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References

I will report mainly on two works about spherical Whittaker functions on metaplectic
groups.

• Weyl Group Multiple Dirichlet Series: Type A Combinatorial Theory by
Brubaker, Bump and Friedberg (Annals of Mathematics Studies, 2011).

• Metaplectic Ice by Brubaker, Bump, Friedberg, Chinta and Gunnells.

A complete picture for just the spherical Whittaker function would also include the very
different approach by Chinta and Gunnells, work of Peter McNamara, Chinta and Offen.

Recent work on Iwahori Whittaker functions includes recent work of Brubaker, Bump
and Licata (n = 1) and of Chinta, Gunnells and Puskás (n > 1). This too is combinatori-
ally interesting, much richer than the spherical case. The main new feature is the appear-
ance of Demazure operators which, in the metaplectic case are related to the Kazhdan-
Patterson-Chinta-Gunnells action of the Weyl group. We will not report on this today.
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The Whittaker Function as a Combinatorial Object

Let F be a nonarchimedean local field, o, p the integers and its maximal ideal, p a fixed
generator of p, and q= |o/p|.

Spherical Whittaker functions on a split reductive p-adic group G(F ) are in a sense

well-understood. Let Ĝ be the Langlands dual group. Then G and Ĝ contain maximal

tori T and T̂ that are in duality. Let Λ = X∗(T̂ ), the weight lattice in Ĝ. If λ ∈ Λ is a
dominant weight then λ indexes the following data:

• An element tλ of T (F ) determined modulo T (o),

• A finite dimensional representation of Ĝ(C) with character χλ, highest weight λ.

If z ∈ T̂ (C), then z indexes:

• A representation of G(F ) and its Whittaker function.

The Casselman-Shalika formula asserts

W (tλ)=
∏

α∈∆+

(1− q−1z−α)χλ(z).

(The usual normalization would have 1− q−1zα but this is more convenient for us.)

If F contains the n-th roots of unity we may consider instead a Whittaker function on the
n-fold metaplectic cover G̃(F ). Then W (tλ) is a very intersting combinatorial object.
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The Weyl Character Formula

Let Ĝ(C) be a complex reductive Lie group, realized as an affine algebraic group. Let T̂
be a maximal split torus, and z ∈ T̂ (C). Let P =X∗(T̂ ) be the weight lattice. Let λ be a

dominant weight and let χλ be the irreducible character of Ĝ(C) with highest weight λ.
By the Weyl character formula

∏

α∈∆

(1− z−α)χλ(z)=
∑

w∈W

(− 1)l(w)zw(λ+ρ)−ρ

(

ρ=
1

2

∑

α∈∆+

α

)

The Casselman-Shalika Formula (n=1 case).

The Casselman-Shalika formula again:

W (tλ)=

{

∏

α∈∆ (1− q−1z−α)χλ(z) if λ is dominant,

0 otherwise.

Compare this with the Weyl character formula. The product
∏

α∈∆ (1− q−1zα) is
a deformation of the Weyl denominator

∏

α∈∆

(1− z−α)=
∑

w∈W

(− 1)l(w)zw(ρ)−ρ.

The CS formula is a deformation of the Weyl character formula.
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Tokuyama’s deformation of the WCF

The Weyl character formula has a deformation (Tokuyama, 1988) that exactly matches
the Casselman-Shalika formula. It produces, with t a parameter

∏

α∈∆+

(1− tz−α)χλ(z).

Tokuyama expressed this as a sum over strict Gelfand-Tsetlin patterns with shape λ + ρ.
There are different ways of expressing his result.

• As a sum over the Kashiwara crystal Bλ+ρ.

• As the partition function of an (ice type) solvable lattice model.

Both versions generalize to a formula for metaplectic Whittaker functions.
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Gauss sums

Let o be the ring of integers in F , p its maximal ideal, so q= |o/p|. The Gauss sum

g(m, c)=
∑

d mod c

(

d

c

)

n

ψ

(

dm

c

)

where
(

d

c

)

n
is the n-th power residue symbol and ψ: o/p� C is a fixed nontrivial addi-

tive character. If p is a fixed generator of p:

g(a)= q−ag(pa−1, pa), h(a)= q−ag(pa, pa).

Properties

If n> 2, the Gauss sums are mysterious but the following properties are enough for us.

Periodic: g(a+n)= g(a), h(a+n)=h(a)

If n ∤ a: h(a)= 0, |g(a)|= q−1/2. If n|a+ b then g(a)g(b)= q−1

g(a+ b)h(a)h(b)=h(a+ b)g(a)g(b)+h(a+ b)g(a+ b).

The case n=1

If n=1, g(a)=− q−1, h(a)= 1− q−1

.
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Crystals (Kashiwara)

The Kashiwara crystal Bλ in type Ar is a directed graph with labeled edges and vertices
semistandard Young tableaux (SSYT) of shape λ. Here λ∈Λ is a dominant weight.

If v1

i
w is an edge we write w= fiv or v= eiw. In this case wt(w) =wt(v)−αi where αi

is the i-th simple root. There is a unique highest weight vector vλ with wt(vλ)=λ.

1 1

2

1 2

2

1 3

2

1 3

3

1 1

3

1 2

3

2 2

3

2 3

3

vλ, λ = (2, 1, 0) We will use this color scheme for A2 crystals:

v� w means v1
1

w

v� w means v1

1
w

There is a weight function wt:Bλ� Λ and
∑

zwt(v)= χλ(v). Thus Bλ is a combinatorial

analog of the irreducible representation πλ of Ĝ
with highest weight λ.
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String Patterns (Berenstein, Zelevinsky, Littelmann)

For example if n = 2 and λ = (2, 1, 0). Traditionally the vertices are Semistandard Young
Tableaux (SSYT) of shape λ but they can also be parametrized by Gelfand-Tsetlin Pat-
terns (GTP) with top row λ or string patterns (BZL). The BZL patterns are important
for us so we review them. We fix a special word si1si2si3
 sN representing the long Weyl
group element, N =

1

2
r(r+1). We either (i1, i2,
 , iN)=ΩΓ or Ω∆,

ΩΓ=(1, 2, 1, 3, 2, 1, 4, 3, 2, 1,
 ), Ω∆=(r, r− 1, r, r− 2, r− 1, r− 2,
 ).

Beginning at v ∈ Bλ, we walk to the highest weight vector vλ using the raising oper-

ators the directions ei1, ei2, 
 . That is, let b1 be the largest integer such that ei1
b1v � 0.

Then let ei2 be the largest integer such that ei2
b2ei1

b1v � 0. Finally eiN
bN


 ei1
b1v= vλ.

We put the distances into an array:

BZLΓ(v)=













bN 
 bN−r+1

� �

b6 b5 b4
b3 b2
b1













(or BZL∆(v)).
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Example

For example, consider the marked vertex, which is actually the tableau v=
1 1 2 3 3

2 2
.

(We have labeled the vertices of this crystal, Bλ with λ=(5, 2, 0) by their BZL patterns.)

00
0

00
1

00
2

00
3

11
0

11
1

11
2

22
1

33
0

43
0

43
1

53
0

53
1

53
2

32
0

32
1

32
2

42
0

42
1

42
2

42
3

21
0

21
1

21
2

21
3

31
0

31
1

31
2

31
3

31
4

10
0

10
1

10
2

10
3

10
4

20
0

20
1

20
2

20
3

20
4

20
5

22
0

22
1

Then b1, b2, b3 are the lengths
of the three segments of the
path from v to vλ, so
(

b3 b2
b1

)

=

(

2 2
1

)

.

Actually we will decorate
BZL(v) by boxing or circling
certain entries. In this case
the decorated pattern is
(

2 2
1

)

. We will explain the

boxing and circling rules
below.
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Circling

Littelmann proved that if

BZL(v)=









� � �

b6 b5 b4
b3 b2
b1









the entries in each row are increasing. Thus if a row is

bl 
 bk+1 bk

we have bk > bk+1> 
 > bl > 0. If any of these inequalities is not strict, that is if bi = bi+1

or (when i= l) if bi=0 then we circle bi.

Boxing

Let vk = eik−1

bk−1


 ei1
b1v. If fikvk is nil then we box bk. Concretely this means that the

sequence vk, eikvk, eik
2 vk,
 , eik

bkvk is an entire root string within the crystal.

Hence in the example v1= v. We box b1=1.

Also we circle b2 since b2= b3:

BZL(v)=





2 2
1




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The Meaning of Circling and Boxing

Kashiwara defined an infinite crystal B∞. It has a unique highest weight vector with
weight 0. By tensoring it with a crystal Tλ having a unique element of weight λ, we may
arrange that the highest weight is λ.

Using the string (BZL) patterns, Littelmann showed (in Type A) that B∞ may be identi-
fied with the cone of patterns:













bN 
 bN−r+1

� �

b6 b5 b4
b3 b2
b1













,

06 bN 6
 6 bN−r+1

�

06 b66 b56 b4
06 b36 b2
06 b1

N =
1

2
r(r+1)= |∆+|

Now we may recognize the boundary as consisting of the facets of this cone determined by
the strict equalities b1=0, b2= b3, b3=0, etc.

We think of B∞ and any subcrystal as an integer polytope.

B∞ is the crystal of U(n+) where n+ is the maximal nilpotent subalgebra of sl(r+1).

Similarly there is a crystal (not in Category O) B−∞ of U(n−) with 0 as its lowest weight.
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Two embeddings
Embed Bλ+ρ (green) into B∞⊗Tλ+ρ (extending downwards)

0 0
0

0 0
1

1 1
0

1 2
0

0 1
0

0 1
1

0 1
2

1 2
1

0 0
2

0 0
3

1 1
1

0 0
4

1 1
2

2 2
0

1 3
0

0 2
0

0 3
0

0 2
1

0 4
0

0 3
1

0 2
2

0 1
3

upper boundary: circles

lower boundary: boxes

Similarly, we may embed Bλ+ρ into B−∞ ⊗ Tw0(λ+ρ). This is not drawn above, but corre-

sponds to the gray shaded area (extending upwards).

Thus Bλ+ρ may be identified with the integer points in the intersection of two polyhedral
cones. If a vertex lies on the boundary of one cone, the entry whose value causes it to be
on the boundary is circled. If it lies on the boundary of the other cone, the entry whose
value causes it to be on the boundary is boxed.
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Tokuyama’s Formula: Crystal Version

Tokuyama’s formula may be expressed as a sum over Bλ+ρ.
∏

α∈∆+

(1− tz−α)χλ(z)=
∑

v∈Bλ+ρ

G(v)zρ−w0(wt(v)), w0= long element of W.

00
0

00
1

00
2

00
3

11
0

11
1

11
2

22
1

33
0

43
0

43
1

53
0

53
1

53
2

32
0

32
1

32
2

42
0

42
1

42
2

42
3

21
0

21
1

21
2

21
3

31
0

31
1

31
2

31
3

31
4

10
0

10
1

10
2

10
3

10
4

20
0

20
1

20
2

20
3

20
4

20
5

22
0

22
1

G(v)=

∏

bi∈BZL(v)















h(bi) usually
g(bi) bi boxed
1 bi circled
0 boxed and circled

If n=1,

g(b)=− q−1

h(b)= 1− q−1

BZLΓ(v)=
2 2
1 ,

GΓ(v)= g(1) · q−2 ·h(2)

Change g and h to Gauss sums
to get metaplectic Whittaker fn.
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Two Words, Two Problems

Recall that we defined

ΩΓ=(1, 2, 1, 3, 2, 1, 4, 3, 2, 1,
 ), Ω=(r, r− 1, r, r− 2, r− 1, r− 2,
 ),

and either could be used in defining BZL(v). Problem 1: to prove

Theorem 1. (Brubaker, Bump, Friedberg) We have

∑

v∈Bλ+ρ

GΓ(v)z
wt(v)=

∑

v∈Bλ+ρ

G∆(v)z
wt(v).

• This equals
∏

α∈∆+

(1− q−1z−nα)W (tλ), the metaplectic Whittaker function.

• In fact we could use any reduced word for the long Weyl group element w0 and try
to make this definition. However only for these two particular words do we have
such a simple description.

• The equality of these two expressions is a combinatorially deep.

Problem 2 is to prove transformation properties of
∑

v∈Bλ+ρ

GΓ(v) for the Weyl group

action on z. For n=1 (Tokuyama) this is the symmetry of Schur functions.
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About Theorem 1
∑

v∈Bλ+ρ

GΓ(v)z
wt(v)=

∑

v∈Bλ+ρ

G∆(v)z
wt(v).

It is often true that

GΓ(v)=G∆(v).

If v is in the interior of the crystal (interpreted as the set of lattice points in a convex
polytope, that is, if boxing and circling don’t occur, then GΓ(v) = G∆(v). It is even usu-
ally true if v is on the boundary.

However for certain cases, the sum is definitely necessary. It is enough to prove:

∑

v∈Bλ+ρ

wt(v)=µ

GΓ(v)=
∑

v∈Bλ+ρ

wt(v)=µ

G∆(v).

To accomplish this it may be necessary to combine different v in the same weight space
and make use of Gauss sum identities. This can be checked in any given case but the pat-
tern is chaotic as the possible.
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An Example
Let us consider the A2 crystal Bλ+ρ where λ+ ρ=(7, 5, 0). For most v ∈Bλ+ρ we have

GΓ(v)=G∆(v).

This is true for 69 out of the 81 elements of the crystal.

But consider the elements v of weight µ=(4, 5, 3). There are three:

v1=
1 1 1 1 2 3 3

2 2 2 2 3
, v2=

1 1 1 1 2 2 3

2 2 2 3 3
, v3=

1 1 1 1 2 2 3

2 2 2 2 2
.

We have

GΓ(v2)=G∆(v2)=h(1)h(2)h(3)

However this fails for v1 and v3 which must be considered a “packet” not to be subdivided.

v BZLΓ(v) GΓ(v)

v1

2 3
1

g(2)h(3)g(1)

v2

0 3
3

h(3)2

v BZL∆(v) G∆(v)

v1

1 3
2

h(1)g(3)h(2)

v2

3 3
0

h(3)g(3)

g(2)h(3)g(1)+h(3)2=h(1)g(3)h(2)+h(3)g(3).

This identity is needed. Both sides vanish unless n=1 or 3.
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Ice Models

There is another approach to metaplectic Whittaker functions based on the six-vertex
model of statistical physics. We will describe a statistical mechanical model S. It has a
set S(S) of states, and for each state v ∈ S(S) a Boltzmann weight G(v). The parti-
tion function is Z(S)=

∑

G(v).

Begin with a grid, usually (but not always) rectangular:

+

+

+

−

−

−

− + − +

+ + + +

Each exterior edge is assigned a fixed spin + or − . The inner edges are also assigned
spins but these will vary.
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Six Vertex Model

A state of the model is an assignment of spins to the inner edges. (The outer edges have
preassigned spins. Every vertex is assigned a set of Boltzmann weights. These depend
on the spins of the four adjacent edges. For the six-vertex model there are only six
nonzero Boltzman weights (depending on the vertex v).

+
+ +

+

a1(v)

v

−
− −

−

a2(v)

v

−

+ +

−
v

b1(v)

+

− −
+

b2(v)

v

−
+ −

+

c1(v)

v

−
+ −

+

c2(v)

v

The Boltzmann weight of the state is the product of the weights at the vertices. The
partition function is the sum over the states of the system.
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Metaplectic Ice

Brubaker, Bump, Friedberg, Chinta and Gunnells showed how to choose Boltz-
mann weights to produce the metaplectic Whittaker function. The spin on horizontally
oriented edges must be augmented by an index a which is an integer mod n. There are
two flavors of weights. First Gamma ice:

Γ

+

+ +

+
a+1 a

−

− −

−
a a

−

+ +

−
a+1 a

+

− −

+
a a

−

− +

+
a a

+

+ −

−
a+1 a

1 zi g(a) zi h(a)zi 1

Second, Delta ice:

∆

+

+ +

+
a a

−

− −

−
a a+1

−

+ +

−
a a

+

− −

+
a a+1

−

− +

+
a a

+

+ −

−
a a+1

zi zig(a) 1 zi h(a)zi 1

With suitable boundary conditions, the partition function is
∏

α∈∆+

(1− q−1z−nα)W (tλ).
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Same Problems, Different Tools

The equivalence of the two points of view is straightforward to show. There is an embed-
ding of the set of states of the statistical mechanical system into Bλ+ρ and the elements of
Bλ+ρ that are in the image of the mapping are precisely those for which G(v) is nonzero.
So the two sums are term-by term equivalent.

The statistical-mechanical view makes available a new tool: the Yang-Baxter equation.

Transfer Matrices

Given one row of ice, with Boltzmann weights S at each vertex the partition function
depends on the top row α and the bottom row β. It may be thought of as a matrix Σα,β

S .

β1 β2 β3 β4

α1 α2 α3 α4

+ −
S S S S
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Commutativity of Transfer Matrices

Now given a second set of Boltzmann weights the partition function

β1 β2 β3 β4

α1 α2 α3 α4

+ −

+ −
S S S S

T T T T

is computed from the row transfer matrices ΣS and ΣT by matrix multiplication. If it
equals the partition function of

β1 β2 β3 β4

α1 α2 α3 α4

+ −

+ −
T T T T

S S S S

for all α, β then the transfer matrices ΣS and ΣT commute.
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Yang-Baxter Equation

Baxter introduced a powerful method for proving commutativity of transfer matrices. It
may be that Boltzmann weights corresponding to a vertex R may be found such that the
partition functions:

ǫ3

ǫ2

ǫ1

δ1

δ2

δ3

R

S

T

ǫ3

ǫ2

ǫ1

δ1

δ2

δ3

R

T

S

are equal for all boundary values. This can be used to prove things like the commutativity

of ΣS and ΣT .

• Both Problem 1 and Problem 2 can be formulated in terms of commuting
transfer matrices.

• If n=1 they can be solved using Yang-Baxter equation.

• If n> 1 the results can be proved but only by other methods.
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How YBE is used

It is assumed that the only nonzero Boltzmann weight for the vertex R with ε1 = ε2 = +
has also ε3= ε4=+ , and that this Boltzmann weight is 1.

ǫ2

ǫ1

ǫ3

ǫ4

R

If so, attaching R as shown does not change the partition function (left, below).

β1 β2 β3 β4

α1 α2 α3 α4

+

+

−

−
S S S S

T T T T

R

Now use the Yang-Baxter
equation repeatedly,
which interchanges S and
T in every column.

β4β3β2β1

α4α3α2α1

−

−

+

+
TTTT

SSSS

R

Assuming the only nonzero weight with ε3= ε4=− also has ε1= ε2=− , we may now dis-
card the R-matrix and the commutativity of transfer matrices is proved.
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Back to Crystals

If n > 1 we don’t know how to use the Yang-Baxter Equation to prove Theorem 1 so we
return to crystals. We will use Gelfand-Tsetlin patterns (GTP) in place of tableaux.

1 1 2 3

2 3
corresponds to the pattern

TΓ(v)=







4 2 0
3 1

2







The i-th row from the bottom in the GT pattern is the shape of the tableau after
removing all entries > i.

Crystals admit the following operations (Lascoux and Schützenberger, Kashiwara).

• The Schützenberger involution, which interchanges the highest and lowest
weight vector, and interchanges ei with fr+1−i. It is a crystal graph automorphism.

• An action of the Weyl group. The reflection si simply reverses the i-labeled root
strings. The Weyl group operations are not graph automorphisms.

These maps have been usefully translated into GTP by Kirillov and Berenstein.
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Two Parametrizations by Gelfand Tsetlin Patterns

The Γ parametrization is not the only one we use. Recall that

1 1 2 3

2 3
corresponds to the pattern

TΓ(v)=







4 2 0
3 1

2







The i-th row from the bottom in the GT pattern is the shape of the tableau after
removing all entries > i.

It will be convenient to make use of a second parametrization

v=
1 1 1 2

3 3

� (Schützenberger)
1 1 3 3

2 3

� T∆(v)=



















4 2 0

2 1

2



















For the ∆ word, we apply the Schützenberger involution of the crystal before con-
structing the Gelfand-Tsetlin pattern by the same recipe. Alternatively use an algorithm
for the involution due Kirillov and Berenstein.
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Gelfand-Tsetlin Patterns and String (BZL) patterns

Rule for Γ word:

1 1 2 3

2 3







4 2 0
3 1

2







It is straightforward to read off BZLΓ(v) from the GT pattern: in this case it is:

(

4− 3 (4+ 2)− (3+ 1)
3− 2

)

=

(

1 2
1

)

We consider the consecutive differences between rows, accumulating from left to right.

Circling occurs when one of the entries equals the entry above it and to the left. Boxing
occurs when it equals the entry above and to the right.

1 1 1 2

3 3



















4 2 0

4 0

3



















(

4− 4 (4+2)− (4+ 0)
4− 3

)

=

(

0 2

1

)
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∆ Word:

To calculate the BZL pattern from this Gelfand-Tsetlin pattern, we use a modified algo-
rithm. We still subtract between rows, but we subtract the entry above and to the left,
and accumulate from right to left. For this reason, we will draw the BZL pattern the
mirror image of the Γ convention. (Now the rows are decreasing.)



















4 2 0

2 1

2



















(

(2+1)− (2+ 0) 1− 0
2− 1

)

=





1 1

1





Now recall Theorem 1, which we are trying to show. It is enough to show for weight µ:
∑

v∈Bλ+ρ

wt(v)=µ

GΓ(v)=
∑

v∈Bλ+ρ

wt(v)=µ

G∆(v).
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Short Patterns

Using the involution and partial involutions, it is possible to reduce to a problem involving
just three rows of the Gelfand-Tsetlin pattern. We regard the top and bottom row as
being fixed, and the middle row variable. For example, let

t=























23 15 12 5 2 0

20 12 5 4 2

14 9 5 3























.

We form a BZL array as above, using the ∆ convention for the first two rows, and the Γ
convention for the second and third row. Thus in this case we obtain

BZL∆Γ(t)=











9 4 4 4 2

6 9 9 10











, G∆Γ(t)=h(9) · 1 · 1 ·h(4)g(2)h(6)h(9)g(9)h(10).
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Reflection
We consider the top and bottom row of the pattern fixed, and the middle row subject to
variation. Given a, b in the top row and c, d in the bottom, row, with x between them:

a b

x

c d

x is constrained by the inequality min(a, c) > x > max(b, d). We reflect in this range,
replacing x by x′=min(a, c)+max(b, d). Let t′ be the resulting pattern. In the example

t=























23 15 12 5 2 0

20 12 5 4 2

14 9 5 3























t′=























23 15 12 5 2 0

18 14 9 4 0

14 9 5 3























.

Now compute the BZL patterns. In t we use ∆ convention in the first row and Γ in the
second, while in t′, these are switched.

BZL∆Γ(t)=











9 4 4 4 2

6 9 9 10











BZLΓ∆(t
′)=











5 6 9 10 12

4 4 4 3











The correspond Gauss sum contributions G∆Γ(t) and GΓ∆(t
′) are:

h(9)g(4)g(4)g(4) · 1 ·h(6)h(9)g(9)h(10), h(5)h(6)h(9)h(10)g(12) · 1 · 1 ·h(4)h(3).
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Crystal Interpretation

The meaning of these patterns is as follows:

BZL∆Γ(t)=











9 4 4 4 2

6 9 9 10











BZLΓ∆(t
′)=











5 6 9 10 12

4 4 4 3











There is an element v of Bλ+ρ such that all eiv = 0 except i= 1 and i= r. In other words,
v is a highest weight vector for the (reducible) Ar−2 crystal obtained by discarding the
edges labeled 1 and r. Now we consider two words:

ωΓ∆=(1, 2, 3,
 , r− 1, r, r− 1,
 1), ω∆Γ=(r, r− 1, r− 2,
 , 3, 2, 1, 2,
 , r).

Then we form the string patterns as before. The entries appear in the accordion arrays in
the following order:

9 4 4 4 2

6 9 9 10

5 6 9 10 12

4 4 4 3
As usual we wind up at the highest weight vector.
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Comparison

Theorem 2. (Brubaker, Bump, Friedberg) Fix the top and bottom row of a short

Gelfand-Tsetlin pattern and sum over all middle rows with fixed row sum. Then
∑

t

G∆Γ(t)=
∑

t

GΓ∆(t
′).

As was shown by Brubaker, Bump, Friedberg, Chinta and Gunnells, this formula is
exactly equivalent to the commutativity of two transfer matrices for Gamma and Delta
ice. Unfortunately, we have to prove it without the Yang-Baxter equation.

This implies Theorem 1. The phenomena discussed in that context are present here, in a
simplified form: for most t, we have term by term equality G∆Γ(t) = GΓ∆(t

′). When this
fails, the terms have to be gathered together in “packets” and nontrivial Gauss sum identi-
ties employed.
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The Snake Lemma

Let us show that if t is in the interior of crystal then G∆Γ(t)=GΓ∆(t
′).

This follows from the Snake Lemma which asserts that we may order the entries in
BZL∆Γ(t) and BZLΓ∆(t

′) in a special way. We may arrange that

BZL∆Γ(t)= {γ1, γ2,
 , γ2r−1},

BZLΓ∆(t
′)= {γ1− γ2, γ2, γ2+ γ3− γ4, γ4,
 , γ2r−2,γ2r−2+ γ2r}.

(The even entries are the same, while if k is odd, we have γk−1+ γk− γk+1.)
Now since we are in the interior there is no boxing or circling, and

G∆Γ(t)=h(γ1)h(γ2)
h(γ2r−1)=

{

(1− q−1)2r−1 if n|γ1, γ2,
 , γ2r−1

0 otherwise.

The entries in BZLΓ∆(t
′) have the same greatest common divisor, so GΓ∆(t

′) is the same.
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Illustrating the Snake Lemma

t=























23 15 12 5 2 0

20 12 5 4 2

14 9 5 3























t′=























23 15 12 5 2 0

18 14 9 4 0

14 9 5 3























.

Follow the snake: BZL∆Γ(t)=







9 4 4 4 2

6 9 9 10







BZLΓ∆(t
′)=







5 6 9 10 12

4 4 4 3







{γ1− γ2, γ2, γ2+ γ3− γ4, γ4,
 , }= {9− 4, 4, 4+ 6− 4, 4, 4+ 9− 4, 4, 4+ 9− 10, 10, 10+2}.

{γ1, γ2,
 , γ9}= {9, 4, 6, 4, 9, 4, 9, 10, 2}.
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Totally Resonant Case

Fix the top and bottom rows of a short Gelfand-Tsetlin pattern.

t=







L0 L1 L2 
 Lr−1 Lr

a0 a1 
 ar−1 ar
M1 M2 Mr−1







.

If no Li = Mi, then by a simlar argument using the Snake Lemma, we may show that
G∆Γ(t) = GΓ∆(t

′). If Li =Mi then we say there is resonance and we may expect to find
packets. We may reduce to the totally resonant case where all Li=Mi.

t=







L0 L1 L2 
 Lr−1 Lr

a0 a1 
 ar−1 ar
L1 L2 
 Lr−1







.

Now the BZL patterns have a special form:

t=

{

s φ1 φ2 
 φd
ψ1 ψ2 
 ψd

}

, φi+ ψi= s, n|s.

t′=

{

ψ1 ψ2 
 ψd s

φ1 φ2 
 φd

}

.
Now ψi is boxed or circled
if and only if φi is !
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Resotopes

The patterns now may be interpreted as lattice points in a convex polytope:

t∈ t=

{

s φ1 φ2 
 φd
ψ1 ψ2 
 ψd

}

.

We may assume that n|s since otherwise both terms vanish.
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Inclusion-Exclusion

The problem is still complex but the following may be carried out. The resotope above
may be obtained by cutting the corners off a simplex. The sum may be obtained by sum-
ming over the entire simplex and a process of Möbius inversion (inclusion-exclusion).
What is summed is over the simples is an alternating sum over signatures that describe
the boxing and circling of the φi and ψi.

a

b c

d

e f g

h

A

s−µ1=0

s−µ1=c0µ2=0

µ1−µ2=0

µ1−µ2=c1

Sum over the resotope A
is reduced to a sums over
a simplex.

Although these alternating
sums seem more complex
they are actually simpler!

After this modification the
problem may be solved.
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Conclusion

We see that the key result needed to prove Theorem 2 may be formulated in terms of
commutativity of transfer matrices for Γ and ∆ ice.

Given Theorem 2 the proof of Theorem 1 parallels the proof of the same fact using the
Yang-Baxter equation (available only when n = 1). Given a system of Γ ice, we may
change the bottom row to ∆ ice. Then use commutativity of transfer matrices to move
this row to the top, and repeat the process until done.

Γ Γ Γ Γ

Γ Γ Γ Γ

Γ Γ Γ Γ

Γ Γ Γ Γ

�

Γ Γ Γ Γ

Γ Γ Γ Γ

Γ Γ Γ Γ

∆ ∆ ∆ ∆

�

∆ ∆ ∆ ∆

Γ Γ Γ Γ

Γ Γ Γ Γ

Γ Γ Γ Γ

�

∆ ∆ ∆ ∆

Γ Γ Γ Γ

Γ Γ Γ Γ

∆ ∆ ∆ ∆

� 
�

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

If n> 1, the needed Yang-Baxter equation is not available despite serious efforts to find it.
The advantages of having it would go beyond simplification of these difficult arguments.
Drinfeld, Faddeev-Takhtajan-Reshetikhin, Majid and others has shown how solutions of
the Yang-Baxter equation gives rise to a module or family of modules in a braided cate-
gory, which can in turn be realized as the category of modules or comodules over a
quantum group. Thus Baxter’s work on the six vertex module leads to Uq(sl̂2).

Thus giving a proof of Theorem 2 using a Yang-Baxter equation could lead to interesting
new quantum groups.
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