
Moments of the Riemann Zeta Fun
tion andEisenstein Series IJennifer Beineke and Daniel BumpJune 19, 2003Abstra
tIt is shown that if the parameters of an Eisenstein series on GL(2k)are 
hosen so that its (integrated) L-fun
tion is the 2k-th moment ofthe Riemann zeta fun
tion, then the �2kk � terms in its 
onstant termagree with �2kk � fa
tors appearing in a 
onje
tural formula for the 2k-thmoment of zeta by Conrey, Farmer, Keating, Rubinstein and Snaith.When k = 1, an explanation for this phenomenon is found by dedu
-ing Oppenheim's generalization of the Vorono�� summation formulafrom the Eisenstein series and representation theoreti
 
onsiderations.The possibility of eliminating the problemati
al \arithmeti
 fa
tor" isdis
ussed.AMS Subje
t Classi�
ation: Primary 11M06, Se
ondary 11F55and 11F12.There is reason to expe
t that the 2k-th moment of the Riemann zetafun
tion 
an be related to the spe
tral theory of GL(k) or GL(2k). The workof Motohashi [27℄ supports the idea of seeking su
h an approa
h, by �ndingan expli
it formula for the fourth moment of � involving spe
ial values ofL-fun
tions of Maass 
usp forms for SL(2;Z). Still an automorphi
 atta
kon the higher moments of the zeta fun
tion has proved an elusive goal.Re
ently Conrey, Farmer, Keating, Rubinstein and Snaith [9℄ gave 
onje
-tural asymptoti
s for the higher moments. These 
onje
tures are supportedby heuristi
s from RandomMatrix Theory and Analyti
 Number Theory andby numeri
al 
omputation. They are also implied by an independent 
onje
-ture of Dia
onu, Goldfeld and Ho�stein [11℄. We will argue that these re
ent1




onje
tures provide 
lues as to how su
h an automorphi
 atta
k might beformulated. In fa
t, we will argue for a 
lose 
onne
tion between the 2k-thmoment of zeta and an Eisenstein series on GL(2k).On
e it is understood that su
h a 
onne
tion may exist, even for these
ond moment, it is not immediately 
lear how the 
lassi
al results 
an berelated to the Eisenstein series on GL(2). The purpose of this paper is topresent the eviden
e for a link between the 2k-th moment and the Eisensteinseries on GL(2k), and to establish a solid basis for this 
onne
tion whenk = 1.The se
ond and fourth moments of � are well understood. Beyond thefourth moment, there are re
ent 
onje
tures, beginning with that of Conreyand Ghosh [10℄. Although the moment of greatest interest isZ T0 ��� �12 + it���2k dt; (1)re
ent authors, in
luding Motohashi [27℄ and Conrey, Farmer, Keating, Ru-binstein and Snaith [9℄ have emphasized that it is better to 
onsider anintegral su
h asZ T0 � (�1 + it) � � � �(�k + it)� (�k+1 � it) � � � �(�2k � it) dt; (2)sin
e the asymptoti
s of su
h a moment reveal a stru
ture not apparentin (1). If the asymptoti
s of (2) are known, then the asymptoti
s of (1) 
anbe dedu
ed as a limiting 
ase.The authors of [9℄ found that the dominant terms in (2) are �2kk � in num-ber, and ea
h involves a produ
t of k2 zeta fun
tions. We will show that thisidenti
al stru
ture is exhibited in the 
onstant term of a 
ertain Eisensteinseries on GL(2k).Beginning with the se
ond moment, Ingham [16℄ proved that if 0 < � < 1and � 6= 12 thenZ T0 j�(�+it)j2 dt = �(2�)T+ (2�)2��12� 2� �(2�2�)T 2�2�+O(T 1�� log(T )): (3)We may 
ompare this with the 
onstant term of the 
lassi
al Eisenstein serieson SL(2;Z),E�(z) = 12 �(2�) X(
;d)=1� yj
z + dj2�� ; z = x+ iy; y > 0:2



The series is 
onvergent if re(�) > 1 but has meromorphi
 
ontinuation toall �. This Eisenstein series is relevant to (3) be
ause its L-fun
tion isL(s; E�) = � �s+ � � 12� � �s� � + 12� ;so L �12 + it; E�� = �(� + it)�(1� � + it) = �(1� � + it)j�(� + it)j2;where �(s) = �s�1=2� �1�s2 �� � s2��1. On the other hand, the 
onstant termZ 10 E�(x+ iy) dx = �(2�)y� + �2��1�(1� �)�(�) �(2� 2�)y1��: (4)We �nd that if the Eisenstein series is sele
ted so that its L-fun
tionmat
hes the integrand on the left side in (3), then the zeta fun
tionsin the two 
omponents of its 
onstant term mat
h the two termson the right side of (3).Assuming the 
onje
tural asymptoti
s in [9℄, we will show in Se
tion 1that this phenomenon extends to the 2k-th moment. For example in thefourth moment of � the largest terms are six in number, ea
h a produ
t offour zeta fun
tions. These may be seen in the analysis in Se
tion 1.7 of [9℄ ofthe results of Motohashi [27℄. We will show that there exists an Eisensteinseries on GL(4) whose L-fun
tion mat
hes the fourth moment, and whose
onstant termZ 10 Z 10 Z 10 Z 10 E0BB�0BB� 1 0 x y0 1 z w0 0 1 00 0 0 1 1CCA ; s1CCA dx dy dz dw
onsists of six terms, ea
h involving a produ
t of four zeta fun
tions, whi
hmat
h the six terms on the right-hand side of (1.7.6) in [9℄. And we will
he
k that this same pre
ise 
orresponden
e works for all k by exhibiting anEisenstein series on GL(2k) whose L-fun
tion and 
onstant term, a sum of�2kk � produ
ts of k2 zeta fun
tions, both mat
h perfe
tly the 2k-th momentand its 
onje
tured asymptoti
s.There is one aspe
t to this 
orresponden
e whi
h remains problemati
al.This is the arithmeti
 fa
tor whi
h o

urs in the 
onje
tural asymptoti
sof [9℄. We will dis
uss the arithmeti
 fa
tor below in Se
tion 2.3



So far the 
onne
tion that we have des
ribed between moments and Eisen-stein series appears as a simple 
oin
iden
e between data asso
ated with theEisenstein series and data asso
iated with the moments. The 
omplexity ofthis data is suÆ
ient that we do not believe it possible that it is 
oin
iden-tal. However our 
ase will be strengthened by exhibiting a dire
t 
onne
tionbetween the se
ond moment and the Eisenstein series E�.This 
onne
tion 
omes about through a generalization, due to Oppen-heim [28℄, of the famous Vorono�� [31℄ summation formula. Let us state Op-penheim's formula in a smoothed version. If a 2 C let �a(n) be the 
lassi
aldivisor fun
tion, and let�a(n) =Xdjn � dn=d�a = �2a(n)n�abe the symmetri
al divisor fun
tion, so �a = ��a. Let � be a 
ontinuous fun
-tion with 
ompa
t support in (0;1). In terms of standard Bessel fun
tions(Watson [32℄) let s(y) = Z 10 �(x)[�2� 
os(s�)J1�2s(4�pyx)� 2� sin(s�)Y1�2s(4�pyx)+4 sin(s�)K1�2s(4�pyx)℄dx: (5)We will show in Proposition 7 that  s(y) �! 0 rapidly as y �!1, and wewill prove the following theorem.Theorem 1 If � has 
ompa
t support in (0;1) and  s is given by (5) wehave 1Xn=1 �s�1=2(n)�(n) =�(2s) Z 10 �(x)xs�1=2dx + �(2� 2s) Z 10 �(x)x1=2�sdx+ 1Xn=1 �s�1=2(n) s(n): (6)We will prove Theorem 1 by asso
iating with � a smooth ve
tor in a prin-
ipal series representation of SL(2;R). We will then 
onsider an Eisensteinseries on SL(2;Z). Sin
e the Eisenstein series is automorphi
, its value at4



the identity equals its value at a Weyl group element, and this relationshipimplies (6).Although Oppenheim's generalization of the Vorono�� summation formulais most relevant for our investigation, another generalization of Vorono��'s for-mula, due to Wilton [34℄ deserves mention in this 
ontext. Wilton's formulainvolves the Fourier 
oeÆ
ients of Ramanujan's � fun
tion, and as su
h is es-sentially a summation formula for the Fourier 
oeÆ
ients of an automorphi
form. This, of 
ourse is how we view the 
oeÆ
ients �s�1=2: they are Fourier
oeÆ
ients of Eisenstein series. Wilton's summation formula for Ramanu-jan's �(n) was not unpre
edented, sin
e Vorono�� himself stated (and Hardyand Landau proved) a summation formula for r(n), the number of represen-tations of n as a sum of two squares. These 
oeÆ
ients are, like �(n), theFourier 
oeÆ
ients of a modular form. See Wilton [33℄, Berndt [4℄ and Millerand S
hmid [26℄ for referen
es to the literature of this problem.A 
lear statement of the nature of the 
onne
tion between Vorono�� sum-mation with the \Bessel distribution" in the representation theory of GL(2;R)may be found in Cogdell [7℄. This essential insight explains exa
tly the rea-son for the appearan
e of (6). Another representation-theoreti
 approa
h,in
luding a Vorono�� summation formula for GL(3) is taken by Miller andS
hmid [25℄ and [26℄.It is our hope that the (thus far a

idental) 
oin
iden
e between Eisen-stein series on GL(2k) and the 2k-th moment of zeta 
an be explained alongthese lines for general k. Su
h a goal would obviously be highly desirable,and it seems to us that the eviden
e in Se
tion 1 suggests a parti
ular 
on-stru
tion. In view of that eviden
e, we seek a representation of the standardL-fun
tion of an automorphi
 form on GL(2k) in whi
h the paraboli
 sub-group with Levi fa
tor GL(k) � GL(k) plays a distinguished role. Su
h a
onstru
tion was given by Friedberg and Ja
quet [13℄. Their representationof the standard L-fun
tion unfolds to the so-
alled Shalika model , a uniquemodel whi
h only exists for self-dual automorphi
 forms. Fortuitously theEisenstein series of Se
tion 1 is self-dual forj�(�1 + it)j2 � � � j�(�k + it)j2 = �(�1 + it) � � � �(�k + it)�(�1 � it) � � � �(�k � it):We hope therefore that a generalization of the summation formula (6) involv-ing \divisor sums" asso
iated with Shalika models 
an be found, and thatsu
h a hypotheti
al summation formula will play a role in the theory of thehigher moments of �. 5



We have not yet des
ribed how the Oppenheim summation formula ex-plains Ingham's estimate (3). For 12 < � < 1 we haveZ T0 j�(� + it)j2dt � 2� Xn<T=2� ��� 12 (n)n 12��: (7)Appli
ation of the Oppenheim summation formula to the right hand sideimmediately gives the two main terms on the right hand side of (3).When � = 12 , the relationship (7) appeared in Atkinson [1℄ and is dis-
ussed, for example, in Jutila [18℄, Ivi�
 [17℄ and Matsumoto [22℄. When12 < � < 34 , this same 
onne
tion was used by Atkinson [2℄ and Mat-sumoto [21℄ to improve the error term in (3). As these referen
es show,this parallel runs deeper than this simple asymptoti
 relation, but for ourpurposes, (7) is suÆ
ient to explain (3).At �rst sight (7) seems very mysterious. By the fun
tional equationj�(� + it)j2 = �(� � it)�(� + it)�(1� � + it):And, with re(s) suÆ
iently large,�(� � s)�(� + s)�(1� � + s) = �(� � s) 1Xn=1 ���1=2(n)n� 12�s: (8)So taking s = it (even though (8) is then divergent) we may regard j�(�+it)j2as a sort of generating fun
tion for the terms on the right-hand side of (7).But why the 
ut-o� after n = T=2�? Very roughly, the reason is as follows.By Stirling's formula, for �xed 
 2 R we haven� 12�
�it�(� � 
� it) �= n� 12�
 ���� t2� ���� 12��+
 exp�i�t log ���� t2�n����� �4 � t�� :(9)Taking 
 = 0, and substituting the series (8), ignoring the fa
t that it isdivergent, we obtain a series of os
illatory terms. A

ording to the prin
ipleof stationary phase, the biggest 
ontribution to an os
illatory integral will bewhere the os
illations 
ease. We haveddt �t log� t2�n�� �4 � t� = log� t2�n� :6



This means that the point t = 2�n where the os
illations 
ease is outside therange of integration if n > T=2�, so these terms are negligibly small and 
anbe dis
arded. This outline as we have explained it is of 
ourse not rigorousbut it is the essential idea of Atkinson [1℄. In Se
tion 7 we will translate thisintuitive explanation into a rigorous proof following Atkinson.Although we are optimisti
 that a generalization of the Oppenheim sum-mation formula to \divisor sums" based on Shalika models may be possibleand will re
e
t the 
ommon stru
ture between the 2k-th moment of � andthe 
onstant term of the Eisenstein series on GL(2k), the method by whi
hsu
h a formula will be applied is less 
lear. We have explained this whenk = 1 by means of (7). However we do not expe
t to �nd a straightforwardgeneralization of Atkinson [1℄ or of (7) to higher moments. It is worth not-ing that the method of Atkinson [2℄ and Matsumoto [21℄ is very di�erentfrom that of Atkinson [1℄, and it uses the Oppenheim summation formula.Our view is that the Oppenheim summation formula is 
entral to the se
ondmoment of � but there is not a unique way of applying it.In Se
tion 1 we will dis
uss the similarity between the 
onje
tural asymp-toti
s of the 2k-th moment of zeta and the 
onstant term of an Eisensteinseries on GL(2k). In Se
tion 2 we 
onsider the so-
alled \arithmeti
 fa
-tor" whi
h seems missing in this parallel, and whi
h is also problemati
albe
ause it is not a global meromorphi
 fun
tion when k > 2. We will pro-pose a possible method of avoiding it when k = 3. In Se
tion 3 we 
on�rmthat Theorem 1 is a smoothed version of Oppenheim's generalization of theVorono�� summation formula. Se
tion 4 
ontains generalities on prin
ipalseries representations of GL(2;R) in the parti
ular form in whi
h we needthem, in
luding the Bessel distribution giving a formula for the Whittakerfun
tion at a Weyl group element. Se
tion 5 dis
usses the Eisenstein seriesasso
iated with a 
ertain smooth ve
tor atta
hed to � in Theorem 1, andSe
tion 6 dedu
es Theorem 1. Finally Se
tion 7 dis
usses (7) by extendingAtkinson [1℄.We would like to thank Moshe Baru
h, Brian Conrey, Dorian Goldfeld,Jim Hafner, Kohji Matsumoto and Peter Sarnak for helpful 
omments. Wewould parti
ularly like to thank Brian Conrey for showing us the �2kk � fa
torsin [9℄. This work was supported in part by an AWM-NSF Mentoring TravelGrant and by NSF grants DMS-9970841 and DMS-0203353.
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1 Eisenstein Series on GL(2k) and momentsof �Let G = GL(2k), let P be the standard paraboli
 with Levi fa
tor M =GL(k) � GL(k) and let U be its unipotent radi
al. Let B be the standardBorel subgroup of upper triangular matri
es, and let V be the unipotentradi
al of B \M , so that UV is the unipotent radi
al of B. Let A be theadele ring of Q. Let s = 0B� s1...s2k 1CAbe 
omplex parameters. Let �s and Æ be the quasi
hara
ters of BA de�nedby �s(b) =Q2ki=1 jyijsi; Æ(b) =Q2ki=1 jyijk+1�2n;when b = 0BBB� y1 � � � � �y2 � � � �. . . ...yn
1CCCA :Let I(s) be the spa
e of smooth fun
tions f on GA su
h thatf(bg) = (Æ1=2�s)(b)f(g):The group GA a
ts by right translation on I(s) a�ording a spheri
al prin
ipalseries representation.Let W = S2k be the Weyl group of G and let WP = Sk � Sk be the Weylgroup of M . Let � be the root system of G. If 1 6 i; j 6 2k, i 6= j let�(i; j) denote the root 
orresponding to the one-parameter subgroup Xi;j ofG 
onsisting of unipotent matri
es whose only o�-diagonal entries are in thei; j position. Let �+ = f�(i; j) j 1 6 i < j 6 2kg;�U = f�(i; j) j 1 6 i 6 k; k + 1 6 j 6 2kg;�M = f�(i; j) 2 � j 1 6 i; j 6 k or k + i 6 i; j 6 2kg; �+M = �M \ �+:Thus �+ = �U \ �+M . Every 
oset in W=WP has a unique representative wsu
h that w�+M � �+. Let � be the set of these 
oset representatives. Thusj�j = �2kk �. This is the same set � de�ned in [9℄ Se
tion 3.1.8



Let K =QvKv be the standard maximal 
ompa
t subgroup of G wherev runs through the pla
es of Q, and Kv = GL(2k;Zp) if v = p is a �niteprime, Kv = O(2k) if v = 1. Let f Æs be the standard spheri
al ve
tor inI(s), de�ned by f Æs (bk) = Æ1=2�s(b) for b 2 BA, k 2 K.If 
 2 G let U
 = U\
B
�1. If f 2 I(s) then for w 2 W the intertwiningintegral (M(w)f)(g) = ZUwAnUA fs(w�1ug) duis in I(ws). The integral is 
onvergent if s 2 
, the domain de�ned bythe inequalities re(si � si+1) > 12 . As in Casselman [6℄ it has meromorphi

ontinuation to all s. We haveM(s) f Æs = 
(w) f Æwu; (10)where 
(w) = Y� > 0w� < 0 
�(s):Here the produ
t is over positive roots � su
h that w� is negative, and 
�(s)is as follows. We represent the root � by a ve
tor (i; j) with 1 � i < j � k,and then 
�(s) = ��(si � sj)��(si � sj + 1) ;where ��(s) = ��s=2 �(s=2) �(s). The a
tion of W on the parameter s is bymatrix multipli
ation. Indeed, the integral in (10) de
omposes as a produ
tof lo
al integrals, ea
h of whi
h is evaluated by the formula of Gindikinand Karpelevi
h [14℄, or its nonar
himedean analog (see Langlands [19℄ andCasselman [6℄).We 
onsider the Eisenstein seriesE�(g; s) = ( Y16i<j62k ��(si � sj + 1)) E(g; s); E(g; s) = XBQnGQ f Æs (
g):Also, let E�M(g; s) = 8<: Y�i;j2�+M ��(si � sj + 1)9=;EM (g; s);9



EM(g; s) = X
2(B\M)QnMQ f Æs (
g):This fun
tion is essentially a pair of GL(k) Eisenstein series on the Levisubgroup M = GL(k)�GL(k). LetZ(s) = Y1 6 i 6 kk + 1 6 j 6 2k ��(si � sj + 1):
Proposition 1 (i) The 
onstant termZUQnUA E(ug; s) du = Xw�12� 
(w)EM(g; ws):(ii) The 
onstant termZUQnUA E�(ug; s) du = Xw�12�Z(ws)EM(g; ws): (11)Proof. The integral in (i) equalsX
2UQnGQ=BQ ZUQnUA XÆ2U
QnUQ f(
�1Æug) du =X
2UQnGQ=BQ ZU
QnUA f(
�1ug) du:The integrand is invariant when u is 
hanged on the left by an element ofU
A. Hen
e this equals X
2UQnGQ=BQ ZU
AnUA f(
�1ug) du:We fa
tor 
 = 
�11 w, where w 2 PQnGQ=BQ and 
1 2 (PQ\wBQw�1)nPQ=UQ.A

ording to the Bruhat de
omposition, w 
an be 
hosen so that w�1 2 �.For these values of w, we haveM\B � wBw�1. Hen
e 
1 
an be 
hosen from10



(B \M)QnMQ. Now repla
ing u by 
�11 u
1 and noting that 
1 normalizesU , while 
1U
�11 w
�11 = Uw, we getXw ZUwA nUA X
12(B\M)QnBQ f(w�1u
1g) du:This proves (i).To prove (ii), note that by (i) and (10) the left side of (11) isXw�12�8>>><>>>: Y� = �(i; j) > 0w� > 0 ��(si � sj + 1)9>>>=>>>;8>>><>>>: Y� = �(i; j) > 0w� < 0 ��(si � sj)9>>>=>>>;EM(g; ws):In the se
ond produ
t, repla
e � by ��, thus swit
hing i and j, and use thefun
tional equation. The two produ
ts may thus be 
ombined givingXw�12�( Y�2w�1�+ ��(si � sj + 1))EM(g; ws):Absorbing the k(k�1) zeta fun
tions in the normalizing fa
tor of E�M(g; ws),what remains is Z(ws). �To make the 
omparison with Conrey, Farmer, Keating, Rubinstein andSnaith [9℄, �rst let k = 2 and 
hoose s1 = u1, s2 = u2, s3 = �v1 and s4 = �v2.The L-fun
tion L(E; 12 + it) of E(g; s) is� �12 + it + u1� � �12 + it + u2� � �12 + it� v1� � �12 + it� v2� ;and applying the fun
tional equation of � in the last two fa
tors we get theargument of [9℄ (1.7.1). On the other hand, the fa
tors Z in Proposition 1 (ii)are the same as their six fa
tors Z, ex
ept for the missing zeta fun
tion inthe denominator, whi
h is the \arithmeti
 fa
tor" that we will dis
uss in thenext se
tion. If k is general, taking si to be �i in the notation of [9℄, ourZ(ws) are exa
tly the �2kk � produ
ts of k2 zeta fun
tions that o

ur in theright side of their (3.1.14). Our w is their ��1. (Applying w to s is the sameas applying its inverse to the indi
es.)11



2 The Arithmeti
 Fa
torIn addition to the k2 zeta fun
tions, ea
h of the �2kk � terms in the asymptoti
s
onje
tured by Conrey, Farmer, Keating, Rubinstein and Snaith [9℄ also in-volves a 
ertain Euler produ
t, whi
h is only an L-fun
tion when 2k 6 4.This is the \arithmeti
 fa
tor" Ak de�ned in their (3.1.8). This fa
tor doesnot appear with the �2kk � terms in our (11), whi
h otherwise perfe
tly mat
htheir terms.Moreover the arithmeti
 fa
tor is problemati
al for another reason. As afun
tion of their parameters �, the arithmeti
 fa
tor does not have analyti

ontinuation everywhere but has a natural boundary if k > 3. This mayalready be seen in a 
lassi
al result. If re(�) > 1� 1=k then Carlson proved(see Tit
hmarsh [30℄, Se
tion 7.9)Z T0 j�(� + it)j2k dt � " 1Xn=1 dk(n)2 n�2�#T;where dk(n) is the number of ways of expressing n as a produ
t of k fa
tors.Moreover 1Xn=1 dk(n)2 n�s = �(s)k2 Yp Pk(p�s);where Pk is a Diri
hlet polynomial. We haveP1(x) = 1; P2(x) = 1� x2; P3(x) = 1� 9x2 + 16x3 � 9x4 + x6;and in general Pk(x) = (1� x)2k�1 k�1Xn=0 � k � 1n �2 xk:Estermann [12℄ 
onsidered a 
lass of Diri
hlet series in
luding the Euler prod-u
t Qp Pk(p�s). He proved that it is absolutely 
onvergent for re(s) > 12 andhas meromorphi
 
ontinuation to re(s) > 0 but if k > 3 it has a naturalboundary on the line re(s) = 0. In the notation of [9℄,Yp Pk(p�s) = Ak(0; s; � � � ; s;�s; � � � ;�s):12



This natural boundary is somewhat disturbing, so let us 
onsider how, atleast for the sixth moment, it may be possible to eliminate the arithmeti
fa
tor. Estermann's dis
overy that the arithmeti
 fa
tor does not have an-alyti
 
ontinuation may not be an insurmountable diÆ
ulty, but it raisesthe question whether (1) is really the most natural obje
t to 
onsider. Wesuggest a possible alternative.Proposition 2 Suppose a = (a1; a2; a3) and b = (b1; b2; b3) are given. As-sume that � + ai and � + bi have real parts > 1. ThenlimT1;T2!1 1T 1 1T2 Z T10 Z T20 �(3� + a1 + a2 + a3 + it1 + it2)�1��(3�+ b1+ b2 + b3� it1� it2)�1�(�+ a1+ it1)�(�+ a2 + it1)�(�+ a3+ it1)��(� + b1 � it1)�(� + b2 � it1)�(� + b3 � it1)��(2� + a1 + a2 + it2)�(2� + a1 + a3 + it2)�(2� + a2 + a3 + it2)��(2� + b1 + b2 � it2)�(2� + b1 + b3 � it2)�(2� + b2 + b3 � it2) dt2 dt1 =Q3i=1 Q3j=1 �(2� + ai + bj)�(6� + a1 + a2 + a3 + b1 + b2 + b3) :We 
onje
ture that if we take � around 12 and the ai, bi small, the term on theright hand side will be one of �2kk � in the asymptoti
s of the left hand side,paralleling those found for the sixth moment by [9℄. Note that sin
e 2� and3� are farther to the right this is something like the sixth moment. If this
onje
ture is true, this variant may be a more natural obje
t to 
onsider thanthe sixth moment itself, sin
e it eliminates the arithmeti
 fa
tor, repla
ing itwith a fa
tor having meromorphi
 
ontinuation.Proof. For p a �xed prime let
�a(pk1 ; pk2) = ������ �k1+k2+21 �k1+k2+22 �k1+k2+23�k2+11 �k2+12 �k2+131 1 1 ������������ �21 �22 �23�1 �2 �31 1 1 ������ ; �i = p�ai :

13



This is a S
hur polynomial in �1; �2 and �3. Extend �a(n1; n2) to all n1 andn2 by multipli
ativity. We haveX�a(n1; n2) n�s11 n�s22 =�(s1 + a1) �(s1 + a2) �(s1 + a3)�(s2 + a2 + a3) �(s2 + a3 + a1) �(s2 + a1 + a2)�(s1 + s2 + a1 + a2 + a3) :(12)Indeed, both sides are Eulerian, and lo
ally this is (9.17) on p. 155 of Bump [5℄.See Stanley [29℄ Exer
ise 7.28, pages 458 and 503 and Ma
donald [20℄, Ex-ample 7 on p. 78 for a more general statement. Also�(3s+ a1 + a2 + a3 + b1 + b2 + b3) Xn1;n2 �a(n1; n2) �b(n1; n2) (n1n22)�s =3Yi=1 3Yj=1 �(s+ ai + bj): (13)This follows from the Cau
hy identity. See Stanley [29℄ p. 322.By (12) the integrand on the left hand side of the formula in the Propo-sition is"Xn1;n2 �a(n1; n2) n���it11 n�2��it22 #"Xn1;n2 �b(m1; m2)m��+it11 m�2�+it22 # :Pro
eeding as in Tit
hmarsh [30℄, Theorem 7.1, it is elementary that thediagonal terms ni = mi give the asymptoti
 value, whi
h is evaluated by (13).�3 The Oppenheim Summation FormulaIn Oppenheim [28℄ is proved a generalization of the Vorono�� summation for-mula, whi
h we now review. We will 
on�rm that it is 
onsistent with ourTheorem 1.Let D1�2s(x) =Xn6x �1�2s(n):14



In its original form the formula asserted, provided that s is real and s 2 (12 ; 34)D1�2s(�) = �(2s)� + �(2� 2s)2� 2s �2�2s � 12 �(2s� 1) + �1�2s(�); (14)where �1�2s(�) = ��1�s 1Xn=1 �1�2s(n)ns�1�n
os(s�)J2�2s(4�pn�) + sin(s�) hY2�2s(4�pn�) + (2=�)K2�2s(4�pn�)io :We will show in this se
tion that Oppenheim's summation formula impliesthe smoothed version in our Theorem 1, when 14 < s < 34 . However inOppenheim's formula the assumption that re(s) < 34 is essential, be
ause theseries �1�2s will not be 
onvergent otherwise. The smoothed version doesnot have this limitation and we will give a proof of it for all s in Se
tion 6.Note that �s�1=2(n) = �1�2s(n)jnjs�1=2. Write�(x) = jxj 12�s Z 1x �(�)d�;�(x) = �jxjs�1=2�0(x)� (s� 12) jxjs�3=2�(x);Both � and � have 
ompa
t support in (0;1). Integrating by parts,Z 10 �(x) ��(2s)x+ �(2� 2s)2� 2s x2�2s � 12 �(2s� 1)� dx =�(2s) Z 10 �(x)xs�1=2 dx+ �(2� 2s) Z 10 �(x)x1=2�s dx:We 
onsider now Z 10 �(x)�1�2s(x) dx:First the K-Bessel 
ontribution is �2��1 sin(s�)�s�1=2(n)n�1=2 times� Z 10 K2�2s(4�pnx) �x1=2�0(x) + (s� 12) x�1=2�(x)� dx:Integrating by parts, this is12 Z 10 �4�pnxK 02�2s(4�pnx) + (2� 2s)K2�2s(4�pnx)�x�1=2�(x) dx: (15)15



Using the formulas (Watson [32℄ p. 79)zK 0�(z)� �K�(z) = �zK�+1(z); zK 0�(z) + �K�(z) = �zK��1(z);the 
ontribution (15) equals4 sin(s�)�s�1=2(n) Z 10 K1�2s(4�pnx)�(x) dx:The J and Y 
ontributions are handled similarly using (Watson [32℄ pp. 45and 66):zJ 0�(z)� �J�(z) = �zJ�+1(z); zJ 0�(z) + �J�(z) = zJ��1(z);zY 0�(z) + �Y�(z) = zY��1(z);and the summation formula follows.4 Prin
ipal Series RepresentationsLet s 2 C, and let Vs be the spa
e of fun
tions f : GL(2;R) �! C whi
hsatisfy f �� y1 �y2 � g� = ����y1y2 ����s f(g); (16)and su
h that that the restri
tion of f to K = SO(2) is a smooth fun
tion.We do not assume that f is K-�nite. The group GL(2;R) a
ts on Vs byright translation. Thus if g 2 GL(2;R) let (�s(g)f)(x) = f(xg). The spa
eVs is the spa
e of smooth ve
tors in an even prin
ipal series representationof �s : GL(2;R) �! End(Vs).Let w0 = � �11 � :It follows from the theorem of Shalika [29℄ that there exists a unique linearfun
tional � : Vs �! C su
h that for f 2 Vs���s� 1 x1 � f� = e2�ix�(f):
16



For re(s) > 12 we may de�ne su
h a fun
tional by�(f) = Z 1�1 f �w0� 1 x1 �� e�2�ix dx:The Whittaker fun
tion asso
iated with a �xed f 2 Vs isWf(g) = �(�s(g)f) = Z 1�1 f �w0� 1 x1 � g� e�2�ix dx: (17)We will denote byWs the spa
e of all fun
tionsWf . It is the spa
e of smoothve
tors in the Whittaker model of �s. We haveWf � y 1 � = jyj1�s Z 1�1 f �w0� 1 x1 �� e�2�ixy dx; (18)whi
h follows by a 
hange of variables fromWf � y 1 � = jyj�s Z 1�1 f �w0� 1 y�1x1 �� e�2�ix dx:If fs 2 Vs let ~f1�s(g) = Z 1�1 fs�w0� 1 x1 � g� dx: (19)Again this integral is 
onvergent if re(s) > 12 , and we have ~f1�s 2 V1�s.Thus Ms : Vs �! V1�s is an intertwining operator. It is known that boththe Whittaker integral and the intertwining integral (19) have meromorphi

ontinuation to the entire s plane. That is, one may �x a smooth fun
tionon SO(2)=f�Ig, whi
h then extends uniquely to a fun
tion satisfying (16)for any s. Then both (17) and (19) are meromorphi
 fun
tions of s. Howeverwe will not need this fa
t. For our purposes we only need the integrals (17)and (19) in the 
ase re(s) > 12 , where both are absolutely 
onvergent.Now we wish to 
hoose the fun
tion f so that y�1=2Wf�y 1� = �(y) where� is a pres
ribed fun
tion. We assume that � is smooth and 
ompa
tlysupported in (0;1). For this parti
ular f the values of Wf�y 1� will be zerowhen y < 0. We de�ne a smooth fun
tion fs;� 2 Vs byfs;�(g) =17



8>>>><>>>>:
����y1y2 ����s Z 10 �(u) us�1=2e2�ixu du if g = � y1 �y2 �w0� 1 x1 � ;0 if g = � y1 �y2 � : (20)A

ording to the Bruhat de
omposition, every element of GL(2;R) is ex-pressible uniquely in one of these forms.Proposition 3 The fun
tion fs;� is smooth and satis�es (16).Proof. It is 
lear that fs;� satis�es (16). It follows from this that smoothnessis equivalent to the smoothness of its restri
tion to SO(2). We have (assumingsin(�) 6= 0) � 
os(�) � sin(�)sin(�) 
os(�) � = � y1 �y2 �w0� 1 x1 �with y1 = sin(�)�1, y2 = sin(�), � = 
os(�) and x = 
ot(�). Sofs;�� 
os(�) sin(�)� sin(�) 
os(�) � = sin(�)�2s Z 10 �(u)us�1=2e2�iu 
ot(�) du:The issue is smoothness where sin(�) = 0, but the Fourier transform here isa rapidly de
reasing fun
tion of 
ot(�), so fs;� is smooth at these points. �Let Ws;� = Wf with f = fs;�.Proposition 4 We haveWs;�� y 1 � = � py �(y) if y > 0;0 if y < 0:Proof. Sin
e � is 
ompa
tly supported in (0;1) both 
ases are 
ontainedin Ws;�� y 1 � =pjyj�(y)whi
h we prove. Using (18) and the de�nition of fs;� the left side equalsjyj1�s Z 1�1 Z 10 �(u) us�1=2e2�ixudu e�2�ix dx =pjyj�(y)by Fourier inversion. �If fs = fs;� we will denote the fun
tion ~f1�s de�ned by (19) as ~f1�s;�.18



Proposition 5 We have fs;�(I) = ~f1�s;�(I) = 0. Moreoverfs;�(w0) = Z 10 �(x)xs�1=2 dx (21)and �(2s� 1) ~f1�s;�(w0) = �(2� 2s) Z 10 �(x)x�s+1=2 dx: (22)Proof. We have fs;�(I) = 0 by de�nition. On the other hand~f1�s;�(I) = Z 1�1 Z 1�1 �(u) us�1=2e2�ixu du dx:By the Fourier inversion formula, this is the value of �(u) us�1=2 at u = 0.However this smooth fun
tion has 
ompa
t support stri
tly to the right of 0so ~f1�s;�(I) = 0.The �rst formula (21) follows immediately from (20). As for (22),~f1�s;�(w0) = Z 1�1 fs;��w0� 1 x1 �w0� dx =Z 1�1 fs;��� x�1 �10 x �w0� 1 �x�11 �� dx =Z 1�1 jxj�2sfs;��w0� 1 �x�11 �� dxRepla
e x by �x�1 in this identity to obtain~f1�s;�(w0) = Z 1�1 jxj2(s�1)fs;��w0� 1 x1 �� dx =Z 1�1 jxj2(s�1) Z 10 �(u)us�1=2e2�ixu du dx:Although we began by assuming that re(s) > 1, this integral is 
onvergentfor all values of s. Indeed, �(u) us�1=2 is 
ompa
tly supported and smooth,so its Fourier transform is S
hwartz 
lass. To evaluate this integral, we maytherefore assume that 12 < s < 1. In this 
ase,Z 1�1 jxj2(s�1) e2�ixu dx = 22�2s(�u)1�2s sin(�s) �(2s� 1):19



Pro
eeding formally at �rst if we inter
hange the order of integration andobtain ~f1�s;�(w0) = 22�2s�1�2s sin(�s)�(2s� 1) Z 10 �(u) u1=2�s du:Now using the fun
tional equation of � in the form21�s��s 
os ��s2 � �(s) �(s) = �(1� s);we obtain (22). The inter
hange of the order of integration may be justi�ed bytilting the line of integration with respe
t to x o� the real axis into the upperhalf plane at a positive angle in both the positive and negative dire
tions.�We now re
all a formula of Cogdell and Piatetski-Shapiro [8℄ for the a
tionof the Weyl group element w0 on the Whittaker model. If W 2 Ws then thisformula asserts that for � = �s we haveW �� y 1 �w0� = ZR� J�(uy)W � u 1 � d�u; (23)where the \Bessel Fun
tion" (introdu
ed by Gelfand and Kazhdan)J�(u) = 8><>: � �pjujsin(�(s� 12 )) [J2s�1(4�pu)� J1�2s(4�pu)℄ if u > 0;� �pjujsin(�(s� 12 )) hI2s�1(4�pjuj)� I1�2s(4�pjuj)i if u < 0:This formula was stated in [8℄ p. 57 when � is unitary, so that either s = 12+itwith t real, or s is real in (0; 1). In their notation, ir = s� 1=2. A proof maybe found in Baru
h and Mao [3℄, Theorem 4.4 and Appendix 1.We will prove (23) without assuming unitari
ity for the parti
ular Whit-taker fun
tion Ws;�. The proof is 
lose to that of Baru
h and Mao (whi
hwas explained to us by Moshe Baru
h) ex
ept that the 
ompa
t support of� allows us to dispense with their 
onvergen
e fa
tor.We have (Watson [32℄, p. 64 and p. 78):Y�(z) = 
os(��)J�(z)� J��(z)sin(��) ;K�(z) = ��2 �I�(z)� I��(z)sin(��) � :20



Using these relations and standard trigonometri
 identities,J�(u) = � �2�pu �
os(�s)J1�2s(4�pu) + sin(�s)Y1�2s(4�pu)℄ if u > 0;4pjuj sin(�s)K1�2s(4�pjuj) if u < 0:(24)Theorem 2 Assume that re(s) > 12 . If W =Ws;� then (23) is valid.Proof. We apply (18) to the fun
tion �s(w0)fs;�, then use the de�nition offs;� obtainW �� y 1 �w0� = jyj1�s Z 1�1 fs;��w0� 1 x1 �w0� e�2�ixy dx =jyj1�s Z 1�1 fs;��� 1 �x�11 �� x�1 x �w0� 1 �x�11 �� e�2�ixy dx =jyj1�s Z 1�1 Z 10 jxj�2s�(u) us�1=2e�2�i(xy+x�1u) du dx:Sin
e � is 
ompa
tly supported, it is not hard to justify inter
hanging theorder of integration. We then 
ombine the positive and negative 
ontributionsof x to write the inner integral as2 Z 10 x�2s 
os(2�(xy + x�1u)) dx:Then using (24) and Gradshteyn and Ryzhik [15℄ 3.871 on p. 470, whi
h isappli
able when re(s) 2 (12 ; 1), we obtain (23). For re(s) > 12 , the resultfollows by analyti
 
ontinuation. Note that Y� is denoted as N� in [15℄. �5 Eisenstein seriesLet � be as in Theorem 1 and let fs;� be as in Se
tion 4. Assuming re(s) > 1,we 
onsider the Fourier expansion of the Eisenstein seriesE�(g; s) = 12�(2s) X�1n� fs;�(
g):21



Proposition 6 If re(s) > 1 we haveZ 10 E��� 1 x1 � g; s� e�2�inx dx = �s�1=2(n)n�1=2Ws;��� n 1 � g�(25)if n 6= 0, whileZ 10 E��� 1 x1 � g; s� dx = �(2s)fs;�(g) + �(2s� 1) ~f1�s;�(g): (26)Proof. Assuming n 6= 0 we haveZ 10 E��� 1 x1 � g; s� e�2�inx dx =12 �(2s) Z 10 X�1n� fs;��
 � 1 x1 � g� e�2�inx dx:Let 
 2 Z and let �
 = ��a b
 d� 2 �	 be the subset of � with pres
ribed 
. Ifn 6= 0 then the 
ontribution of �
 vanishes when 
 = 0 so we may write thisas 12 �(2s)X
6=0 Z 1�1 X�1n�
=�1 fs;��
 � 1 x1 � g� e�2�inx dx =�(2s)X
>0 Xdmod 
amod 
ad � 1(mod 
)(d; 
) = 1Z 1�1 fs;��� 1 a=
1 �� �
�1
 �� 1 d=
1 �� 1 x1 � g� e�2�inx dx:To evaluate this we may use (16), and also make a variable 
hange x �!x� d=
 to obtain�(2s)X
>0 Xdmod 
(d; 
) = 1 e2�ind=

�2s Z 1�1 fs;��� �11 �� 1 x1 � g� e�2�inx dx:
22



A

ording to Ramanujan's identity�(2s)X
>0 Xdmod 
(d; 
) = 1 e2�ind=

�2s = �1�2s(n):Also the variable 
hange x �! n�1x shows thatZ 1�1 fs;��� �11 �� 1 x1 � g� e�2�inx dx = ns�1Ws;��� n 1 � g� :Sin
e �1�2s(n)ns�1 = �s�1=2(n)n�1=2, we have proved (25).Next we prove (26). The 
ontribution of 
 = 0 is �(2s)fs;�(g). The
ontribution of 
 6= 0 is evaluated like (25) and we obtain�(2s)X
>0 Xdmod 
(d; 
) = 1 
�2s Z 1�1 fs;��� �11 �� 1 x1 � g� dx =�(2s)X
>0 '(
)
�2s ~f1�s;�(g);where ' is Euler's phi fun
tion. We have�(2s)X
>0 '(
)
�2s = �(2s� 1):This proves (26). �6 Proof of Theorem 1Let � have 
ompa
t support in (0;1) and de�ne  s : R �! C as in (5).Proposition 7 For any s then  s(y) = O(y�N) as y �!1, for all N .Proof. We make use of the asymptoti
 expansions (Watson, p. 199)J�(z) =q 2� 
os �z � 12�� � 14�� z�1=2+q 2� (� + 12)(� + 32)2 sin �z � 12�� � 14�� z�3=2 +O(z�5=2);23



Y�(z) =q 2� sin �z � 12�� � 14�� z�1=2+q 2� (� + 12)(� + 32)2 
os �z � 12�� � 14�� z�3=2 +O(z�5=2);and K�(z) �p2=(�z)e�z. The term in bra
kets in (5) is thereforeq 2� �� 
os(pxy + 2s� � 3�=4)x�1=4y�1=4+ (32 � 2s)(52 � 2s)2 sin(pxy � 3�=4) x�3=4y�3=4 +O((xy)�5=4)� :Now let us 
onsiderZ 10 �(x) 
os(pxy + 2s� � 3�=4) x�1=4 dx:The variable 
hange x = u2 makes this2 Z 10 �(u2) 
os(upy + 2s� � 3�=4) u1=2 du:This is the Fourier transform of a smooth fun
tion, evaluated at py, hen
e isof rapid de
ay as y �!1. The se
ond term is similarly of rapid de
ay. Thisleaves us with the error term whi
h is dominated by the 
onvergent integralR �(x) x�5=4dx times y�5=4. This proves that the integral is O(y�5=4). Takingmore terms of the asymptoti
 expansion gives better error terms. �We may now prove Theorem 1. We have the Fourier expansion of theEisenstein seriesE�(g; s) =Xn2Z Z 10 E��� 1 x1 � g; s� e�2�inxdx:This is 
lear if re(s) > 1 and we at �rst assume that s is in this region. ByPropositions 6, 5 and 4, it follows that E�(I; s) is the left side of (6). Onthe other hand by Propositions 6 and 5 and Theorem 2, E�(w0; s) equals theright side of (6). Of 
ourse they are equal sin
e E�(w0; s) is automorphi
, andthe Theorem is proved when re(s) > 1. The general 
ase follows by analyti

ontinuation, sin
e using Proposition 7 it is not hard to see that both sidesof (6) are entire fun
tions of s. 24



7 The se
ond moment and the divisor prob-lemWe will use the method of Atkinson [1℄ to explain the relationship (7).Matsumoto [21℄ obtains a better error term than Ingham [16℄, at leastwhen � < 34 , and Ingham's error term is better than we obtain by the methodthat we will use. Matsumoto's result 
an be writtenZ T0 j�(�+ it)j2 dt = �(2�)T + (2�)2��12� 2� �(2�2�)T 2�2�+O(T 1=(1+4�) log(T )2):His method, adapted from Atkinson [2℄ is based on a more subtle appli
ationof the Oppenheim summation formula. This work is 
ontinued in Matsumotoand Meurman [24℄ and [23℄.We think the original approa
h of Atkinson [2℄ is still useful in givingthe 
ru
ial relationship (7) quite simply. Atkinson's proof is repeated inTit
hmarsh [30℄.Theorem 3 If 12 < � < 1 we have������Z T0 j�(� + it)j2 dt� 2� Xn<T=2� ��� 12 (n)n 12�������� = O(T 2�� 12 ):Proof. First we note that����Z T0 j�(� + it)j2 dt� 12i Z �+"+iT�+"�iT �(� + s)�(� � s) ds���� = O(T 12+"):Indeed, rewriting R T0 j�(� + it)j2 dt = 12 R T�T j�(� + it)j2 dt, this di�eren
e
onsists of the 
onstant residue ��(2� � 1) plus the 
ontributions of twoshort integrals 12i Z �+"�iT�iT �(� + s)�(� � s) ds = O(T 12+"):We have12i Z �+"+iT�+"�iT �(� + s)�(� � s) ds = 12i 1Xn=1 ��� 12 (n) Z �+"+iT�+"�iT n� 12�s�(� � s) ds:25



If n > T=2�, using (9) and Lemma 4.3 on p. 61 of Tit
hmarsh [30℄, the n-thterm here is O n� 12���"T 12+"log j T2�n j ! :Sin
eP ��� 12 (n)n� 12���" <1 we may dis
ard these terms. We are left withthe problem of estimating12i Xn<T=2� ��� 12 (n) Z �+"+iT�+"�iT n� 12�s�(� � s) ds:Using (9) we haveZ �+"�iT�iT n� 12�s�(� � s) ds = O �n�1=2T 12+"� :Now by Theorem 1 or a Tauberian theoremXn6x ��� 12 (n)n 12�� � �(2�) x;and by partial summation it follows thatXn6x ��� 12 (n)n� 12 = O(x�): (27)Therefore 12i Xn<T=2� ��� 12 (n) Z �+"�iT�iT n� 12�s�(� � s) ds = O(T �):Thus we may move the path of integration ba
k into the 
riti
al strip andapproximate R T0 j�(� + it)j2 dt by12i Xn<T=2� ��� 12 (n) Z iT�iT n� 12�s�(� � s) ds:We would like to 
hange the limits to�i1 and i1: By Tit
hmarsh's Lemma 4.3,Z i1iT n� 12�s�(� � s) ds = O� T ��1=2pn log(T=2�n)� :26



applying (27) again, the error in 
hanging the limits is O(T 2��1=2). We
onsider therefore 12i Xn<T=2� ��� 12 (n) Z i1�i1 n� 12�s�(� � s)ds:Sin
e 12 Z 1�1 x� 12�it�(� � it) dt = 2�x 12�� 
os(2�x);and sin
e 
os(2�n) = 1 when n is an integer, we get2� Xn<T=2� ��� 12 (n)n 12��: �
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