e eeeriaeeees 14
1.5. Sender Capacity and REPIAYoeieiiiiiieii e 16
1.6. Receiver Capacity (PrefetCh)iiiiiiii e 16
1.7. Acknowledging ReCEIVED MESSAgESc.uuuiiiiiii et 16
1.8. Receiving Messages from MUItiple SOUICESviveviiiieiiiie e 17
1.9, TTANSACHIONS ...ttt ettt et e e et e et e et e et e e s 18
L.20. CONNECLIONS ... eeeete ettt ettt ettt e et et e e et et e e et et e e e e et e e e e aba s 18
1.10.1. CONNECEION URLSoiiitieiiiii ettt ettt e e e e e 19
1.10.2. CONNECEION OPLIONScevvtieeiiiie ettt e ettt e ettt e et e et e e eer e e eene e aeens 19
1.11. Maps and ListSin Message CONLENTueeiirineeiiiie et 21
1.11.1. Qpid Maps and ListSin Python ... 22
1.11.2. Qpid Maps and ListSiN CH+ .oovuviiiiiiiiiiie e 23
1.11.3. Qpid Maps and ListSin NETiiiiiiiiieiiiiieeee e 24
1.12. The Request / RESPONSE PaTENuiiiiiiieiii et 26
1.13. PerfOrmManCe TIPS .. ceeeeneeeieii ettt ettt et e et e et e e et e e e 27
L1.14. ClUSIEr FallOVES ...ttt ettt e et e e ab e eeee 27
ST oo o1 o [PPSR PPPR T 28
1152, LOgging iN Gt oot e 28
1.15.2. Logging in PYTNONuiiiiie et 29
1.16. The AMQP 0-10 MEPPING -+ eeerrnneeennieeeetta e et e eeert e e eert e e eere e eeere e eeeneaaaeens 29
1.16.1. 0-10 Message Property KEYS ... cceu et 31
1.17. USING MESSATE GIOUPS ... eeeettneteetieeeeeti s e ettt s e ettt e et eat e e e e b e e e et e e e et e e e enaa s 32
1.17.1. Creating Message Group QUEUEScceuuureieiiiaeeeiiieeeeii e eenia e eenin e eenens 32
1.17.2. Sending Grouped MESSA0ESuuuiiieiii it e ettt e et e e e e e e 33
1.17.3. Recaiving Grouped MESSAgESuueiiiiieeeiiiie ettt e et e e 34

2. The .NET Binding for the C++ Messaging Clientcoouiiiiiiiiiiie e 35
2.1. .NET Binding for the C++ Messaging Client Component Architecturec....... 35
2.2. .NET Binding for the C++ Messaging Client EXamplesccovvveviiiiiiiiiinieiiiineeeeee, 36
2.3. .NET Binding Class Mapping to Underlying C++ Messaging APlcccooveiiiiiiienennnn. 38

2.3.1. .NET Binding for the C++ Messaging APl Class: Addresscccoviveevennnnnnn. 38
2.3.2. .NET Binding for the C++ Messaging APl Class: Connectioncceevunne.. 39
2.3.3. .NET Binding for the C++ Messaging API Class: Durationcccccceeeveunnnn.. 41
2.3.4. NET Binding for the C++ Messaging APl Class. FailoverUpdates 42
2.3.5. .NET Binding for the C++ Messaging APl Class: MeSSageccccvvveeeiiineeeens 43
2.3.6. .NET Binding for the C++ Messaging API Class: ReCaiVercccveeveevennnnnn. 46
2.3.7. .NET Binding for the C++ Messaging APl Class: Senderccceviieviiiinneennns 47
2.3.8. .NET Binding for the C++ Messaging APl Class. SeSSionccoeevvveneeeiinnnnnn. 49
2.3.9. .NET Binding Class: SeSSIONRECEIVESuuieiirriieiiiiiieeeeiiie et eeniieeeens 51

List of Tables

1.1, Address SING OPLIONS ...ceevuiiieiiiiee ettt ettt e et e e et e e e eeta e e e enta e eeenes 12
1.2, NOOE PrOPEITIES ...ttt ettt et ettt e et e et e e e e et e e et e e eenans 13
1.3, LiNK PrOPEItIES . .oeeei et 14
1.4, CONNECEION OPLIONSeevteeiiti ettt et e ettt e ettt et e b e e e et e e e e bt e e e eaaaes 20
1.5. Map and List Representation in SUPPOrted LanQUAGESuueeeerriieeieiiieeeeiiieeeeein e e 21
1.6. Python Datatypes iN MBSueieiiieieet ettt ettt e e e 22
1.7. CH+ DAELYPES iN MBS ...ttt ettt 24
1.8. Datatype Mapping between C++ and .NET bindingcccuuiieiiiiiiiiiiiiieeceieece e 25
1.9. Mapping to AMQP 0-10 MeSSage ProPertiesivieriieiiiiiie e 30
2.1. .NET Binding for the C++ Messaging Client Component Architectureccccooveeeiiiieeen. 35
2.2. EXAMPIE 1 CHENE = SEIVEL ..ottt e et e et eeaaa s 36
2.3. Example : Map Sender — Map RECEIVELcoouuiiiiiiieeiii et 36
2.4, EXaMPIE 1 SPOUL = DFBIN ..ceetieeiiii ettt ettt ettt e et e e et e e e e e enees 37
2.5. Example : Map Callback Sender — Map Callback ReCEIVErcccoviiiiiiiiiiiiiiiicee e, 37
2.6. Example - DeClare QUEUEScoiuuieiiii ettt e et e et e e e s 37
2.7. Example: Direct Sender - DIreCt RECEIVENcoieiiuiiiiiiii et 37
2.8. EXamples HEIO WOIIA ... 37
2.9. .NET Binding for the C++ Messaging APl Class; AdAresscccuuvveviiiiieiiiiieeecieeeeiine, 38
2.10. .NET Binding for the C++ Messaging APl Class: CONNECLIONcocuvuiieiiiiinieiiiiieeeeeiinee, 39
2.11. .NET Binding for the C++ Messaging APl Class, DUrationoveveuuinieieiinneieiineeeennnn 41
2.12. .NET Binding for the C++ Messaging APl Class: Failoverupdatesccooveeviviiieiinnnnnen. 42
2.13. .NET Binding for the C++ Messaging APl Class: MESSA0gEoveviviiiieiiiiiiieieiie e 43
2.14. .NET Binding for the C++ Messaging APl Class; RECEIVENc.uviiiiiiiiiiiiiiiiieiiiieeeeenn 46
2.15. .NET Binding for the C++ Messaging APl Class: Sendercccouvveiiiiinieiiiiineeecieeeeie 47
2.16. .NET Binding for the C++ Messaging APl Class: SESSIONvevivuiieiiiiieeiiie e 49

List of Examples

L1 "HETO WOPTA!™ TN G ettt et e e e 1
1.2. "Hello World!™ in PYNONii e e e e e 2
1.3 "Hello WOrld!™ 1N iNET CH ..ottt ettt et e s 3
@ U1 B PP 5
T o o [0 TP P PO PPPPPTTRPPPPTN 5
1.6, USING SUDJECES ...ttt ettt e e et e e et et e 7
1.7. Subjects With MUILI-WOIT KEYS ...t 7
1.8, ASSEITIONS ON NOUES ...ttt ettt e e e e e aa e eenanns 9
1.9. Creating a Queue AULOMALTCAITYuuniiiii e 10
1.10. BrOWSING 8 QUEUEueiiiii e eeti ettt e e et e e et b e et et e et e e e et e et e e e et e e e e raa s 10
1.11. Using the XIML EXChangEuuuoiiiiiieiiii ettt et e e e 11
1.12. Receiving Messages from MUltiple SOUICEScovuvuiieiiiiiieeee e 17
I R I =0 == o1 0 PSPPSR 18
1.14. Specifying Connection Options in C++, Python, and .NETccccoviiiiiiiiniiiiicceieeeeeen 19
1.15. Sending Qpid Maps and ListS in PYtNONcooiiiiiiii e 22
1.16. Sending Qpid Maps and LiStS iN CHiiiiiiiiiiiiii e e e e e e e e aaae 23
1.17. Sending Qpid Maps and ListSin NET CHcoouuiiiiii e 24
1.18. Request / Response ApPlIiCatioNS iN CH ...u..iiiiiiiiii e 26
1.19. Tracking Cluster MEMDEIShIPeiiii e eeans 27
1.20. Accessing the AMQP 0-10 Message Timestamp in Pythoncooveviiiniiiiiiin e, 31
1.21. Accessing the AMQP 0-10 Message Timestamp in CH+ ... 32
1.22. Message Group Queue Creation - PYthon ... 32
1.23. Message Group QUeUE Creation - Cr o.uu.iieiiieieii et 32
1.24. Message Group QUEUE Creation = JAVAceeruuneieiieeieiia et e ettt e et e e 32
1.25. Sending Grouped Messages - PYthonccoeuiiiiiiii e 33
1.26. Sending Grouped MESSAZES - CH ..oouuniiiiiiiei ettt 33
1.27. Sending Grouped MESSAJES - JAVAc.vuueiiiriieeiii ettt e ettt e e e 34

Chapter 1. Using the Qpid Messaging
API

The Qpid Messaging API is quite simple, consisting of only a handful of core classes.

» A message consists of a standard set of fields (e.g. subj ect, r epl y-t 0), an application-defined set
of properties, and message content (the main body of the message).

* A connection represents a network connection to aremote endpoint.

» A session provides a sequentially ordered context for sending and receiving messages. A session is
obtained from a connection.

» A sender sends messages to atarget using the sender . send method. A sender is obtained from a
session for agiven target address.

» A receiver receives messages from a source using the r ecei ver . f et ch method. A receiver is
obtained from a session for a given source address.

The following sections show how to use these classes in a simple messaging program.

1.1. A Simple Messaging Program in C++

The following C++ program shows how to create a connection, create a session, send messages using a
sender, and receive messages using areceiver.

Example1.1. "Helloworld!" in C++

#i ncl ude <qpi d/ messagi ng/ Connecti on. h>
#i ncl ude <qpi d/ messagi ng/ Message. h>

#i ncl ude <qpi d/ messagi ng/ Recei ver. h>
#i ncl ude <qpi d/ messagi ng/ Sender . h>

#i ncl ude <qpi d/ messagi ng/ Sessi on. h>

#i ncl ude <i ostreanp

usi ng namespace gpi d: : messagi ng;

int main(int argc, char** argv) {

std::string broker = argc > 1 ? argv[1l] : "local host:5672";
std::string address = argc > 2 ? argv[2] : "any.topic";
std::string connectionOptions = argc > 3 ? argv[3] : "";

Connection connecti on(broker, connectionOptions);
try {
connecti on. open();
Sessi on session = connection. createSession();

Recei ver receiver = session.createReceiver(address);
Sender sender = session. createSender (address);

Using the Qpid Messaging API

sender . send(Message("Hello world!"));

Message nmessage = receiver.fetch(Duration:: SECOND * 1);
std::cout << nmessage.getContent() << std::endl;
sessi on. acknow edge(); H

connection.close(); W
return O;

} catch(const std::exception& error) {
std::cerr << error.what() << std::endl
connection. cl ose();

return 1,
}
}
Establishes the connection with the messaging broker.
Creates a session object on which messages will be sent and received.
Creates areceiver that receives messages from the given address.
Creates a sender that sends to the given address.
Receives the next message. The duration is optional, if omitted, will wait indefinitely for the next
message.
B Acknowledges receipt of all fetched messages on the session. This informs the broker that the
messages were transferred and processed by the client successfully.
Closesthe connection, al sessionsmanaged by the connection, and all sendersand receivers managed

by each session.

1.2. A Simple Messaging Program in Python

The following Python program shows how to create a connection, create a session, send messages using
a sender, and recelve messages using areceiver.

Example 1.2. "Helloworld!" in Python

i mport sys

from gpi d. messagi ng i nport *

broker = "local host:5672" if |len(sys.argv)<2 else sys.argv[1]
address = "ang.topic" if len(sys.argv)<3 else sys.argv|[?2]

connection = Connecti on(broker)

try:
connecti on. open()
sessi on = connecti on. sessi on()

sender = session. sender (address)
recei ver = session.receiver(address)

sender . send(Message("Hello world!"));

message = receiver.fetch(timeout=1)

Using the Qpid Messaging API

print message. content
sessi on. acknow edge() B

except Messagi ngError, m
print m

finally:

connection. cl ose()

Establishes the connection with the messaging broker.

Creates a session object on which messages will be sent and received.

Creates areceiver that receives messages from the given address.

Creates a sender that sends to the given address.

Receives the next message. The duration is optional, if omitted, will wait indefinitely for the next
message.

B Acknowledges receipt of al fetched messages on the session. This informs the broker that the
messages were transfered and processed by the client successfully.

Closesthe connection, al sessions managed by the connection, and all sendersand receivers managed

by each session.

1.3. A Simple Messaging Program in .NET C#

The following .NET C# ! program shows how to create a connection, create a session, send messages
using a sender, and receive messages using areceiver.

Example 1.3. "Helloworld!" in .NET C#
usi ng System
usi ng Org. Apache. Qpi d. Messagi ng;
nanespace O g. Apache. Qi d. Messagi ng {

cl ass Program {
static void Main(string[] args) {

String broker = args.Length > 0 ? args[0] : "l ocal host:5672";
String address = args.Length > 1 ? args[1] : "ang.topic";
Connection connection = null;

try {

connection = new Connecti on(broker);

connecti on. Open();

Sessi on session = connection. Creat eSession();

Recei ver receiver = session. CreateRecei ver (address);
Sender sender = session. Creat eSender (address);

sender. Send(new Message("Hello world!"));

Message message = new Message();
nmessage = receiver. Fetch(DurationConstants. SECOND * 1); 6]
Consol e. WitelLine("{0}", nessage.GetContent());

! The .NET hi nding for the Qpid C++ Messaging APl applies to all .NET Framework managed code languages. C# was chosen for illustration

purposes only.

Using the Qpid Messaging API

sessi on. Acknowl edge() ;

connection. d ose(); 8]
} catch (Exception e) {
Consol e. Wi telLi ne("Exception {0}.", e);

if (null !'= connection)
connection. d ose();

}

}

}

}

Permits use of Org.Apache.Qpid.Messaging types and methods without explicit namespace
qualification. Any .NET project must have a project reference to the assembly file
Org. Apache. Qpi d. Messagi ng. dl | in order to obtain the definitions of the .NET Binding
for Qpid Messaging namespace.

Establishes the connection with the messaging broker.

Creates a session object on which messages will be sent and received.

Creates areceiver that receives messages from the given address.

Creates a sender that sends to the given address.

B Receivesthe next message. The duration is optional, if omitted, will wait indefinitely for the next
message.

Acknowledges receipt of al fetched messages on the session. This informs the broker that the
messages were transfered and processed by the client successfully.

B Closestheconnection, all ons managed by the connection, and al sendersand receivers managed

by each session.

1.4. Addresses

An address is the name of a message target or message source. 2 The methods that create senders and
receivers require an address. The details of sending to a particular target or receiving from a particular
source are then handled by the sender or receiver. A different target or source can be used smply by using
adifferent address.

An address resolves to anode. The Qpid Messaging API recognises two kinds of nodes, queues and topics
A gueue stores each message until it has been received and acknowledged, and only one receiver can
receive a given message 4 A topic immediately delivers amessageto al eligible receivers; if there are no
eligible receivers, it discards the message. In the AMQP 0-10 implementation of the API, 5 queues map
to AMQP queues, and topics map to AMQP exchanges. 6

Intherest of thistutorial, we present many examples using two programsthat take an addressasacommand
line parameter. spout sends messages to the target address, drain receives messages from the source

Anthe programs we have just seen, we used any. t opi ¢ asthe default addressif noneis passed in. Thisisthe name of a standard exchange that
aways exists on an AMQP 0-10 messaging broker.

*The terms gueue and topic here were chosen to align with their meaning in JMS. These two addressing ‘patterns, queue and topic, are sometimes
refered as point-to-point and publish-subscribe. AMQP 0-10 has an exchange type called a topic exchange. When the term topic occurs aone, it
refers to a Messaging API topic, not the topic exchange.

“There are exceptionsto thisrule; for instance, areceiver can use br owse mode, which |eaves messages on the queue for other receivers to read.

5The AMQP 0-10 implementation is the only one that currently exists.

8In AMQP 0-10, messages are sent to exchanges, and read from queues. The Messaging API also allows a sender to send messages to a queue;
internally, Qpid implements this by sending the message to the default exchange, with the name of the queue as the routing key. The Messaging
API aso allows a receiver to receive messages from atopic; internally, Qpid implements this by setting up a private subscription queue for the
receiver and binding the subscription queue to the exchange that corresponds to the topic.

Using the Qpid Messaging API

address. The source code is available in C++, Python, and .NET C# and can be found in the examples
directory for each language. These programs can use any address string as a source or a destination, and
have many command line options to configure behavior—use the -h option for documentation on these
options. "The examples in this tutorial also use the qpid-config utility to configure AMQP 0-10 queues
and exchanges on a Qpid broker.

Example 1.4. Queues
Create a queue with gpid-config, send a message using spout, and read it using drain:
$ gpid-config add queue hello-world

$./spout hello-world
$./drain hello-world

Message(properti es={spout-id: c877e622- d57b- 4df 2- bf 3e- 6014c68dalea: 0}, content='

The queue stored the message sent by spout and delivered it to drain when requested.

Once the message has been delivered and and acknowledged by drain, it is no longer available on the
gueue. If we run drain one more time, no messages will be retrieved.

$./drain hello-world
$

Example 1.5. Topics
This exampleis similar to the previous example, but it uses atopic instead of a queue.

First, use qpid-config to remove the queue and create an exchange with the same name:

$ gpid-config del queue hello-world
$ gpi d-config add exchange topic hello-world

Now run drain and spout the same way we did in the previous example:

$./spout hello-world
$./drain hello-world
$

Topics deliver messages immediately to any interested receiver, and do not store messages. Because there
were no receivers at the time spout sent the message, it was simply discarded. When we ran drain, there
were No messages to receive.

Now let'srun drain first, using the - t option to specify atimeout in seconds. While drain is waiting for
messages, run spout in another window.

7Current|y, the C++, Python, and .NET C# implementations of drain and spout have dlightly different options. This tutorial uses the C++
implementation. The options will be reconciled in the near future.

Using the Qpid Messaging API

1.4.1.

1.4.2.

First Window:
$./drain -t 30 hello-word
Second Window:
$./spout hello-word
Once spout has sent a message, return to the first window to see the output from drain:
Message(properti es={spout-id: 7da2d27d- 93e6- 4803- 8a61- 536d87b8d93f : 0},

You can run drain in several separate windows; each creates a subscription for the exchange, and each
receives all messages sent to the exchange.

Address Strings

So far, our examples have used address strings that contain only the name of a node. An address string
can also contain a subject and options.

The syntax for an address string is:

address_string ::= <address> [/ <subject>] [; <options>]
options ::= { <key>: <value> ... }

Addresses, subjects, and keys are strings. Vaues can be numbers, strings (with optional single or double
guotes), maps, or lists. A complete BNF for address strings appears in Section 1.4.4, “Address String
Grammar”.

So far, the address stringsin this tutorial have only used simple names. The following sections show how
to use subjects and options.

Subjects

Every message has a property called subject, which is analogous to the subject on an email message. If no
subject is specified, the message's subject is null. For convenience, address strings also allow a subject.
If a sender's address contains a subject, it is used as the default subject for the messages it sends. If a
receiver'saddress containsasubject, it isused to select only messagesthat match the subject—the matching
algorithm depends on the message source.

In AMQP 0-10, each exchange type has its own matching algorithm. This is discussed in Section 1.16,
“The AMQP 0-10 mapping”.

Note

Currently, a receiver bound to a queue ignores subjects, receiving messages from the queue
without filtering. Support for subject filtering on queues will be implemented soon.

content ="'

Using the Qpid Messaging API

Example 1.6. Using subjects
In this example we show how subjects affect message flow.

First, let's use gpid-config to create a topic exchange.

$ gpid-confi g add exchange topic news-service

Now we use drain to receive messages from news- ser vi ce that match the subject sport s.

First Window:

$./drain -t 30 news-service/sports

In a second window, let's send messagesto news- ser vi ce using two different subjects:

Second Window:

$./spout news-service/sports
$./spout news-servicel/ news

Now look at thefirst window, the message with the subject spor t s hasbeen received, but not the message
with the subject news:

Message(properties={qpi d. subj ect:sports, spout-id:9441674e-al57-4780-a78e-f7c

If you run drain in multiple windows using the same subject, all instances of drain receive the messages
for that subject.

The AMQP exchange type we are using here, anm. t opi ¢, can also do more sophisticated matching.
A sender's subject can contain multiple words separated by a “.” delimiter. For instance, in a news
application, the sender might use subjects like usa. news, usa. weat her, eur ope. news, or
eur ope. weat her . The receiver's subject can include wildcard characters— “#’ matches one or more
wordsin the message's subject, “*” matches asingleword. For instance, if the subject in the source address
iS*. news, it matches messages with the subject eur ope. news or usa. news; if itiseur ope. #, it
matches messages with subjects like eur ope. news or eur ope. pseudo. news.

Example 1.7. Subjectswith multi-word keys
This example uses drain and spout to demonstrate the use of subjects with two-word keys.

Let's use drain with the subject *. news to listen for messages in which the second word of the key is
news.

First Window:

$./drain -t 30 news-servicel/*.news

Using the Qpid Messaging API

1.4.3.

Now let's send messages using severa different two-word keys:

Second Window:
$./spout news-service/usa. news
$./spout news-service/usa.sports
$./spout news-service/europe.sports
$./spout news-service/europe. news

In the first window, the messages with news in the second word of the key have been received:

Message(properti es={qpi d. subj ect: usa. news, spout-id: 73f c8058-5af 6-407c-9166-b
Message(properti es={qpi d. subj ect: eur ope. news, spout-id:f72815aa- 7be4-4944- 99f

Next, let's use drain with the subject #. news to match any sequence of words that ends with news.

First Window:

$./drain -t 30 news-servicel#. news

In the second window, let's send messages using a variety of different multi-word keys:

Second Window:

./ spout news-service/ news

./ spout news-service/sports

./ spout news-service/usa. news

./ spout news-service/usa.sports

./ spout news-servi ce/ usa. f aux. news
./ spout news-service/usa. faux.sports

PR PH PP

In the first window, messages with news in the last word of the key have been received:

Message(properti es={qpi d. subj ect: news, spout-id:cbd42b0f-c87b-4088-8206-26d76
Message(properti es={qpi d. subj ect: usa. news, spout-id:234a78d7-daeb-4826-90el-1
Message(properti es={qpi d. subj ect: usa. faux. news, spout-id: 6029430a-cfch-4700-8

Address String Options

The options in an address string can contain additional information for the senders or receivers created
for it, including:

» Policiesfor assertions about the node to which an address refers.

Using the Qpid Messaging API

For instance, in the address string nmy- queue; {assert: always, node:{ type:
queue }}, the node named ny- queue must be a queus; if not, the address does not resolve to a
node, and an exception is raised.

* Policiesfor automatically creating or deleting the node to which an address refers.

For instance, in the address string xoxox ; {create: al ways}, thequeuexoxox iscreated, if
it does not exist, before the address is resolved.

» Extension points that can be used for sender/receiver configuration.

For instance, if the address for areceiver isny- queue; {node: browse}, thereceiver worksin
br owse mode, leaving messages on the queue so other receivers can receive them.

» Extension points providing more direct control over the underlying protocol.

For instance, the x- bi ndi ngs property allows greater control over the AMQP 0-10 binding process
when an address is resolved.

Let's use some examples to show how these different kinds of address string options affect the behavior
of senders and receives.

1.4.3.1. assert

Inthissection, weusetheasser t optionto ensurethat the address resolvesto anode of the required type.

Example 1.8. Assertionson Nodes

Let's use qpid-config to create a queue and a topic.

$ gpi d-confi g add queue ny-queue
$ gpi d-config add exchange topic nmy-topic

We can now use the address specified to drain to assert that it is of a particular type:

$./drain 'nmy-queue; {assert: always, node:{ type: queue }}'
$./drain 'nmy-queue; {assert: always, node:{ type: topic }}'

2010- 04-20 17:30: 46 warni ng Exception received from broker: not-found:

Exchange ny-queue does not exi st

Thefirst attempt passed without error as my-queue isindeed a queue. The second attempt however failed;
my-queue is not atopic.

We can do the same thing for my-topic:

$./drain 'nmy-topic; {assert: always, node:{ type: topic }}'
$./drain 'nmy-topic; {assert: always, node:{ type: queue }}'

2010- 04-20 17:31:01 warni ng Exception received from broker: not-found:

Queue ny-topic does not exist

Using the Qpid Messaging API

Now let'susethe cr eat e option to create the queue xoxox if it does not already exist:

1.4.3.2. create

In previous examples, we created the queue beforelistening for messagesonit. Usingcr eat e: al ways,
the queue is automatically created if it does not exist.

Example 1.9. Creating a Queue Automatically

First Window:

$./drain -t 30 "xoxox ; {create: always}"

Now we can send messages to this queue:

Second Window:

$./spout "xoxox ; {create: always}"

Returning to the first window, we see that drain has received this message:

Message(properti es={spout-id: 1ala3842- 1a8b- 4f 88- 8940- b4096e615a7d: 0}, content="")

The details of the node thus created can be controlled by further options within the node. See Table 1.2,
“Node Properties’ for details.

1.4.3.3. browse

Some options specify message transfer semantics; for instance, they may state whether messages should
be consumed or read in browsing mode, or specify reliability characteristics. The following example uses
the br ows e option to receive messages without removing them from a queue.

Example 1.10. Browsing a Queue
L et's use the browse mode to receive messages without removing them from the queue. First we send three

messages to the queue:

$./spout ny-queue --content one
$./spout ny-queue --content two
$./spout ny-queue --content three

Now we use drain to get those messages, using the browse option:

$./drain 'nmy-queue; {nobde: browse}'

Message(properti es={spout-id: f bb93f 30- 0e82- 4b6d- 8c1ld- be60eb132530: 0}, conte
Message(properti es={spout-id: ab9e7c31- 19b0- 4455- 8976- 34abe83edc5f: 0}, conte
Message(properti es={spout-id: ea75d64d- ea37-47f 9- 96a9- d38e01c97925: 0}, conte

We can confirm the messages are still on the queue by repeating the drain:

$./drain 'ny-queue; {nobde: browse}'

10

Using the Qpid Messaging API

Message(properti es={spout-id: f bb93f 30- 0e82- 4b6d- 8c1d- be60eb132530: 0}, conte
Message(properti es={spout-id: ab9e7c31- 19b0- 4455- 8976- 34abe83edc5f: 0}, conte
Message(properti es={spout-id: ea75d64d- ea37-47f 9- 96a9- d38e01c97925: 0}, conte

1.4.3.4. x-bindings

Greater control over the AMQP 0-10 binding process can be achieved by including an x- bi ndi ngs
option in an address string. For instance, the XML Exchangeisan AMQP 0-10 custom exchange provided
by the Apache Qpid C++ broker. It allows messagesto befiltered using X Query; queries can address either
message properties or XML content in the body of the message. The xquery is specified in the arguments
field of the AMQP 0-10 command. When using the messaging APl an xquery can be specified in and
address that resolvesto an XML exchange by using the x-bindings property.

An instance of the XML Exchange must be added before it can be used:
$ gpi d-confi g add exchange xm xm

When using the XML Exchange, areceiver provides an XQuery as an x-binding argument. If the query
contains a context item (a path starting with “.”), then it is applied to the content of the message, which
must be well-formed XML. For instance, . / weat her isavalid XQuery, which matches any messagein
which the root element is named weat her . Here is an address string that contains this query:

xm; {

[ink: {

x-bi ndi ngs: [{exchange: xm , key:weather, argunents:{xquery:"./weather"} }]
}

}

When using longer queries with drain, it is often useful to place the query in afile, and use cat in the
command line. We do thisin the following example.

Example 1.11. Using the XML Exchange

This example uses an x-binding that contains queries, which filter based on the content of XML messages.
Hereisan XQuery that we will usein this example:

et $w := ./weat her

return $w station = ' Ral ei gh-Durham International Airport (KRDU)'
and $w tenmperature f > 50

and $wtenperature f - $w dewpoint > 5

and $w wi nd_speed_nph > 7

and $w wi nd_speed_nph < 20

We can specify thisquery in an x-binding to listen to messagesthat meet the criteria specified by the query:

First Window:

11

Using the Qpid Messaging API

$./drain -f "xm; {link:{x-bindings:[{key:'weather',
argument s: {xquery:\"$(cat rdu.xquery)\"}}1}}"

In another window, let's create an XML message that meets the criteria in the query, and place it in the
filer du. xm :

<weat her >

<stati on>Ral ei gh- Durham I nternati onal Airport (KRDU)</station>
<wi nd_speed_nph>16</w nd_speed_nph>
<tenperature_f>70</tenperature_f>

<dewpoi nt >35</ dewpoi nt >

</ weat her >

Now let's use spout to send this message to the XML exchange:

Second Window:

spout --content "$(cat rdu.xm)" xm /weather

Returning to the first window, we see that the message has been received:

$./drain -f "xm; {link:{x-bindings:[{exchange:' xm "', key:'weather', argunents:{x
Message(properties={qpi d. subj ect: weat her, spout-id:31c431de-593f-4bec-a3dd-
cont ent =' <weat her >
<st ati on>Ral ei gh- Durham I nternati onal Airport (KRDU)</station>
<wi nd_speed_nph>16</w nd_speed_nph>
<t enperature_f>40</tenperature_f>
<dewpoi nt >35</ dewpoi nt >
</ weat her>")

1.4.3.5. Address String Options - Reference

Table 1.1. Address String Options

option value semantics
assert one of: always, never, sender or|Assertsthat the propertiesspecifiedin
receiver the node option match whatever the
address resolves to. If they do not,
resolution fails and an exception is
raised.
create one of: always, never, sender or|Creates the node to which an address
receiver refers if it does not exist. No error
is raised if the node does exist. The
details of the node may be specifiedin
the node option.
delete one of: always, never, sender or|Delete the node when the sender or

receiver receiver is closed.

12

Using the Qpid Messaging API

option value semantics
node A nested map containing the|Specifies properties of the node to
entries shown in Table 1.2, “Node|which the address refers. These are
Properties’. used in conjunction with the assert or
create options.
link A nested map containing the entries|Used to control the establishment of
showninTablel1.3,“Link Properties’.|a conceptua link from the client
application to or from the target/
source address.
mode one of: browse, consume This option is only of relevance for

source addresses that resolve to a
queue. If browse is specified the
messages delivered to the receiver are
left on the queue rather than being
removed. If consume is specified the
normal behaviour applies, messages
are removed from the queue once the
client acknowledges their receipt.

Table 1.2. Node Properties

property value semantics
type topic, queue Indicates the type of the node.
durable True, False Indicates whether the node survives
a loss of voldtile storage eg. if the
broker is restarted.
x-declare A nested map whose values These values are used to fine tune
correspond to the valid fields on|the creation or assertion process.
an AMQP 0-10 queue-declare or|Note however that they are protocol
exchange-declare command. specific.
x-bindings A nested list in which each binding|In conjunction with the create option,

is represented by a map. The entries
of the map for a binding contain the
fields that describe an AMQP 0-10
binding. Here is the format for x-
bindings:

[
{

exchange: <exchange>
queue: <queue>,

key: <key>,
argunents: {

<key 1>: <val ue_1>,

<key n>: <value_n> }

},

b

each of thesebindingsisestablished as
the addressisresolved. In conjunction
with the assert option, the existence
of each of these hindings is verified
during resolution. Again, these are
protocol specific.

13

Using the Qpid Messaging API

Table 1.3. Link Properties

option

value

semantics

reliability

one of: unreliable, at-least-once, at-
most-once, exactly-once

Reliability indicates the level of
reliability that the sender or receiver.
unrel i abl e and at - nost - once
are currently treated as synonyms,
and allow messages to be lost if a
broker crashes or the connection to
a broker is lost. at - | east-once
guarantees that a message is not
lost, but duplicates may be received.
exact|ly-once guarantees that
a message is not lost, and is
delivered precisely once. Currently
onlyunrel i abl eandat - | east -
once are supported. 2

durable

True, False

Indicates whether the link survives
a loss of volatile storage e.g. if the
broker isrestarted.

x-declare

A nested map whose values
correspond to the valid fields of an
AMOQP 0-10 queue-declare command.

These values can be used to customise
the subscription queue in the case
of recelving from an exchange.
Note however that they are protocol
specific.

x-subscribe

A nested map whose values
correspond to the vaid fields of
an AMQP 0-10 message-subscribe
command.

These values can be used to customise
the subscription.

x-bindings

A nested list each of whose entries
is a map that may contain fields
(queue, exchange, key and arguments)
describing an AMQP 0-10 binding.

These bindings are established during
resolution independent of the create
option. They are considered logically
part of the linking process rather than
of node creation.

4f at-most-once is requested, unreliable will be used and for durable messages on durable queues there is the possibility that messages will be
redelivered; if exactly-onceis requested, at-least-once will be used and the application needs to be able to deal with duplicates.

1.4.4. Address String Grammar

This section provides aformal grammar for address strings.

Tokens. Thefollowing regular expressions define the tokens used to parse address strings:

LBRACE:
RBRACE:
LBRACK:
RBRACK:

COLON:
SEM :

SLASH:
COVIVA:

W\ {
W\ }
W[
W\]

/

14

Using the Qpid Messaging API

NUVBER: [+-]?[0-9]*\\.?[0-9] +

| D [a-zA-Z](?:[a-zA Z0-9_-]*[a-zA-Z0-9])?
STRING " (2: [ANV T VAN) * U (20 TAVANT TPV) %y
ESC: \\ A\ [Aux] |\ X[0- 9a- f A- F] [0- 9a- f A- F] | \\\\ u[0- 9a- f A- F] [0- 9a- f A- F] [0- 9a- f A

SYM [#*5 %@ +-]
WBPACE: [\\nm\\r\\t]+

Grammar. Theformal grammar for addressesis given below:

address := name [SLASH subject] [";" options]
nane := (part | quoted)+
subject := (part | quoted | SLASH)*

quoted := STRING / ESC
part := LBRACE / RBRACE/ COLON/ COWA / NUMBER / ID/ SYM

options := nap

map = "{" (keyval ("," keyval)*)? "}"
keyval "= 1D ":" val ue

value := NUMBER/ STRING/ ID/ map / |ist
list :="[" (value ("," value)*)? "]'

Address String Options. The address string options map supports the following parameters:

<name> [/ <subject>] ; {

create: always | sender | receiver | never,
del ete: always | sender | receiver | never,
assert: always | sender | receiver | never,
node: browse | consune,

node: {

type: queue | topic,

durable: True | Fal se,

x-declare: { ... <declare-overrides> ... },
Xx-bi ndings: [<binding 1>, ... <binding_n>]
} y

link: {

name: <l ink-name>,
durable: True | Fal se,
reliability: unreliable | at-npbst-once | at-least-once | exactly-once,

x-declare: { ... <declare-overrides> ... },
x-bi ndi ngs: [<binding 1>, ... <binding _n>],
Xx-subscribe: { ... <subscribe-overrides> ... }
}

}

Create, Delete, and Assert Policies
The create, delete, and assert policies specify who should perfom the associated action:
» always: the action is performed by any messaging client

 sender: the action isonly performed by a sender

15

Using the Qpid Messaging API

* receiver:; theaction is only performed by areceiver

» never: the action is never performed (thisis the default)

Node-Type
The node-type is one of:

* topic: in the AMQP 0-10 mapping, a topic node defaults to the topic exchange, x-declare may be used
to specify other exchange types

 queue: thisisthe default node-type

1.5. Sender Capacity and Replay

The send method of a sender has an optional second parameter that controls whether the send call is
synchronous or not. A synchronous send call will block until the broker has confirmed receipt of the
message. An asynchronous send call will return beforethe broker confirmsrecei pt of the message, allowing
for example further send calls to be made without waiting for a roundtrip to the broker for each message.
Thisis desirable where increased throughput isimportant.

The sender maintains a list of sent messages whose receipt has yet to be confirmed by the broker. The
maximum number of such messages that it will hold is defined by the capacity of the sender, which can
be set by the application. If an application tries to send with a sender whose capacity is aready fully used
up, the send call will block waiting for capacity regardless of the value of the sync flag.

The sender can be queried for the available space (i.e. the unused capacity), and for the current count
of unsettled messages (i.e. those held in the replay list pending confirmation by the server). When the
unsettled count is zero, all messages on that sender have been successfully sent.

If the connection fails and is transparently reconnected (see Section 1.10.2, “Connection Options’ for
details on how to control this feature), the unsettled messages for each sender over that connection will
be re-transmitted. This provides a transparent level of reliability. This feature can be controlled through
the link's reliability as defined in the address (see Table 1.3, “Link Properties’). At present only at-least-
once guarantees are offered.

1.6. Receiver Capacity (Prefetch)

By default, areceiver requests the next message from the server in response to each fetch call, resulting in
messages being sent to the receiver one at atime. Asin the case of sending, it is often desirable to avoid
this roundtrip for each message. This can be achieved by allowing the receiver to prefetch messagesin
anticipation of fetch calls being made. The receiver needs to be able to store these prefetched messages,
the number it can hold is controlled by the receivers capacity.

1.7. Acknowledging Received Messages

Applicationsthat receive messages should acknowledge their receipt by calling the on's acknowledge
method. Asin the case of sending messages, acknowledged transfer of messages to receivers provides at-
least-once reliability, which means that the loss of the connection or a client crash does not result in lost
messages; durable messages are not lost even if the broker is restarted. Some cases may not require this
however and the reliability can be controlled through alink property in the address options (see Table 1.3,
“Link Properties’).

The acknowledge call acknowledges all messages received on the session (i.e. al message that have been
returned from afetch call on areceiver created on that session).

16

Using the Qpid Messaging API

The acknowledge call also support an optional parameter controlling whether the call is synchronous
or not. A synchronous acknowledge will block until the server has confirmed that it has received the
acknowledgement. In the asynchronous case, when the call returns there is not yet any guarantee that the
server has received and processed the acknowledgement. The session may be queried for the number of
unsettled acknowledgements; when that count is zero all acknowledgements made for received messages
have been successful.

1.8. Receiving Messages from Multiple Sources

A receiver can only read from one source, but many programs need to be able to read messages from
many sources. In the Qpid Messaging API, a program can ask a session for the “next receiver”; that is,
the receiver that is responsible for the next available message. The following examples show how thisis
donein C++, Python, and .NET C#.

Note that to use this pattern you must enable prefetching for each receiver of interest so that the broker will
send messages beforeafetch call ismade. See Section 1.6, “ Receiver Capacity (Prefetch)” for more onthis.

Example 1.12. Receiving M essages from Multiple Sour ces

C++:

Recei ver receiverl = session.createReceiver (addressl);
recei ver 1. set Capaci ty(10);
Recei ver receiver2 = session. createReceiver (address?);
recei ver 2. set Capaci ty(10);

Message nessage = session. next Receiver().fetch();
std::cout << nessage.getContent() << std::endl;
sessi on. acknow edge(); // acknow edge nessage recei pt

Python:

recei verl = session.receiver(addressl)
receiverl. capacity = 10

recei ver2 = session.receiver (address)
receiver2.capacity = 10

nessage = session. next_receiver().fetch()
print message. content

sessi on. acknow edge()

NET C#

Recei ver receiverl sessi on. Creat eRecei ver (addressl);

recei verl. Capacity = 10;
Recei ver receiver2 = session. CreateRecei ver (address?);
recei ver2. Capacity = 10;

Message message = new Message();
message = session. Next Receiver (). Fetch();
Consol e. WitelLine("{0}", nessage.GetContent());

17

Using the Qpid Messaging API

sessi on. Acknow edge();

1.9. Transactions

Sometimes it is useful to be able to group messages transfers - sent and/or received - on a session into
atomic grouping. This can be done be creating the session as transactional. On atransactional session sent
messages only become availabl e at the target address on commit. Likewise any received and acknowledged
messages are only discarded at their source on commit 8,

Example 1.13. Transactions

C++:

Connection connecti on(broker);
Sessi on session = connection. createTransacti onal Session();

if (smellsCk())
session.commt();
el se

sessi on. rol | back();

NET C#

Connection connecti on = new Connecti on(broker);
Session session = connection. CreateTransacti onal Session();

if (smellsCk())
session. Commit();
el se

sessi on. Rol | back();

1.10. Connections

Messaging connections are created by specifying a broker or a list of brokers, and an optional set of
connection options. The constructor prototypes for Connections are:

Connection connection();

Connection connection(const string url);

Connection connection(const string url, const string& options);
Connection connection(const string url, const Variant::Mp& options);

Messaging connection URLs specify only the network host address(es). Connection options are specified
separately as an options string or map. This is different from JMS Connection URLs that combine the
network address and connection propertiesin asingle string.

SNote that this currently is only true for messages received using a reliable mode e.g. at-least-once. Messages sent by a broker to a receiver in
unreliable receiver will be discarded immediately regardless of transctionality.

18

Using the Qpid Messaging API

1.10.1. Connection URLs

Connection URL s describe the broker or set of brokers to which the connection isto attach. The format of
the Connection URL is defined by AMQP 0.10 Domain:connection.amgp-host-url.

anmgp_url = "amp: " prot_addr_Ili st
prot_addr_list = [prot_addr ","]* prot_addr
prot_addr = tcp_prot_addr | tls_prot_addr

tcp_prot_addr = tcp_id tcp_addr

tcp_id = "tep:" | ""

tcp_addr = [host [":" port]]

host = <as per http://ww.ietf.org/rfc/rfc3986.txt>
port = numnber

Examples of Messaging Connection URLS

| ocal host

| ocal host: 5672

| ocal host: 9999

192.168. 1. 2: 5672

nybr oker . exanpl e. com 5672

angp: tcp: | ocal host: 5672

tcp: |l ocahost: 5672, 1 ocal host: 5800

1.10.2. Connection Options

Aspects of the connections behaviour can be controlled through specifying connection options. For
example, connections can be configured to automatically reconnect if the connection to a broker islost.

Example 1.14. Specifying Connection Optionsin C++, Python, and .NET

In C++, these options can be set using Connect i on: : set Opti on() or by passingin a set of options
to the constructor. The options can be passed in asamap or in string form:

or

Connection connection("l ocal host:5672");
connection. set Option("reconnect", true);
try {

connecti on. open();

It SNIP I

In Python, these options can be set as attributes of the connection or using hamed arguments in the
Connect i on constructor:

connection = Connection("l ocal host:5672", reconnect=True)

try:
connecti on. open()

19

Using the Qpid Messaging API

Mt SNp tit
or

connection = Connection("local host:5672")
connection. reconnect = True

try:

connecti on. open()

Iy SNEP 1Y

In .NET, these options can be set using Connect i on. Set Opt i on() or by passing in aset of options
to the constructor. The options can be passed in as amap or in string form:

Connecti on connecti on= new Connection("l ocal host:5672", "{reconnect: true}");

try {
connecti on. Open();

Mt SNp it
or

Connection connecti on = new Connection("l ocal host:5672");
connection. Set Opti on("reconnect"”, true);

try {
connecti on. Open();

Mt SNp it

See the reference documentation for details in each language.

The following table lists the supported connection options.

Table 1.4. Connection Options

option name valuetype semantics

user name string The username to wuse when
authenticating to the broker.

password string The password to wuse when
authenticating to the broker.

sasl| _nmechani sns string The specific SASL mechanisms to

use with the python client when
authenticating to the broker. Thevalue
is aspace separated list.

reconnect boolean Transparently reconnect if the
connection islost.
reconnect _ti meout integer Total number of seconds to continue

reconnection attempts before giving
up and raising an exception.

20

Using the Qpid Messaging API

option name

valuetype

semantics

reconnect _limt

integer

Maximum number of reconnection
attempts before giving up and raising
an exception.

reconnect interval _nin

integer representing time in seconds

Minimum number of seconds
between reconnection attempts. The
first reconnection attempt is made
immediately; if that fails, the first
reconnection delay is set to the value
of reconnect _interval _mn;
if that attempt fails, the reconnect
interval increases exponentially until
a reconnection attempt succeeds
orreconnect _interval _naxis
reached.

reconnect _i nt erval _nax

integer representing time in seconds

Maximum reconnect interval .

reconnect _i nterval

integer representing time in seconds

Sets both
reconnection_interval _min
and

reconnection_i nterval _max
to the same value.

hear t beat

integer representing time in seconds

Requests that heartbeats be sent
every N seconds. If two successive
heartbeats are missed the connection
is considered to be lost.

transport

string

Sets the underlying transport protocol
used. The default option is 'tcp’. To
enable sd, set to 'sdl'. The C++ client
additionally supports 'rdma.

t cp- nodel ay

boolean

Set tcp no-delay, i.e. disable Nagle
algorithm. [C++ only]

pr ot ocol

string

Sets the application protocol used.
The default option is 'amgp0-10'. To
enable AMQP 1.0, set to ‘'amgpl.0'.

1.11. Maps and Lists in Message Content

Many messaging applications need to exchange data across languages and platforms, using the native
datatypes of each programming language.

The Qpid Messaging API supports map and | i st in message content. ° 1° Specific language support for
map and | i st objects are shown in the following table.

Table 1.5. Map and List Representation in Supported L anguages

Language

map

list

Python

di ct

list

SUnlike MS, thereis not a specific message type for map messages.
10 Note that the Qpid IMS client supports MapM essages whose values can be nested maps or lists. Thisis not standard JIM S behaviour.

21

Using the Qpid Messaging API

Language map list

C++ Vari ant:: Map Variant::List

Java MapMessage

.NET Di ctionary<string, Col | ecti on<obj ect >

obj ect >

In all languages, messages are encoded using AMQP's portable datatypes.

Tip

Because of the differencesin type systems among languages, the simpl est way to provide portable
messages is to rely on maps, lists, strings, 64 bit signed integers, and doubles for messages that
need to be exchanged across languages and platforms.

1.11.1. Qpid Maps and Lists in Python

In Python, Qpid supportsthedi ct andl i st typesdirectly in message content. Thefollowing code shows
how to send these structures in a message:

Example 1.15. Sending Qpid Mapsand Listsin Python

from gpi d. messagi ng i nport *

111 SNIP Il

content = {'Id

content['colours'] =
content['dinmensions'] =

content[' parts']
content[' specs']
" di mensi ons'
'parts’

987654321, ' nane' 'Wdget', 'percent’ 0. 99}
['red, "green', '"white']
{'length 10. 2, '"width' 5.1, " depth’
=1 [125], [8,275]]
= {'colors’ content[' colours'],

content[' di mensions'],

content['parts'] }

nmessage = Message(cont ent =cont ent)
sender . send(message)

2.0}

The following table shows the datatypes that can be sent in a Python map message, and the corresponding
datatypes that will be received by clientsin Java or C++.

Table 1.6. Python Datatypesin Maps

Python Datatype _, C++ _, Java

bool bool boolean

int int64 long

long int64 long

float double double
unicode string javalang.String
uuid gpid::types::Uuid java.util.UUID
dict Variant::Map java.util.Map
list Variant::List java.util.List

22

Using the Qpid Messaging API

1.11.2. Qpid Maps and Lists in C++

In C++, Qpid definesthetheVari ant : : Map and Vari ant : : Li st types, which can be encoded into
message content. The following code shows how to send these structures in a message:

Example 1.16. Sending Qpid Mapsand Listsin C++

usi ng nanmespace gpid::types;
[/ 111 SNIP 11

Message nessage;

Variant:: Map content;

content["id"] = 987654321
content["name"] = "Wdget";
content["percent”] = 0.99;
Variant::List colours;

col ours. push_back(Variant("red"));
col ours. push_back(Variant("green"));
col ours. push_back(Variant ("white"));
content["col ours"] = col ours;

Vari ant:: Map di mensi ons;
di mensions["length"] =1
di mensions["wi dth"] =
di mensi ons["depth"] =

content["di mensi ons"] = di nensi ons;

0. 2;
5.1;
2.0;
[
Variant::List partil;

part 1. push_back(Variant(1));

part 1. push_back(Variant(2));
part 1. push_back(Variant(5));

Variant::List part?2;

part 2. push_back(Variant(8));
part 2. push_back(Variant(2));
part 2. push_back(Variant(5));

Variant::List parts;
parts. push_back(part1l);
parts. push_back(part2);
content["parts"]= parts;

Variant:: Map specs;

specs["col ours"] = col ours;
specs["di nensi ons"] = di nensi ons;
specs["parts"] = parts;
content["specs"] = specs;

encode(content, message);
sender . send(nessage, true);

23

Using the Qpid Messaging API

The following table shows the datatypes that can be sent in a C++ map message, and the corresponding
datatypes that will be received by clientsin Java and Python.

Table 1.7. C++ Datatypesin Maps

C++ Datatype _, Python _, Java

bool bool boolean
uint16 int | long short

uint32 int [long int

uint64 int [long long

int16 int | long short

int32 int | long int

int64 int [long long

float float float

double float double

string unicode javalang.String
gpid::types::Uuid uuid java.util.UUID
Variant::Map dict javautil.Map
Variant::List list javautil.List

1.11.3. Qpid Maps and Lists in .NET

The .NET binding for the Qpid Messaging APl binds .NET managed data types to C++ Var i ant data
types. The following code shows how to send Map and List structuresin a message:

Example 1.17. Sending Qpid Mapsand Listsin .NET C#

usi ng System
usi ng Org. Apache. Qpi d. Messagi ng;

[/ TSNP 11

Di ctionary<string, object> content = new Dictionary<string, object>();
Di ctionary<string, object> subMap = new Dictionary<string, object>();
Col | ecti on<obj ect> col ors = new Col | ecti on<obj ect>();

/1 add sinmple types

content["id"] = 987654321,
content["name"] = "Wdget";
content["percent"] = 0.99;

/1 add nested anqgp/ map
subMap["nanme"] = "Smth";
subMap["nunber"] = 354;
content["nestedMap"] = subMap;

/1 add an angp/li st
col ors. Add("red");

24

Using the Qpid Messaging API

col ors. Add("green");
colors. Add("white");
content["col orsList"] = colors;

/1 add one of each supported amgp data type
bool nybool = true;
content["nybool "] = nybool;

byte nybyte = 4;

content["nybyte"] = nybyte;
Untl6é nyUntl6e = 5;
content["nyU nt16"] = nyUl nt 16;
Unt32 nyUnt32 = 6;
content["nyU nt32"] = nyUl nt32;
Unté4 nyunt64 = 7;
content["nyU nt64"] = nyUl nt 64;
char mychar = 'h';
content["nychar"] = nychar;
Intl6 nylntl6 = 9;
content["nylnt16"] = nylnt16;
Int32 nmylnt32 = 10;
content["nylnt32"] = nylnt32;
Int64 nmylnt64 = 11,
content["nylnt64"] = nylnt 64,

Single nySingle = (Single)l2.12;
content["nySingle"] = nySingle;

Doubl e nyDoubl e = 13.13;
content ["nyDoubl e"] = nyDoubl e;

GQuid nyGuid = new Gui d("000102030405060708090a0b0c0d0eOf ") ;
content["nyGuid"] = nyCuid;

Message nmessage = new Message(content);
Send(message, true);

The following table shows the mapping between datatypesin .NET and C++.

Table 1.8. Datatype M apping between C++ and .NET binding

C++ Datatype _, -NET binding
void nullptr

bool bool

uint8 byte

25

Using the Qpid Messaging API

C++ Datatype _, -NET binding
uint16 Uintl6

uint32 Ulnt32

uint64 Ulnt64

uint8 char

int16 Int16

int32 Int32

int64 Int64

float Single

double Double

string string &
gpid::types::Uuid Guid

Variant::Map Dictionary<string, object> 2
Variant::List Collection<object> &

astrings are currently interpreted only with UTF-8 encoding.

1.12. The Request / Response Pattern

Request / Response applications use the reply-to property, described in Table 1.9, “Mapping to AMQP
0-10 Message Properties’, to allow a server to respond to the client that sent a message. A server sets up
a service queue, with aname known to clients. A client creates a private queue for the server's response,
creates a message for arequest, sets the request's reply-to property to the address of the client's response
gueue, and sends the request to the service queue. The server sends the response to the address specified
in the request's reply-to property.

Example 1.18. Request / Response Applicationsin C++

This example shows the C++ code for a client and server that use the request / response pattern.

The server creates a service queue and waits for a message to arrive. If it receives a message, it sends a
message back to the sender.

Recei ver receiver = session.createReceiver("service_queue; {create: always}");

Message request = receiver.fetch();

const Address&anp; address = request.getReplyTo(); // Get "reply-to" fromrequest

if (address) {

Sender sender = session.createSender(address); // ... send response to "reply-to

Message response("pong!");
sender . send(response);
sessi on. acknow edge();

}

Theclient creates asender for the service queue, and also creates aresponse queue that is deleted when the
client closes the receiver for the response queue. In the C++ client, if the address starts with the character
#, it is given a unique name.

26

Using the Qpid Messaging API

Sender sender = session.createSender("service_queue");

Addr ess responseQueue(" #response- queue; {create: al ways, del ete: al ways}");
Recei ver receiver = session.createReceiver(responseQueue);

Message request;

request. set Repl yTo(responseQueue) ;

request. set Content (" pi ng");

sender . send(request);

Message response = receiver.fetch();

std::cout << request.getContent() << " -> " << response.getContent() << std::end

The client sends the string pi ng to the server. The server sends the response pong back to the same
client, using ther epl yTo property.

1.13. Performance Tips

» Consider prefetching messages for receivers (see Section 1.6, “Receiver Capacity (Prefetch)”). This
helps eliminate roundtrips and increases throughput. Prefetch is disabled by default, and enabling it is
the most effective means of improving throughput of received messages.

 Send messages asynchronously. Again, this helps eliminate roundtrips and increases throughput. The C
++and .NET clients send asynchronously by default, however the python client defaultsto synchronous
sends.

» Acknowledge messagesin batches (see Section 1.7, “ Acknowl edging Received Messages’). Rather than
acknowledging each message individually, consider issuing acknowledgements after n messages and/
or after a particular duration has elapsed.

» Tune the sender capacity (see Section 1.5, “ Sender Capacity and Replay”). If the capacity is too low
the sender may block waiting for the broker to confirm receipt of messages, before it can free up more

capacity.

« If you are setting a reply-to address on messages being sent by the c++ client, make sure the address
typeis set to either queue or topic as appropriate. This avoids the client having to determine which type
of node is being refered to, which is required when hanling reply-to in AMQP 0-10.

» For latency sensitive applications, setting tcp-nodelay on gpidd and on client connections can help
reduce the latency.

Cluster Failover

The messaging broker can be run in clustering mode, which provides high reliability through replicating
state between brokers in the cluster. If one broker in a cluster fails, clients can choose another broker in
the cluster and continue their work. Each broker in the cluster also advertises the addresses of all known
brokers 11 . A client can use thisinformation to dynamically keep thelist of reconnection urls up to date.

1.14

In C++, the Fai | over Updat es class provides this functionality:

Example 1.19. Tracking cluster member ship

In C++:

UThisis done via the amq.failover exchangein AMQP 0-10

27

Using the Qpid Messaging API

#i ncl ude <qpi d/ messagi ng/ Fai | over Updat es. h>

Connection connection("l ocal host:5672");
connection. set Option("reconnect”, true);

try {
connecti on. open();

std::auto_ptr<Fail over Updat es> updat es(new Fai | over Updat es(connecti on));

In python:

i mport qpid. messaging. util

connection = Connection("l ocal host:5672")
connection. reconnect = True

try:

connecti on. open()
auto_fetch_reconnect _url s(connecti on)

In .NET C#

usi ng Org. Apache. Qpi d. Messagi ng;

connection = new Connection("l ocal host:5672");
connection. Set Opti on("reconnect”, true);

try {
connecti on. Open();

Fai | over Updat es fail over = new Fail over Updat es(connecti on);

1.15. Logging
To simplify debugging, Qpid provides alogging facility that prints out messaging events.
1.15.1. Logging in C++

The Qpidd broker and C++ clients can both use environment variables to enable logging. Linux and
Windows systems use the same named environment variables and values.

Use QPID_LOG_ENABLE to set the level of logging you are interested in (trace, debug, info, notice,
warning, error, or critical):

export QPI D LOG ENABLE="war ni ng+"

The Qpidd broker and C++ clientsuse QPID_LOG_OUTPUT to determine where logging output should
be sent. Thisis either afile name or the special values stderr, stdout, or syslog:

28

Using the Qpid Messaging API

export QPID LOG TO FILE="/tnp/ nyclient.out"

From a Windows command prompt, use the following command format to set the environment variables:

set QPI D_LOG ENABLE=war ni ng+
set QPID LOG TO FI LE=D:\t mp\ mycl i ent. out

1.15.2. Logging in Python

1.16.

The Python client library supports logging using the standard Python logging module. The easiest way to
do logging is to use the basicConfig(), which reports al warnings and errors:

from |l ogging inport basicConfig
basi cConfi g()

Qpidd also provides a convenience method that makes it easy to specify the level of logging desired. For
instance, the following code enables logging at the DEBUG level:

fromqpid.log inport enable, DEBUG
enabl e(" gpi d. messagi ng. i 0", DEBUG

For more information on Python logging, see http://docs.python.org/lib/noded425.html. For more
information on Qpid logging, use $ pydoc gpid.log.

The AMQP 0-10 mapping

This section describes the AMQP 0-10 mapping for the Qpid Messaging API.

The interaction with the broker triggered by creating a sender or receiver depends on what the specified
address resolves to. Where the node type is not specified in the address, the client queries the broker to
determine whether it refers to a queue or an exchange.

When sending to a queue, the queue's name is set as the routing key and the message is transfered to the
default (or nameless) exchange. When sending to an exchange, the message is transfered to that exchange
and the routing key is set to the message subject if one is specified. A default subject may be specified
in the target address. The subject may also be set on each message individually to override the default if
required. In each case any specified subject is also added as a qpid.subject entry in the application-headers
field of the message-properties.

When receiving from a queue, any subject in the source address is currently ignored. The client sends
a message-subscribe request for the queue in question. The accept-mode is determined by the reliability
option in the link properties; for unreliable links the accept-mode is none, for reliable links it is explicit.
The default for aqueueisreliable. The acquire-mode is determined by the value of the mode option. If the
mode is set to browse the acquire mode is not-acquired, otherwise it is set to pre-acquired. The exclusive
and arguments fields in the message-subscribe command can be controlled using the x-subscribe map.

When receiving from an exchange, the client creates a subscription queue and binds that to the exchange.
The subscription queue's arguments can be specified using the x-declare map within the link properties.
The reliability option determines most of the other parameters. If the reliability is set to unreliable then

29

http://docs.python.org/lib/node425.html

Using the Qpid Messaging API

an auto-deleted, exclusive queue is used meaning that if the client or connection fails messages may be
lost. For exactly-once the queue is not set to be auto-deleted. The durability of the subscription queue is
determined by the durable option in the link properties. The binding process depends on the type of the
exchange the source address resolves to.

« For atopic exchange, if no subject isspecified and no x-bindings are defined for thelink, the subscription
queue is bound using a wildcard matching any routing key (thus satisfying the expectation that any
message sent to that address will be received from it). If a subject is specified in the source address
however, it isused for the binding key (this meansthat the subject in the source address may be abinding
pattern including wildcards).

 For afanout exchangethe binding key isirrelevant to matching. A receiver created from asource address
that resolves to afanout exchange receives all messages sent to that exchange regardless of any subject
the source address may contain. An x-bindings element in the link properties should be used if thereis
any need to set the arguments to the bind.

» For adirect exchange, the subject is used as the binding key. If no subject is specified an empty string
is used as the binding key.

» For aheadersexchange, if no subject is specified the binding arguments simply contain an x-match entry
and no other entries, causing all messages to match. If a subject is specified then the binding arguments
contain an x-match entry set to all and an entry for gpid.subject whose value is the subject in the source
address (this means the subject in the source address must match the message subject exactly). For more
control the x-bindings element in the link properties must be used.

» Forthe XML exchange,12 if asubject isspecified it isused asthe binding key and an XQuery is defined
that matches any message with that value for gpid.subject. Again this means that only messages whose
subject exactly match that specified in the source address are received. If no subject is specified then
the empty string is used as the binding key with an xquery that will match any message (this means that
only messageswith an empty string asthe routing key will be received). For more control the x-bindings
element in the link properties must be used. A source address that resolves to the XML exchange must
contain either a subject or an x-bindings element in the link properties as there is no way at present to
receive any message regardless of routing key.

If an x-bindings list is present in the link options a binding is created for each element within that list.
Each element is a nested map that may contain values named queue, exchange, key or arguments. If the
gueue value is absent the queue name the address resolves to is implied. If the exchange value is absent
the exchange name the address resolves to isimplied.

The following table shows how Qpid Messaging APl message properties are mapped to AMQP 0-10
message properties and delivery properties. In this table nsg refers to the Message class defined in the
Qpid Messaging API, np refersto an AMQP 0-10 message- pr oper ti es struct, and dp refersto an
AMQPO0-10del i very- properti es struct.

Table 1.9. Mapping to AM QP 0-10 M essage Properties

Python API C++API 2 AMQP 0-10 Property®

msg.id msg.{ get,set} Messagel d() mp.message id

msg.subject msg.{ get,set} Subject() mp.application_headerg[" gpid.subject’
msg.user_id msg.{ get,set} Userld() mp.user_id

msg.reply_to msg.{ get,set} ReplyTo() mp.reply_to®

msg.correlation_id msg.{ get,set} Correlationl d() mp.correlation_id

2Note that the XML exchangeis not a standard AM QP exchange type. It isa Qpid extension and is currently only supported by the C++ broker.

30

Using the Qpid Messaging API

Python API C++AP| 2 AM QP 0-10 Property®
msg.durable msg.{ get,set} Durable() dp.delivery_mode ==
delivery_mode.persi stent®

msg.priority msg.{ get,set} Priority() dp.priority

msg.ttl msg.{ get,set} Ttl() dp.ttl

msg.redelivered msg.{ get,set} Redelivered() dp.redelivered

msg.properties msg.getProperties()/ mp.application_headers
msg.setProperty()

msg.content_type msg.{ get,set} Content Type() mp.content_type

&The .NET Binding for C++ Messaging provides all the message and delivery properties described in the C++ API. See Table 2.13, “.NET Binding
for the C++ Messaging API Class: Message” .

BIn these entries, np refers to an AMQP message property, and dp refers to an AMQP delivery property.
“Thereply_to is converted from the protocol representation into an address.
INote that msg.durable is a boolean, not an enum.

1.16.1.

0-10 Message Property Keys

The QPID Messaging API aso recognises special message property keys and automatically provides a
mapping to their corresponding AMQP 0-10 definitions.

When sending amessage, if the properties contain an entry for x- angp- 0- 10. app- i d, itsvaluewill
be used to set themessage- properti es. app- i d property in the outgoing message. Likewise, if
an incoming message has nessage- properti es. app-i d set, its value can be accessed via the
x-angp- 0- 10. app- i d message property key.

When sending a message, if the properties contain an entry for x-angp- 0- 10. cont ent -
encodi ng, its value will be used to set the nessage-properties.content-
encodi ng property in the outgoing message. Likewise, if an incoming message has
message- properties. content-encodi ng set, its vaue can be accessed via the x-
angp- 0- 10. cont ent - encodi ng message property key.

The routing key (del i very-properties. routing-key) in an incoming messages can be
accessed viathe x- angp- 0- 10. r out i ng- key message property.

If the timestamp delivery property is set in an incoming message (delivery-
properties.timestanp), the timestamp value will be made available via the x-
angp- 0- 10. ti mest anp message property. 13

Example 1.20. Accessing the AM QP 0-10 Message Timestamp in Python

The following code fragment checks for and extracts the message timestamp from a received message.

try:

msg = receiver.fetch(tineout=1)

if "x-angp-0-10.ti mestanp” in nmeg. properties:

print("Ti mestanmp=%" % str(nmsg. properties["x-angp-0-10.tinestanp"]))
except Enpty:

pass

13 This specia property is currently not supported by the Qpid IMS client.

31

Using the Qpid Messaging API

Example 1.21. Accessing the AMQP 0-10 Message Timestamp in C++

The same example, except in C++.

nmessagi ng: : Message nsg;
if (receiver.fetch(nsg, nessaging::Duration::SECOND*1)) {

if (msg.getProperties().find("x-angp-0-10.tinestanp") != nsg.getProperties().
std::cout << "Tinestanp=" << nsg.getProperties()["x-angp-0-10.ti mestanp"]. asS
}
}

1.17. Using Message Groups

This section describes how messaging applications can use the Message Group feature provided by the
Broker.

Note

The content of this section assumes the reader is familiar with the Message Group feature as
described inthe AMQP Messaging Broker user's guide. Please read the message grouping section
in the Broker user's guide before using the examples given in this section.

1.17.1. Creating Message Group Queues

The following examples show how to create a message group queue that enforces ordered group
consumption across multiple consumers.

Example 1.22. M essage Group Queue Creation - Python

sender = connection. session().sender("nsg-group-q;" +
" {create:always, delete:receiver," +
node: {x-declare: {argunents:" +
" {'qpid. group_header_key':' THE- GROUP' ," +
' 'qpid.shared_mnmsg _group':1}}}}1")

Example 1.23. M essage Group Queue Creation - C++

std::string addr("nmsg-group-g;
" {create:al ways, delete:receiver,"”
node: {x-declare: {argunents:"
" {qgpi d. group_header _key: "' THE- GROUP' , "
' gpi d.shared_nsg_group:1}}}}");
Sender sender = session. createSender (addr);

Example 1.24. M essage Group Queue Creation - Java

Session s = c.createSession(fal se, Session. CLI ENT_ACKNON_EDGE) ;

32

Using the Qpid Messaging API

String addr = "nsg-group-q; {create:always, delete:receiver," +
node: {x-declare: {argunents:" +
" {'qpid. group_header_key':' THE- GROUP' ," +
' 'qpid.shared_msg_group':1}}}}";
Destination d = (Destination) new AMQAnyDesti nati on(addr);
MessagePr oducer sender = s.createProducer(d);

The example code uses the x-declare map to specify the message group configuration that should be used
for the queue. See the AMQP Messaging Broker user's guide for adetailed description of these arguments.
Note that the gpid.group_header_key's value MUST be a string type if using the C++ broker.

1.17.2. Sending Grouped Messages

When sending grouped messages, the client must add amessage property containing the group identifier to
the outgoing message. If using the C++ broker, the group identifier must be astring type. The key used for
the property must exactly match the value passed in the 'gpid.group_header key' configuration argument.

Example 1.25. Sending Grouped M essages - Python

group = "A"
m = Message(content ="sone data", properties={"THE-GROUP": group})
sender . send(m

group = "B"

m = Message(content ="sone other group's data", properties={"THE- GROUP": group})
sender . send(m

group = "A"

m = Message(content="nore data for group 'A ", properties={"THE- GROUP"': group})
sender . send(m

Example 1.26. Sending Grouped M essages - C++

const std::string groupKey("THE- GROUP");

{
Message nsg("sone data");
nsg. get Properties()[groupKey] = std::string("A");
sender . send(nsgQ) ;

}

{
Message nmsg("sone other group's data");
nsg. get Properties()[groupKey] = std::string("B");
sender . send(nsgQ) ;

}

{
Message nmsg("nore data for group 'A");
nsg. get Properties()[groupKey] = std::string("A");
sender . send(nsgQ) ;

}

33

Using the Qpid Messaging API

Example 1.27. Sending Grouped M essages - Java

String groupKey = "THE- GROUP";

Text Message tnmsgl = s.createText Message("sone data");
tnegl. set StringProperty(groupKey, "A");
sender. send(tnmsgl);

Text Message tnmsg2 = s.createText Message("sone other group's data");
tneg2. set Stri ngProperty(groupKey, "B");
sender. send(t nmsg2);

Text Message tnmsg3 = s.createText Message("nore data for group 'A");
tnsg3. set Stri ngProperty(groupKey, "A");
sender. send(t nmsg3);

The examples above send two groups worth of messages to the queue created in the previous example.
Two messages belong to group "A", and one belongs to group "B". Note that it is not necessary to
complete sending one group's messages before starting another. Also note that there is no need to indicate
to the broker when a new group is created or an existing group retired - the broker tracks group state
automatically.

1.17.3. Receiving Grouped Messages

Since the broker enforces group policy when delivering messages, no special actions are necessary for
receiving grouped messages from the broker. However, applications must adhere to the rules for message
group consumption as described in the AMQP Messaging Broker user's guide.

Chapter 2. The .NET Binding for the C+
+ Messaging Client

The .NET Binding for the C++ Qpid Messaging Client is a library that gives any .NET program access
to Qpid C++ Messaging objects and methods.

2.1. .NET Binding for the C++ Messaging Client
Component Architecture

o +
| Dot net exanpl es |
| Managed C# |
Fommm o - Fom e e e e oo o Fomm - - +

I
\
Fom e e e e e ea - +

| org.apache. gpi d. nessagi ng. |

I

I

I

| .NET Managed Cal |l back | |
I

| sessionreceiver.dll | |
I

I

Fom e e e e e o F- - -+
I

managed Y Y
(. NET) R +
srririiririiiiiiiriiiit| O NET Binding Library [roororrr:
unmanaged | org.apache. qpi d. messaging.dl |l |
(Native W n32/64) R Fo - +

o a o +

|
I
| Native exanpl es]| |
| Unmanaged C++ | |
I
I

| QPID Messaging C++ Libraries |
| qgpid*.dll gnf*.dll |

S oo o +

Thisdiagram illustrates the code and library components of the binding and the hierarchical relationships
between them.

Table 2.1. .NET Binding for the C++ Messaging Client Component Ar chitecture

Component Name Component Function
QPID Messaging C++ Libraries The QPID Messaging C++ core run time system

35

The .NET Binding for the
C++ Messaging Client

Component Name Component Function

Unmanaged C++ Example Source Programs Ordinary C++ programs that illustrate using gpid/
cpp Messaging directly in a native Windows
environment.

.NET Messaging Binding Library The .NET Messaging Binding library provides

interoprability between managed .NET programs
and the unmanaged, native Qpid Messaging C+
+ core run time system. .NET programs create a
Reference to this library thereby exposing all of
the native C++ Messaging functionality to programs
written in any .NET language.

.NET Messaging Managed Callback Library An extension of the .NET Messaging Binding
Library that provides message callbacks in a
managed .NET environment.

Managed C# .NET Example Source Programs Various C# example programs that illustrate
using .NET Binding for C++ Messaginginthe NET
environment.

2.2. .NET Binding for the C++ Messaging Client
Examples

Thischapter describesthe various sample programsthat areavailabletoillustrate common Qpid Messaging
usage.

Table 2.2. Example: Client - Server

Example Name Example Description

csharp.example.server Creates a Receiver and listens for messages. Upon
message reception the message content is converted
to upper case and forwarded to the received
message's ReplyTo address.

csharp.example.client Sends a series of messages to the Server and
printsthe original message content and the received
message content.

Table 2.3. Example: Map Sender —Map Receiver

Example Name Example Description

csharp.map.receiver Creates a Receiver and listens for a map message.
Upon message reception the message is decoded
and displayed on the console.

csharp.map.sender Createsamap message and sendsit to map.receiver.
The map message contains values for every
supported .NET Messaging Binding data type.

36

The .NET Binding for the
C++ Messaging Client

Table 2.4. Example: Spout - Drain

Example Name

Example Description

csharp.example.spout

Spout is a more complex example of code that
generates a series of messages and sends them
to peer program Drain. Flexible command line
arguments allow the user to specify a variety of
message and program options.

csharp.example.drain

Drain is a more complex example of code that
receives a series of messages and displays their
contents on the console.

Table 2.5. Example: Map Callback Sender — Map Callback Receiver

Example Name

Example Description

csharp.map.callback.receiver

Creates a Receiver and listens for a map message.
Upon message reception the message is decoded
and displayed on the console. This example
illustrates the use of the C# managed code callback
mechanism provided by .NET Messaging Binding
Managed Callback Library.

csharp.map.callback.sender

Creates a map message and sends it to
map_receiver. The map message contains values
for every supported .NET Messaging Binding data

type.

Table 2.6. Example - Declare Queues

Example Name

Example Description

csharp.example.declare_queues

A program to illustrate creating objects on abroker.
This program creates a queue used by spout and
drain.

Table 2.7. Example: Direct Sender - Direct Receiver

Example Name

Example Description

csharp.direct.receiver

Creates a Receiver and listens for a messages.
Upon message reception the message is decoded
and displayed on the console.

csharp.direct.sender

Creates a series of messages and sends them to
csharp.direct.receiver.

Table 2.8. Example: Hello World

Example Name

Example Description

csharp.example.helloworld

A program to send a message and to receive the
same message.

37

The .NET Binding for the
C++ Messaging Client

2.3. .NET Binding Class Mapping to Underlying
C++ Messaging API

This chapter describes the specific mappings between classes in the .NET Binding and the underlying C
++ Messaging API.

2.3.1. .NET Binding for the C++ Messaging API Class:
Address

Table 2.9. .NET Binding for the C++ Messaging API Class. Address

.NET Binding Class: Address

Language |Syntax
C++ class Address
NET public ref class Address

Constructor
C++ Address();
.NET public Address();

Constructor
C++ Address(const std::string& address);
.NET public Address(string address);

Constructor
C++ Address(const std::string& name, const std::string& subject, const

gpid::types::Variant::Map& options, const std::string& type="");
NET public Address(string name, string subject, Dictionary<string, object> options);
.NET public Address(string name, string subject, Dictionary<string, object> options, string type);
Copy constructor

C++ Address(const Address& address);
.NET public Address(Address address);

Destructor
C++ ~Address();
NET ~Address();

Finalizer
C++ n/a
.NET IAddress();
Copy assignment operator
C++ Address& operator=(const Address&);
.NET public Address op_Assign(Address rhs);
Property: Name

C++ const std::string& getName() const;

38

The .NET Binding for the
C++ Messaging Client

.NET Binding Class: Address

Language |Syntax

C++ void setName(const std::string&);
.NET public string Name { get; set; }
Property: Subject
C++ const std::string& getSubject() const;
C++ void setSubject(const std::string&);
.NET public string Subject { get; set; }
Property: Options

C++ const gpid::types::Variant::Map& getOptions() const;
C++ gpid::types::Variant::Map& getOptions();
C++ void setOptions(const gpid::types::Variant::Map&);
NET public Dictionary<string, object> Options{ get; set; }

Property: Type
C++ std::string getType() const;
C++ void setType(const std::string&);
.NET public string Type { get; set; }

Miscellaneous
C++ std::string str() const;
NET public string ToStr();

Miscellaneous
C++ operator bool() const;
NET n/a

Miscellaneous
C++ bool operator !() const;
NET n/a

2.3.2. .NET Binding for the C++ Messaging API Class:
Connection

Table 2.10. .NET Binding for the C++ Messaging API Class: Connection

.NET Binding Class. Connection

Language |Syntax
C++ class Connection : public gpid::messaging::Handle<Connectionlmpl>
NET public ref class Connection

Constructor
C++ Connection(Connectionlmpl* impl);
NET na

Constructor

39

The .NET Binding for the
C++ Messaging Client

.NET Binding Class: Connection

Language |Syntax
C++ Connection();
.NET n‘a

Constructor
C++ Connection(const std::string& url, const gpid::itypes:Variant::Map& options =

gpid::types::Variant::Map());

.NET public Connection(string url);
NET public Connection(string url, Dictionary<string, object> options);

Constructor
C++ Connection(const std::string& url, const std::string& options);
.NET public Connection(string url, string options);

Copy Constructor

C++ Connection(const Connection&);
.NET public Connection(Connection connection);

Destructor
C++ ~Connection();
.NET ~Connection();

Finalizer
C++ n/a
NET IConnection();
Copy assignment operator
C++ Connection& operator=(const Connection&);
.NET public Connection op_Assign(Connection rhs);
Method: SetOption
C++ void setOption(const std::string& name, const gpid::types::Variant& value);
.NET public void SetOption(string name, object value);
Method: open
C++ void open();
.NET public void Open();
Property: isOpen
C++ bool isOpen();
.NET public bool 1sOpen { get; }
Method: close
C++ void close();
.NET public void Close();
Method: createTransactional Session

C++ Session createT ransactional Session(const std::string& name = std::string());
.NET public Session CreateTransactional Session();

40

The .NET Binding for the
C++ Messaging Client

.NET Binding Class: Connection
Language |Syntax
.NET public Session CreateTransactional Session(string name);

Method: createSession
C++ Session createSession(const std::string& name = std::string());
.NET public Session CreateSession();
.NET public Session CreateSession(string name);
Method: getSession

C++ Session getSession(const std::string& name) const;
.NET public Session GetSession(string name);

Property: AuthenticatedUsername
C++ std::string getAuthenticatedUsername();
.NET public string GetA uthenticatedUsername();

2.3.3. .NET Binding for the C++ Messaging API Class:
Duration

Table2.11. .NET Binding for the C++ Messaging API Class: Duration

.NET Binding Class: Duration

Language |Syntax
C++ class Duration
.NET public ref class Duration

Constructor
C++ explicit Duration(uint64_t milliseconds);
.NET public Duration(ulong mS);

Copy constructor

C++ n/a
NET public Duration(Duration rhs);

Destructor
C++ default
.NET default

Finalizer
C++ n/a
NET default
Property: Milliseconds

C++ uint64_t getMilliseconds() const;
.NET public ulong Milliseconds { get; }

Operator: *
C++ Duration operator* (const Duration& duration, uint64_t multiplier);

41

The .NET Binding for the
C++ Messaging Client

.NET Binding Class; Duration

Language

Syntax

.NET

public static Duration operator * (Duration dur, ulong multiplier);

NET

public static Duration Multiply(Duration dur, ulong multiplier);

C++

Duration operator* (uint64_t multiplier, const Duration& duration);

.NET

public static Duration operator * (ulong multiplier, Duration dur);

.NET

public static Duration Multiply(ulong multiplier, Duration dur);

Constants

C++

static const Duration FOREVER;

C++

static const Duration IMMEDIATE;

C++

static const Duration SECOND;

C++

static const Duration MINUTE;

.NET

public sealed class DurationConstants

.NET

public static Duration FORVER,;

.NET

public static Duration IMMEDIATE;

NET

public static Duration MINUTE;

.NET

public static Duration SECOND;

2.3.4. .NET Binding for the C++ Messaging API Class:
FailoverUpdates

Table2.12. NET Binding for the C++ Messaging API Class: Failover Updates

.NET Binding Class. Failover Updates

Language |Syntax
C++ class FailoverUpdates
.NET public ref class FailoverUpdates

Constructor
C++ FailoverUpdates(Connection& connection);
.NET public FailoverUpdates(Connection connection);

Destructor
C++ ~FailoverUpdates();
.NET ~FailoverUpdates();

Finalizer

C++ n/a
.NET IFailoverUpdates();

42

The .NET Binding for the
C++ Messaging Client

2.3.5. .NET Binding for the C++ Messaging API Class:

Message
Table2.13. .NET Binding for the C++ Messaging API Class. Message
.NET Binding Class. M essage

Language |Syntax
C++ class Message
NET public ref class Message

Constructor
C++ Message(const std::string& bytes = std::string());
.NET Message();
.NET M essage(System:: String » theStr);
.NET M essage(System::Object theValue);
.NET M essage(array<System::Byte> " bytes);

Constructor
C++ Message(const char*, size t);
.NET public Message(byte]] bytes, int offset, int size);

Copy constructor
C++ M essage(const Messages);
NET public Message(M essage message);
Copy assignment operator

C++ Message& operator=(const Message&);
NET public Message op_Assign(Message rhs);

Destructor
Ct++ ~Message();
NET ~Message();

Finalizer
C++ n/a
NET IMessage()
Property: ReplyTo
C++ void setReplyTo(const Address&);
C++ const Address& getReplyTo() const;
.NET public Address ReplyTo { get; set; }
Property: Subject
C++ void setSubject(const std::string&);
C++ const std::string& getSubject() const;
.NET public string Subject { get; set; }
Property: ContentType

C++ void setContentType(const std::string&);

43

The .NET Binding for the
C++ Messaging Client

.NET Binding Class. M essage

Language |Syntax

C++ const std::string& getContentType() const;
.NET public string ContentType { get; set; }
Property: Messageld
C++ void setMessagel d(const std::string&);
C++ const std::string& getMessagel d() const;
NET public string Messageld { get; set; }
Property: Userld
C++ void setUserld(const std::string&);
C++ const std::string& getUserld() const;
.NET public string Userld { get; set; }
Property: Correlationld
C++ void setCorrelationld(const std::string&);
C++ const std::string& getCorrelationld() const;
.NET public string Correlationld { get; set; }
Property: Priority
C++ void setPriority(uint8_t);
C++ uint8_t getPriority() const;
.NET public byte Priority { get; set; }
Property: Ttl
C++ void setTtl(Duration ttl);
C++ Duration getTtl() const;
NET public Duration Ttl { get; set; }
Property: Durable
C++ void setDurable(bool durable);
C++ bool getDurable() const;
.NET public bool Durable { get; set; }
Property: Redelivered
C++ bool getRedelivered() const;
C++ void setRedelivered(boal);
.NET public bool Redelivered { get; set; }
Method: SetProperty
C++ void setProperty(const std::string&, const gpid::types::Variant&);
.NET public void SetProperty(string name, object value);
Property: Properties
C++ const gpid::types::Variant::Map& getProperties() const;
C++ gpid::types::Variant::Map& getProperties();
.NET public Dictionary<string, object> Properties { get; set; }

The .NET Binding for the
C++ Messaging Client

.NET Binding Class. M essage

Language |Syntax

Method: SetContent

C++ void setContent(const std::string&);
C++ void setContent(const char* chars, size t count);
.NET public void SetContent(byte[] bytes);
.NET public void SetContent(string content);
.NET public void SetContent(byte[] bytes, int offset, int size);
Method: GetContent
C++ std::string getContent() const;
.NET public string GetContent();
.NET public void GetContent(bytel] arr);
NET public void GetContent(Collection<object> __ pl);
.NET public void GetContent(Dictionary<string, object> dict);
Method: GetContentPtr
C++ const char* getContentPtr() const;
NET na
Property: ContentSize
C++ size t getContentSize() const;
.NET public ulong ContentSize { get; }
Struct: EncodingException
C++ struct EncodingException : gpid::types::Exception
NET n/a
Method: decode
C++ void decode(const Message& message, gpid::types::Variant::Map& map, const std::string&
encoding = std::string());
C++ void decode(const Message& message, qpid::types::Variant::List& list, const std::string&
encoding = std::string());
NET n/a
Method: encode
C++ void encode(const gpid::types::Variant::Map& map, Message& message, const std::string&
encoding = std::string());
C++ void encode(const gpid::types::Variant::List& list, Message& message, const std::string&
encoding = std::string());
NET n/a
Method: AsString
C++ n/a
.NET public string AsString(object obj);
.NET public string ListAsString(Collection<object> list);
NET public string MapAsString(Dictionary<string, object> dict);

45

The .NET Binding for the
C++ Messaging Client

2.3.6. .NET Binding for the C++ Messaging API Class:
Receiver

Table2.14. NET Binding for the C++ Messaging API Class. Recelver

.NET Binding Class. Receiver

Language |Syntax
C++ class Receiver
NET public ref class Receiver

Constructor
.NET |Constructed object is returned by Session.CreateReceiver

Copy constructor
C++ Receiver(const Receiver&);
.NET public Receiver(Receiver receiver);
Destructor
C++ ~Receiver();
NET ~Receiver();
Finalizer
C++ n/a
NET IReceiver()
Copy assignment operator

C++ Receiver& operator=(const Receiver&);
.NET public Receiver op_Assign(Receiver rhs);

Method: Get
C++ bool get(Message& message, Duration timeout=Duration::FOREVER);
.NET public bool Get(Message mmsgp);
.NET public bool Get(Message mmsgp, Duration durationp);

Method: Get
C++ Message get(Duration timeout=Duration::FOREVER);
.NET public Message Get();
.NET public Message Get(Duration durationp);

Method: Fetch
C++ bool fetch(Message& message, Duration timeout=Duration::FOREVER);
.NET public bool Fetch(Message mmsgp);
.NET public bool Fetch(Message mmsgp, Duration duration);
Method: Fetch
C++ Message fetch(Duration timeout=Duration::FOREVER);
.NET public Message Fetch();
.NET public Message Fetch(Duration durationp);
Property: Capacity

46

The .NET Binding for the
C++ Messaging Client

.NET Binding Class: Receiver

Language |Syntax
C++ void setCapacity(uint32_t);
C++ uint32_t getCapacity();
NET public uint Capacity { get; set; }

Property: Available
C++ uint32_t getAvailable();
NET public uint Available{ get; }

Property: Unsettled
C++ uint32_t getUnsettled();
.NET public uint Unsettled { get; }

Method: Close

C++ void close();
.NET public void Close();

Property: 1sClosed
C++ bool isClosed() const;
.NET public bool IsClosed { get; }

Property: Name
C++ const std::string& getName() const;
NET public string Name{ get; }
Property: Session

C++ Session getSession() const;
.NET public Session Session { get; }

2.3.7. .NET Binding for the C++ Messaging API Class:
Sender

Table 2.15. .NET Binding for the C++ Messaging API Class. Sender

.NET Binding Class: Sender

Language |Syntax
C++ class Sender
NET public ref class Sender

Constructor
.NET |Constructed object is returned by Session.CreateSender

Copy constructor

C++ Sender(const Sender&);
.NET public Sender(Sender sender);

Destructor
C++ |~Sender();

47

The .NET Binding for the
C++ Messaging Client

.NET Binding Class. Sender

Language |Syntax
NET ~Sender();
Finalizer
C++ n/a
NET ISender()
Copy assignment operator
C++ Sender& operator=(const Sender&);
.NET public Sender op_Assign(Sender rhs);
Method: Send
C++ void send(const Message& message, bool sync=false);
NET public void Send(Message mmsgp);
.NET public void Send(Message mmsgp, bool sync);
Method: Close

C++ void close();
NET public void Clos&();

Property: Capacity
C++ void setCapacity(uint32_t);
C++ uint32_t getCapacity();
.NET public uint Capacity { get; set; }

Property: Available
C++ uint32_t getAvailable();
.NET public uint Available{ get; }

Property: Unsettled
C++ uint32_t getUnsettled();
.NET public uint Unsettled { get; }

Property: Name
C++ const std::string& getName() const;
NET public string Name{ get; }
Property: Session

C++ Session getSession() const;
.NET public Session Session { get; }

48

The .NET Binding for the
C++ Messaging Client

2.3.8. .NET Binding for the C++ Messaging API Class:

Session
Table 2.16. .NET Binding for the C++ Messaging API Class. Session
.NET Binding Class. Session
Language |Syntax
C++ class Session
NET public ref class Session
Constructor

.NET |Constructed object is returned by Connection.CreateSession

Copy constructor
C++ Session(const Session&);
.NET public Session(Session session);

Destructor
C++ ~Session();
NET ~Session();
Finalizer
C++ n/a
NET ISession()
Copy assignment operator
C++ Session& operator=(const Session&);
.NET public Session op_Assign(Session rhs);
Method: Close

C++ void close();
.NET public void Close();

Method: Commit
C++ void commit();
.NET public void Commit();

Method: Rollback
C++ void rollback();
NET public void Rollback();

Method: Acknowledge
C++ void acknowledge(bool sync=false);
C++ void acknowledge(Message& , bool sync=false);
NET public void Acknowledge();
NET public void Acknowledge(bool sync);
.NET public void Acknowledge(Message __ pl);
.NET public void Acknowledge(Message p1, bool _ p2);
Method: Reject

49

The .NET Binding for the
C++ Messaging Client

.NET Binding Class: Session

Language |Syntax
C++ void reject(Message&);
NET public void Reject(Message _ pl);
Method: Release
C++ void rel ease(Message&);
.NET public void Release(Message pl);
Method: Sync
C++ void sync(bool block=true);
.NET public void Sync();
.NET public void Sync(bool block);
Property: Receivable
C++ uint32_t getReceivable();
.NET public uint Receivable { get; }
Property: UnsettledAcks
C++ uint32_t getUnsettledAcks();
NET public uint UnsetledAcks{ get; }
Method: NextReceiver
C++ bool nextReceiver(Receiver&, Duration timeout=Duration:;:FOREVER);
.NET public bool NextReceiver(Receiver rcvr);
.NET public bool NextReceiver(Receiver rcvr, Duration timeout);
Method: NextReceiver
C++ Receiver nextReceiver(Duration timeout=Duration::FOREVER);
.NET public Receiver NextReceiver();
.NET public Receiver NextReceiver(Duration timeout);
Method: CreateSender
C++ Sender createSender(const Address& address);
.NET public Sender CreateSender(Address address);
Method: CreateSender
C++ Sender createSender(const std::string& address);
.NET public Sender CreateSender(string address);
Method: CreateReceiver
C++ Receiver createReceiver(const Address& address);
.NET public Receiver CreateReceiver(Address address);
Method: CreateReceiver
C++ Receiver createReceiver(const std::string& address);
.NET public Receiver CreateReceiver(string address);
Method: GetSender
C++ Sender getSender(const std::string& name) const;

50

The .NET Binding for the
C++ Messaging Client

.NET Binding Class: Session

Language |Syntax

.NET public Sender GetSender(string name);

Method: GetReceiver
C++ Receiver getReceiver(const std::string& name) const;
.NET public Receiver GetReceiver(string name);

Property: Connection

C++ Connection getConnection() const;
NET public Connection Connection { get; }
Property: HasError

C++ bool hasError();
.NET public bool HasError { get; }

Method: CheckError
C++ void checkError();
.NET public void CheckError();

2.3.9. .NET Binding Class: SessionReceiver

The SessionReceiver class provides a convenient callback mechanism for Messages received by all
Receivers on agiven Session.

usi ng Org. Apache. Qpi d. Messagi ng;
usi ng System

nanespace O g. Apache. Qi d. Messagi ng. Sessi onRecei ver

{
public interface | Sessi onReceiver
{
voi d Sessi onRecei ver (Recei ver receiver, Message nessage);
}
public class Call backServer
{
public Call backServer (Session session, |SessionReceiver call back);
public void O ose();
}
}

To use this class a client program includes references to both Org.Apache.Qpid.Messaging and
Org.Apache.Qpid.Messaging.SessionReceiver. The calling program createsafunction that implementsthe
| SessionReceiver interface. Thisfunction will be called whenever message isreceived by the session. The
callback processis started by creating a CallbackServer and will continue to run until the client program
calls the CallbackServer.Close function.

51

The .NET Binding for the
C++ Messaging Client

A complete operating example of using the SessionReceiver callback is contained in cpp/bindings/qpid/
dotnet/exampl es/csharp.map.callback.receiver.

52

