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Abstract

It is shown that if the parameters of an Eisenstein series on GL(2k)
are chosen so that its (integrated) L-function is the 2k-th moment of
the Riemann zeta function, then the (215) terms in its constant term
agree with (Qkk) factors appearing in a conjectural formula for the 2k-th
moment of zeta by Conrey, Farmer, Keating, Rubinstein and Snaith.
When k = 1, an explanation for this phenomenon is found by deduc-
ing Oppenheim’s generalization of the Voronoi summation formula
from the Eisenstein series and representation theoretic considerations.
The possibility of eliminating the problematical “arithmetic factor” is
discussed.

AMS Subject Classification: Primary 11M06, Secondary 11F55
and 11F12.

There is reason to expect that the 2k-th moment of the Riemann zeta
function can be related to the spectral theory of GL(k) or GL(2k). The work
of Motohashi [27] supports the idea of seeking such an approach, by finding
an explicit formula for the fourth moment of ( involving special values of
L-functions of Maass cusp forms for SL(2,7). Still an automorphic attack
on the higher moments of the zeta function has proved an elusive goal.

Recently Conrey, Farmer, Keating, Rubinstein and Snaith [9] gave conjec-
tural asymptotics for the higher moments. These conjectures are supported
by heuristics from Random Matrix Theory and Analytic Number Theory and
by numerical computation. They are also implied by an independent conjec-
ture of Diaconu, Goldfeld and Hoffstein [11]. We will argue that these recent



conjectures provide clues as to how such an automorphic attack might be
formulated. In fact, we will argue for a close connection between the 2k-th
moment of zeta and an Eisenstein series on GL(2k).

Once it is understood that such a connection may exist, even for the
second moment, it is not immediately clear how the classical results can be
related to the Eisenstein series on GL(2). The purpose of this paper is to
present the evidence for a link between the 2k-th moment and the Eisenstein
series on GL(2k), and to establish a solid basis for this connection when
kE=1.

The second and fourth moments of ¢ are well understood. Beyond the
fourth moment, there are recent conjectures, beginning with that of Conrey
and Ghosh [10]. Although the moment of greatest interest is
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recent authors, including Motohashi [27] and Conrey, Farmer, Keating, Ru-
binstein and Snaith [9] have emphasized that it is better to consider an
integral such as

/0 o +it) -~ Clog+ it)C (0pry — it) -~ C(om — it) dt, 2)

since the asymptotics of such a moment reveal a structure not apparent
in (1). If the asymptotics of (2) are known, then the asymptotics of (1) can
be deduced as a limiting case.

The authors of [9] found that the dominant terms in (2) are (215) in num-
ber, and each involves a product of k? zeta functions. We will show that this
identical structure is exhibited in the constant term of a certain Eisenstein
series on GL(2k).

Beginning with the second moment, Ingham [16] proved that if 0 < o < 1

and o # % then

(271')20_1

20 C(2—20)T*" 2 +O(T " log(T)). (3)

/0 C(o+it)[2dt = ¢(20)T +

We may compare this with the constant term of the classical Eisenstein series
on SL(2,Z),

E,(2) =1¢20) Y <L>U r=x4iy, y>0.
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The series is convergent if re(o) > 1 but has meromorphic continuation to
all 0. This Eisenstein series is relevant to (3) because its L-function is

L(s,E,)=C(s+o0—-3)((s—0o+1),
SO
L(i+it,E,) =((o+it)((1—o+it) = x(1 — o +it)|((o+it)],
where y(s) = 77120 (L2)T (%)71. On the other hand, the constant term

I'(l1-o)
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We find that if the Eisenstein series is selected so that its L-function
matches the integrand on the left side in (3), then the zeta functions
in the two components of its constant term match the two terms
on the right side of (3).

Assuming the conjectural asymptotics in [9], we will show in Section 1
that this phenomenon extends to the 2k-th moment. For example in the
fourth moment of ¢ the largest terms are six in number, each a product of
four zeta functions. These may be seen in the analysis in Section 1.7 of [9] of
the results of Motohashi [27]. We will show that there exists an Eisenstein
series on GL(4) whose L-function matches the fourth moment, and whose
constant term
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consists of six terms, each involving a product of four zeta functions, which
match the six terms on the right-hand side of (1.7.6) in [9]. And we will
check that this same precise correspondence works for all £ by exhibiting an
Eisenstein series on GL(2k) whose L-function and constant term, a sum of
(Qkk) products of k? zeta functions, both match perfectly the 2k-th moment
and its conjectured asymptotics.

There is one aspect to this correspondence which remains problematical.
This is the arithmetic factor which occurs in the conjectural asymptotics
of [9]. We will discuss the arithmetic factor below in Section 2.
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So far the connection that we have described between moments and Eisen-
stein series appears as a simple coincidence between data assocated with the
Eisenstein series and data associated with the moments. The complexity of
this data is sufficient that we do not believe it possible that it is coinciden-
tal. However our case will be strengthened by exhibiting a direct connection
between the second moment and the Eisenstein series E,.

This connection comes about through a generalization, due to Oppen-
heim [28], of the famous Voronoi [31] summation formula. Let us state Op-
penheim’s formula in a smoothed version. If a € C let 0,(n) be the classical
divisor function, and let

i =3 (52) =omtn

be the symmetrical divisor function, so 7, = 7_,. Let ¢ be a continuous func-
tion with compact support in (0,00). In terms of standard Bessel functions
(Watson [32]) let

Ys(y) = /000 P(x)[ =27 cos(sm)Ji_os(4T\/yx) — 27 sin(sm)Y]_os (47 yx)+

4sin(sm) Kq_os(4m\/yz)|d. (5)

We will show in Proposition 7 that ¢s(y) — 0 rapidly as y — oo, and we
will prove the following theorem.

Theorem 1 If ¢ has compact support in (0,00) and v, is given by (5) we
have

ZTS—I/Z(n)¢(n) =
¢(2s) /000 o(x)x* "V 2dx + (2 — 25) /000 o(x)xt/* 2 dx

+ZTS—1/2(”)T/)S(”)- (6)

We will prove Theorem 1 by associating with ¢ a smooth vector in a prin-
cipal series representation of SL(2,R). We will then consider an Eisenstein
series on SL(2,Z). Since the Eisenstein series is automorphic, its value at
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the identity equals its value at a Weyl group element, and this relationship
implies (6).

Although Oppenheim’s generalization of the Voronoi summation formula
is most relevant for our investigation, another generalization of Voronoi’s for-
mula, due to Wilton [34] deserves mention in this context. Wilton’s formula
involves the Fourier coefficients of Ramanujan’s 7 function, and as such is es-
sentially a summation formula for the Fourier coefficients of an automorphic
form. This, of course is how we view the coefficients 7,_1/o: they are Fourier
coefficients of Eisenstein series. Wilton’s summation formula for Ramanu-
jan’s 7(n) was not unprecedented, since Voronoi himself stated (and Hardy
and Landau proved) a summation formula for r(n), the number of represen-
tations of n as a sum of two squares. These coefficients are, like 7(n), the
Fourier coefficients of a modular form. See Wilton [33], Berndt [4] and Miller
and Schmid [26] for references to the literature of this problem.

A clear statement of the nature of the connection between Voronoi sum-
mation with the “Bessel distribution” in the representation theory of GL(2, R)
may be found in Cogdell [7]. This essential insight explains exactly the rea-
son for the appearance of (6). Another representation-theoretic approach,
including a Voronoi summation formula for GL(3) is taken by Miller and
Schmid [25] and [26].

It is our hope that the (thus far accidental) coincidence between Eisen-
stein series on GL(2k) and the 2k-th moment of zeta can be explained along
these lines for general k. Such a goal would obviously be highly desirable,
and it seems to us that the evidence in Section 1 suggests a particular con-
struction. In view of that evidence, we seek a representation of the standard
L-function of an automorphic form on GL(2k) in which the parabolic sub-
group with Levi factor GL(k) x GL(k) plays a distinguished role. Such a
construction was given by Friedberg and Jacquet [13]. Their representation
of the standard L-function unfolds to the so-called Shalika model, a unique
model which only exists for self-dual automorphic forms. Fortuitously the
Eisenstein series of Section 1 is self-dual for

(v +it)]>- - |G (o + it)|* = (o +it) - - C(ok + it)C (o1 — it) - - ((ok — i)

We hope therefore that a generalization of the summation formula (6) involv-
ing “divisor sums” associated with Shalika models can be found, and that
such a hypothetical summation formula will play a role in the theory of the
higher moments of (.



We have not yet described how the Oppenheim summation formula ex-
plains Ingham’s estimate (3). For < o <1 we have

/0 Clo+ i)t~ 2m S 7y (b, (7)

n<T/2m

Application of the Oppenheim summation formula to the right hand side
immediately gives the two main terms on the right hand side of (3).

When o = £, the relationship (7) appeared in Atkinson [1] and is dis-
cussed, for example, in Jutila [18], Ivi¢ [17] and Matsumoto [22]. When
3 < o < 2, this same connection was used by Atkinson [2] and Mat-
sumoto [21] to improve the error term in (3). As these references show,
this parallel runs deeper than this simple asymptotic relation, but for our
purposes, (7) is sufficient to explain (3).

At first sight (7) seems very mysterious. By the functional equation

IC(o+it)]? = x(o —it)( (o +it)((1 — o +it).
And, with re(s) sufficiently large,

1

X(0 = 8)C(o+ )L —0+5)=x(0=5) Y Torpln)n™2". (8

So taking s = it (even though (8) is then divergent) we may regard |((o+it)|?
as a sort of generating function for the terms on the right-hand side of (7).
But why the cut-off after n = T/27? Very roughly, the reason is as follows.

By Stirling’s formula, for fixed ¢ € R we have
o
1 :
(9)

%—U+C ¢
exp <2 (t log | —
2mn
Taking ¢ = 0, and substituting the series (8), ignoring the fact that it is
divergent, we obtain a series of oscillatory terms. According to the principle
of stationary phase, the biggest contribution to an oscillatory integral will be
where the oscillations cease. We have

4 tlo ! T ) =10 !
dt 8\om ) 4 — %\ om )

t

27

n’%’c’“x(a —c—it)=n
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This means that the point ¢ = 27mn where the oscillations cease is outside the
range of integration if n > T/27, so these terms are negligibly small and can
be discarded. This outline as we have explained it is of course not rigorous
but it is the essential idea of Atkinson [1]. In Section 7 we will translate this
intuitive explanation into a rigorous proof following Atkinson.

Although we are optimistic that a generalization of the Oppenheim sum-
mation formula to “divisor sums” based on Shalika models may be possible
and will reflect the common structure between the 2k-th moment of ¢ and
the constant term of the Eisenstein series on GL(2k), the method by which
such a formula will be applied is less clear. We have explained this when
k =1 by means of (7). However we do not expect to find a straightforward
generalization of Atkinson [1] or of (7) to higher moments. It is worth not-
ing that the method of Atkinson [2] and Matsumoto [21] is very different
from that of Atkinson [1], and it uses the Oppenheim summation formula.
Our view is that the Oppenheim summation formula is central to the second
moment of { but there is not a unique way of applying it.

In Section 1 we will discuss the similarity between the conjectural asymp-
totics of the 2k-th moment of zeta and the constant term of an Eisenstein
series on GL(2k). In Section 2 we consider the so-called “arithmetic fac-
tor” which seems missing in this parallel, and which is also problematical
because it is not a global meromorphic function when k£ > 2. We will pro-
pose a possible method of avoiding it when £ = 3. In Section 3 we confirm
that Theorem 1 is a smoothed version of Oppenheim’s generalization of the
Voronol summation formula. Section 4 contains generalities on principal
series representations of GL(2,R) in the particular form in which we need
them, including the Bessel distribution giving a formula for the Whittaker
function at a Weyl group element. Section 5 discusses the Eisenstein series
associated with a certain smooth vector attached to ¢ in Theorem 1, and
Section 6 deduces Theorem 1. Finally Section 7 discusses (7) by extending
Atkinson [1].

We would like to thank Moshe Baruch, Brian Conrey, Dorian Goldfeld,
Jim Hafner, Kohji Matsumoto and Peter Sarnak for helpful comments. We
would particularly like to thank Brian Conrey for showing us the (Qkk) factors
in [9]. This work was supported in part by an AWM-NSF Mentoring Travel
Grant and by NSF grants DMS-9970841 and DMS-0203353.



1 Eisenstein Series on GL(2k) and moments
of (

Let G = GL(2k), let P be the standard parabolic with Levi factor M =
GL(k) x GL(k) and let U be its unipotent radical. Let B be the standard
Borel subgroup of upper triangular matrices, and let V' be the unipotent
radical of B N M, so that UV is the unipotent radical of B. Let A be the
adele ring of Q. Let

S1

Sok

be complex parameters. Let y, and 6 be the quasicharacters of By defined

by
2k 5. 2k —2n
XS(b) = Hi:l |yz I7 6([)) - Hizl |yi|k+1 2 )
when
yl * P *
b— Yo *
Yn

Let I(s) be the space of smooth functions f on Gp such that

flbg) = (6" x,)(b) f(g)-

The group G'p acts by right translation on I(s) affording a spherical principal
series representation.

Let W = Sy be the Weyl group of G and let Wp = S; x Si be the Weyl
group of M. Let ® be the root system of G. If 1 < 4,5 < 2k, 1 # 7 let
a(i, j) denote the root corresponding to the one-parameter subgroup X; ; of
G consisting of unipotent matrices whose only off-diagonal entries are in the
1,7 position. Let

Ot ={a(i,j) |1 <i<j <2k},

Oy ={ali,j) |1 <i <k k+1<j <2k},
Oy ={ai,j) €®|1<i,j <kork+i<ij<2k}, @, =0yNo"

Thus &+ = &y N @;,. Every coset in W/Wp has a unique representative w
such that w®}, C ®*. Let = be the set of these coset representatives. Thus
=] = (Qkk) This is the same set = defined in [9] Section 3.1.
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Let K =], K, be the standard maximal compact subgroup of G’ where
v runs through the places of Q, and K, = GL(2k,Z,) if v = p is a finite
prime, K, = O(2k) if v = oco. Let f¢ be the standard spherical vector in
I(s), defined by f2(bk) = 6'/2x,(b) for b€ Bp, k € K.

IfyeGlet UY =UNyBy L. If f € I(s) then for w € W the intertwining
integral

M@= [ fwug) du
U¥\Ua

is in I(ws). The integral is convergent if s € €2, the domain defined by
the inequalities re(s; — s;41) > % As in Casselman [6] it has meromorphic
continuation to all s. We have

M(s) f§ = c(w) fou (10)

where

a>0

wa <0
Here the product is over positive roots a such that wa is negative, and c,(s)
is as follows. We represent the root « by a vector (i,7) with 1 <i < j <k,
and then

¢*(5i — 55)

C*(Si — 55 + 1)’

where (*(s) = 77%/2T'(s/2) ((s). The action of W on the parameter s is by
matrix multiplication. Indeed, the integral in (10) decomposes as a product
of local integrals, each of which is evaluated by the formula of Gindikin
and Karpelevich [14], or its nonarchimedean analog (see Langlands [19] and
Casselman [6]).

We consider the Eisenstein series

Ca(5) =

E*(Q,S)Z{ 11 C*(Si—8j+1)} E(g,s),  E(g,9)= > f(v9).

1<y <2k Bg\Gq

Also, let

EL(QJS): H C*(Si_8j+1) EM(.QJS)J

Q@ E{)X/[



Eu(g,s)= >, (79

’YG(BF]M)Q\MQ

This function is essentially a pair of GL(k) Eisenstein series on the Levi
subgroup M = GL(k) x GL(k). Let

Z(s) = H C*(si —sj+1).
1<i<k
k+1<j<2k

Proposition 1 (i) The constant term

/U\U E(ug,s)du = Z c(w)Ey (g, ws).

w~le=
(ii) The constant term
/ E*(ug, s) du = Z Z(ws)Ey (g, ws). (11)
Ug\Ua w~le=

Proof. The integral in (i) equals

> / > f(y'oug) du=

YEUQ\Ga/Bg ” VRWA seui\ug

/ f(y tug) du.
U'Y

€U \Gq/Bg * Va\Ua

The integrand is invariant when w is changed on the left by an element of
Uj. Hence this equals

> f(y tug) du.

1€UQ\Ga/Bg Y VA\UA
We factor v = 7, ! w, where w € Py\Gq/Bg and v, € (PgnwBqw™')\Py/Ug.

According to the Bruhat decomposition, w can be chosen so that w=! € Z.
For these values of w, we have MNB C wBw™!. Hence v, can be chosen from
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(BN M)g\Mg. Now replacing u by 7; 'uvy; and noting that v; normalizes
U, while v, U Wt = UY, we get

Z/ Z fw tuyg) du.
w Y UE\Ua

1 E€(BNM)qQ\Bg

This proves (i).
To prove (ii), note that by (i) and (10) the left side of (11) is

> [I Cei-s+1) T Clsims) b Bl ws).

w-lex a=a(i,j) >0 a=ai,j) >0
wa >0 wa <0

In the second product, replace o by —c, thus switching 7 and j, and use the
functional equation. The two products may thus be combined giving

Z { H C*(Si_Sj—i‘l)}EM(g,ws)_

w—leE \acw—1od+

Absorbing the k(k —1) zeta functions in the normalizing factor of E7, (g, ws),
what remains is Z(ws). O

To make the comparison with Conrey, Farmer, Keating, Rubinstein and
Snaith [9], first let £ = 2 and choose s1 = uy, $5 = ug, s3 = —vy and s4 = —vs.
The L-function L(E, 5 + it) of E(g,s) is

C(3+it+u)C(3+it+u)C(3+it—uv)((G+it—v),

and applying the functional equation of ( in the last two factors we get the
argument of [9] (1.7.1). On the other hand, the factors Z in Proposition 1 (ii)
are the same as their six factors Z, except for the missing zeta function in
the denominator, which is the “arithmetic factor” that we will discuss in the
next section. If k is general, taking s; to be «; in the notation of [9], our
Z(ws) are exactly the (Qkk) products of k% zeta functions that occur in the
right side of their (3.1.14). Our w is their o=!. (Applying w to s is the same
as applying its inverse to the indices.)
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2 The Arithmetic Factor

In addition to the k2 zeta functions, each of the ( ) terms in the asymptotics
conjectured by Conrey, Farmer, Keating, Rubinstein and Snaith [9] also in-
volves a certain Euler product, which is only an L-function when 2k < 4.
This is the “arithmetic factor” Ay defined in their (3.1.8). This factor does
not appear with the (%) terms in our (11), which otherwise perfectly match
their terms.

Moreover the arithmetic factor is problematical for another reason. As a
function of their parameters «, the arithmetic factor does not have analytic
continuation everywhere but has a natural boundary if £ > 3. This may
already be seen in a classical result. If re(0) > 1 — 1/k then Carlson proved
(see Titchmarsh [30], Section 7.9)

/T|C(U+Zt | dt ~ [de
0

where di(n) is the number of ways of expressing n as a product of k factors.

Moreover -
S di(n)? =t = () T P,
n=1 p

where Py is a Dirichlet polynomial. We have

Pi(z)=1, Pyr)=1—2°  Psyz)=1-92>+162° — 92* + 25,
and in general
k—1
Pk(ZL‘) 2klz<k_1> 2k
n=>0

Estermann [12] considered a class of Dirichlet series including the Euler prod-
uct [, Px(p~*). He proved that it is absolutely convergent for re(s) > 5 and
has meromorphic continuation to re(s) > 0 but if £ > 3 it has a natural
boundary on the line re(s) = 0. In the notation of [9],

Hpk(p_s) = Ak(o; Sy, 8, =S8, 7_8)‘
p
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This natural boundary is somewhat disturbing, so let us consider how, at
least for the sixth moment, it may be possible to eliminate the arithmetic
factor. Estermann’s discovery that the arithmetic factor does not have an-
alytic continuation may not be an insurmountable difficulty, but it raises
the question whether (1) is really the most natural object to consider. We
suggest a possible alternative.

Proposition 2 Suppose a = (ay,as,a3) and b = (by, by, b3) are given. As-
sume that o + a; and o + b; have real parts > 1. Then
11 bt

lim — — 30 + ay + ay + az + ity + ity) tx
TThsoo T1 Ty g . ¢( 1 2 3 1 2)

C(30 + by + by + by — ity —ity) ({0 +ay + it))((0 + ayx + ity (0 + az + ity) X
C(o + by —it1)C(0 + by — it1)( (0 + b3 — ity) X
C(20 4+ a1 + ag +it2)( (20 + a1 + az + ity)( (20 + ay + a3 + ity) ¥
C(20 + by + by — it2)C(20 + by + by — it9)( (20 + by + by — ity) dty dt; =

[T, ITi-) (20 +ai+b))
C(60 +a; +as +az+ by + by +b3)

We conjecture that if we take o around % and the a;, b; small, the term on the
right hand side will be one of (2:) in the asymptotics of the left hand side,
paralleling those found for the sixth moment by [9]. Note that since 20 and
30 are farther to the right this is something like the sixth moment. If this
conjecture is true, this variant may be a more natural object to consider than
the sixth moment itself, since it eliminates the arithmetic factor, replacing it
with a factor having meromorphic continuation.

Proof. For p a fixed prime let

I(]+]( 3+2 k]+k Z+2 k]+k Z+2
k Z+1 k 3+1 k 3+1

1 1 1

k ko) __ _
Ua(p 17p 2) — O[2 OCQ OCQ ) Q; =p
1 2 3

Q1 Qg Qg
1 1 1
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This is a Schur polynomial in «;, s and a3. Extend o,(n1,ns) to all ny; and
ne by multiplicativity. We have

Y oalna,ng) ny*t ny* =

C(Sl—FCLl) C(Sl +a2) C(81+a3)C(82+a2+a3) C(52+a3+a1) C(SQ—FCLl +a2).

C(Sl +82 +CL1 +CL2+CL3)
(12)
Indeed, both sides are Eulerian, and locally this is (9.17) on p. 155 of Bump [5].
See Stanley [29] Exercise 7.28, pages 458 and 503 and Macdonald [20], Ex-
ample 7 on p.78 for a more general statement. Also

C(3s+ a1+ az+ a3+ by + by +bs) Y 0a(n1,m2) op(ny, n2) (manj)~* =

ni,n2

C(s+ai+bj). (13)

3
= 1

3

)

This follows from the Cauchy identity. See Stanley [29] p.322.
By (12) the integrand on the left hand side of the formula in the Propo-
sition is

—o—1ity  —20—1il2
E oq(n1,n9) ng n, ]

n1,n2

1yj

—o+ity —20+1ts
E op(my, my) mj msy

n1,n2

Proceeding as in Titchmarsh [30], Theorem 7.1, it is elementary that the
diagonal terms n; = m; give the asymptotic value, which is evaluated by (13).
O

3 The Oppenheim Summation Formula

In Oppenheim [28] is proved a generalization of the Voronoi summation for-
mula, which we now review. We will confirm that it is consistent with our
Theorem 1.
Let
Dy _py(x) = 201—25(71)-

nT
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In its original form the formula asserted, provided that s is real and s € (3, 3)

¢(2 - 2s)

Dy _9,(§) = ¢(25)€ + 5 99

58 = 3C2s =)+ Ara(), (14)

where

Aigg(6) = €' o1 g (n)n*”
n=1

{cos sm)Ja_os(4m/n&) + sin(sm [YQ os(4m\/n&) + (2/7) Koy_o5(4dm/10 ]}

We will show in this section that Oppenheim’s summation formula implies

the smoothed version in our Theorem 1, when i < s < %. However in

Oppenheim’s formula the assumption that re(s) < % is essential, because the

series A o, will not be convergent otherwise. The smoothed version does

not have this limitation and we will give a proof of it for all s in Section 6.
Note that Ts_1/2(n) = o1_95(n)|n|*~1/2. Write

o) = 1ol [ (€1, @) = ~[al' 20 (0) — (s = 1) e 200)

Both ¢ and ® have compact support in (0, 00). Integrating by parts,

[ o oo+ SEE2w sy o=

2 —2s

2 ¢ S_I/Qd +{(2—-2 ¢ 1/2_sal .
C( 5) /0 (.’L‘)ZL‘ X (( s) /0 (.’L‘)ZL‘ X
We consider now

/0 " B() Ay os () d.

First the K-Bessel contribution is —27 ! sin(sm)7,_y/2(n)n /2

times

— /000 Kooos(dm/nz) [2'2¢ () + (s — 1) 2729 (2)] da.

Integrating by parts, this is
%/ [Ar/na K, _y, (4m/nx) + (2 — 28) Ko—os(4my/nz) | 272 p(2) do. (15)
0
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Using the formulas (Watson [32] p. 79)
2K, (2) = vK,(2) = —2K,41(2), 2K (2) +vK,(2) = —2K,_1(2),

the contribution (15) equals

4 sin(sm)To_1/2(n) /000 Ki_o(4mv/nx)p(x) da.

The J and Y contributions are handled similarly using (Watson [32] pp. 45
and 66):

2 (2) —vd,(2) = —zJ,41(2), 2 (2) + v, (2) = 2], 1(2),

2Y)(z) +vY,(z) = 2Y, 1(2),

and the summation formula follows.

4 Principal Series Representations

Let s € C, and let V; be the space of functions f : GL(2,R) — C which
& S

satisfy
r((7r)e) =12 e (10

and such that that the restriction of f to K = SO(2) is a smooth function.
We do not assume that f is K-finite. The group GL(2,R) acts on V; by
right translation. Thus if g € GL(2,R) let (75(9)f)(x) = f(xg). The space
V, is the space of smooth vectors in an even principal series representation
of ms : GL(2,R) — End(Vj).

Let
_ -1
Wy — 1 .

It follows from the theorem of Shalika [29] that there exists a unique linear
functional A : V; — C such that for f € V;

V(e (7)) e

16




For re(s) > 3 we may define such a functional by

=L )

The Whittaker function associated with a fixed f € Vj is

> I @ —2mix
Wito) =A@ = [ £ (w (P ] )o)eran an
We will denote by W; the space of all functions Wy. It is the space of smooth
vectors in the Whittaker model of 7,. We have

wﬁ(y 1>ZWVS/Zf<m<1 f))e%WdL (18)

which follows by a change of variables from

o0 -1
wr (V) = (e (P )) e

If f, €V, let
fislg) = / f; <w0< ! ”f)g) da. (19)

Again this integral is convergent if re(s) > 1, and we have fiis € Vi,
Thus M : Vi, — V;_ is an intertwining operator. It is known that both
the Whittaker integral and the intertwining integral (19) have meromorphic
continuation to the entire s plane. That is, one may fix a smooth function
on SO(2)/{£I}, which then extends uniquely to a function satisfying (16)
for any s. Then both (17) and (19) are meromorphic functions of s. However
we will not need this fact. For our purposes we only need the integrals (17)
and (19) in the case re(s) > %, where both are absolutely convergent.

Now we wish to choose the function f so that y='/?W; (¥ ) = ¢(y) where
¢ is a prescribed function. We assume that ¢ is smooth and compactly
supported in (0, 00). For this particular f the values of Wy (y 1) will be zero
when y < 0. We define a smooth function f; 4 € V; by

fs,¢(g) =

17



Y1
Y2

/ ¢(U) us—1/2627ria:u du ifg _ ( o * ) we ( 1 313 ) ;
0 Yo
: Y1 ok
0 fg= .
o < 7 )

According to the Bruhat decomposition, every element of GL(2,R) is ex-
pressible uniquely in one of these forms.

Proposition 3 The function f;, is smooth and satisfies (16).

Proof. Itis clear that f 4 satisfies (16). It follows from this that smoothness
is equivalent to the smoothness of its restriction to SO(2). We have (assuming

Sin(@) #* O)
( Z?I?(g) C(S)isnée) ) ( " *2 )wo ( 1 :f )
(#) (0) Y

with y; = sin(0) 7!, yo = sin(), * = cos(f) and x = cot (). So

COS(Q) Sln(e) o us~ i cot
fs,d>< sin() cos(6) ) = sin(# / o(u 1/2,2 ©) du.

The issue is smoothness where sin(¢) = 0, but the Fourier transform here is
a rapidly decreasing function of cot(f), so fs 4 is smooth at these points. [

Let W,y = Wy with f = fo 4

Proposition 4 We have

Y _ I Vyoly) ify >0
WW( 1)‘{ 0 ify<o.

Proof. Since ¢ is compactly supported in (0, 00) both cases are contained

" Wi < ’ 1 ) = Vyl¢(y)

which we prove. Using (18) and the definition of f, 4 the left side equals

|y|1s/ / d(u) u 22w gy, e 727 g = \/@sb(y)
—00 J0

by Fourier inversion. O
If fs = fs, we will denote the function f1_, defined by (19) as f1,57¢.

18



Proposition 5 We have f,4(I) = fi_s(I) = 0. Moreover

Foolw) = /0 " (@) da (21)

and

(25— 1) fiosiplwo) = C(2 — 25) / " $(a)a 12 d (22)

Proof. We have f; 4(I) = 0 by definition. On the other hand

Froool) = [~ [ oty uem du .

By the Fourier inversion formula, this is the value of ¢(u)u*~"/2 at u = 0.
However this smooth function has compact support strictly to the right of 0

50 fi_so(I) = 0.
The first formula (21) follows immediately from (20). As for (22),

fiso(wo) = /00 [0 (wo ( L :f > w0> dx =
) -1 o1
Fal(5 ) )
/OO 2] fop (wo < ! _xll )) dx

Replace by —z~! in this identity to obtain

f1,5,¢(w0) = /_OO iRy <w0 ( L 31; >> dr =

/ |l‘|2(51)/ ¢(u)u571/2€2ﬂ'imu du dz.
—00 0

Although we began by assuming that re(s) > 1, this integral is convergent
for all values of s. Indeed, ¢(u)u®~/? is compactly supported and smooth,
so its Fourier transform is Schwartz class. To evaluate this integral, we may
therefore assume that % < s < 1. In this case,

/ |25 2mien g — 92729 (ry) 1728 sin(7s) ['(2s — 1).

o0
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Proceeding formally at first if we interchange the order of integration and
obtain

fl_w(wo) = 22725712 g (5) [ (25 — 1)/ d(u) W25 du.
0
Now using the functional equation of ¢ in the form
2175175 cos (%) ['(s)C(s) =¢(1—s),

we obtain (22). The interchange of the order of integration may be justified by
tilting the line of integration with respect to x off the real axis into the upper

half plane at a positive angle in both the positive and negative directions.
O

We now recall a formula of Cogdell and Piatetski-Shapiro [8] for the action
of the Weyl group element wy on the Whittaker model. If W € W; then this
formula asserts that for 7 = m, we have

W((y 1>w0>:/]RXJ7T(uy)W<u 1>dxu, (23)

where the “Bessel Function” (introduced by Gelfand and Kazhdan)

VMg () — ey (Amm)] ifu > O;

Jﬂ—(U) _ s1n(7r(s‘ |2))

— s [125_1(47r [a]) — I, oy (4 |u|)] ifu < 0.
This formula was stated in [8] p. 57 when 7 is unitary, so that either s = £+t
with ¢ real, or s is real in (0, 1). In their notation, ir = s —1/2. A proof may
be found in Baruch and Mao [3], Theorem 4.4 and Appendix 1.

We will prove (23) without assuming unitaricity for the particular Whit-
taker function W, 4. The proof is close to that of Baruch and Mao (which
was explained to us by Moshe Baruch) except that the compact support of
¢ allows us to dispense with their convergence factor.

We have (Watson [32], p.64 and p.78):

_cos(mv)J,(z) = J_(2)

Yolz) = sin () !

20



Using these relations and standard trigonometric identities,

T () = { —2m/u [cos(ms) Ji_as(47/u) + sin(7s) Y1 o (4mv/u)] if u > 0;
T Uavlulsin(rs) Ky, (dry/ul) R

Theorem 2 Assume that re(s) > 5. If W = W, 4 then (23) is valid.

Proof. We apply (18) to the function m,(wp) fs,4, then use the definition of
fs,¢ Obtain

() -oLrelo( ))ne
|y|1—s /oo fs,¢ (( 1 —.’117_1 ) (:L‘_l N ) wo( 1 —-’117_1 )) e—27ria:ydx:

|y|1s/ / |x|725¢(u) u571/2€727ri(my+m_1u) du dz.
—o00 J 0

Since ¢ is compactly supported, it is not hard to justify interchanging the
order of integration. We then combine the positive and negative contributions
of x to write the inner integral as

2 / x7% cos(2m (vy + 2~ u)) da.
0
Then using (24) and Gradshteyn and Ryzhik [15] 3.871 on p. 470, which is

applicable when re(s) € (3,1), we obtain (23). For re(s) > 3, the result
follows by analytic continuation. Note that Y, is denoted as N, in [15]. O

5 Eisenstein series

Let ¢ be as in Theorem 1 and let f 4 be as in Section 4. Assuming re(s) > 1,
we consider the Fourier expansion of the Eisenstein series

Ey(g,5) = 3¢(25) Y fas(79)-

T\l
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Proposition 6 Ifre(s) > 1 we have

1
/ Ed> << ! :f ) g, 5) e~ iy = Ts—1/2(”)”_1/2Ws,¢> << " 1 > 9)
0

(25)
if n # 0, while

/01 E, (( L ) g s> dr = C(25) fro(g) + C(25 — D Fis(g).  (26)

Proof. Assuming n # 0 we have

/1 (( Iz ) ) —2minx
E, g,s e de =
0 1

1
5029) [ D fow (7( b )g) eI dy,

Let ¢ € Z and let [', = {(‘CL 2) € F} be the subset of I' with prescribed c. If
n # 0 then the contribution of ['. vanishes when ¢ = 0 so we may write this

as
1¢(29) ) / Y. fue (v(l H )g) e d =

>0 dmod ¢
amod c

ad = 1(mod c)
(d,e) =1

[ ) (o) () () )

To evaluate this we may use (16), and also make a variable change x —
x — d/c to obtain

C(QS)Z Z e27rind/ccf2s /_oo fs,qﬁ (( . -1 > ( 1 "f >g> e 2mine 1.

¢>0  dmodec
(d,e) =1
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According to Ramanujan’s identity

C(25) Z Z eZnind/cc—Qs = 0y_os (n)

¢>0  dmodc
(d,e) =1

Also the variable change x — n~'z shows that

[oal(0 ) (1)) ("))

Since o1_a5(n)n® ! = 7, 1/9(n)n"'/2, we have proved (25).
Next we prove (26). The contribution of ¢ = 0 is ((2s)fs,4(g). The
contribution of ¢ # 0 is evaluated like (25) and we obtain

_os [ -1 1 z B
a3 [ ne(( ) (1 T)e) e
>0 dmodc o0
(d,e) =1
4(28) Z 90(0)0725];175@(9)7
c>0
where ¢ is Euler’s phi function. We have
(25) S ple)e = (25— 1).
c>0
This proves (26). O

6 Proof of Theorem 1

Let ¢ have compact support in (0,00) and define ¢, : R — C as in (5).
Proposition 7 For any s then ¢,(y) = O(y ) as y — oo, for all N.

Proof. We make use of the asymptotic expansions (Watson, p. 199)

J,(z) = \/gcos (z = tvr — 1x) 2712

+\/g v+t sin (z — svm — 17) 2732 L 02777,

2
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Y,(z) = y/2sin (z — v — I7) z 712
IIERVAN
\/% (v 2)2(1/ 2) cos (z — tvm — im) 2732 4 02777,

and K,(z) ~ /2/(rz)e ?. The term in brackets in (5) is therefore

\/% [— cos(\/zy + 2sm — 3 /4)z Ay~

(% — 23)(% — 25)
2

Now let us consider

+ sin(y/@y — 3m/4) 2y~ 4 O((ay) /)

/00 o(x) cos(y/zy + 2sm — 3 /4) x~ /" da.
0

The variable change x = u? makes this

2 /OO d(u?) cos(uy/y + 2sm — 31 /4) u'/? du.
0

This is the Fourier transform of a smooth function, evaluated at ,/y, hence is
of rapid decay as y — 00. The second term is similarly of rapid decay. This
leaves us with the error term which is dominated by the convergent integral
[ #(z) 2=%/*dz times y=°/*. This proves that the integral is O(y~>/*). Taking
more terms of the asymptotic expansion gives better error terms. O

We may now prove Theorem 1. We have the Fourier expansion of the
Eisenstein series

Eyg,s) = Z/Ol E, << 1 "f >g,s> =2 g

nez

This is clear if re(s) > 1 and we at first assume that s is in this region. By
Propositions 6, 5 and 4, it follows that E4(/, s) is the left side of (6). On
the other hand by Propositions 6 and 5 and Theorem 2, Ey(wy, s) equals the
right side of (6). Of course they are equal since Ey(wy, s) is automorphic, and
the Theorem is proved when re(s) > 1. The general case follows by analytic
continuation, since using Proposition 7 it is not hard to see that both sides
of (6) are entire functions of s.
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7 The second moment and the divisor prob-
lem

We will use the method of Atkinson [1] to explain the relationship (7).

Matsumoto [21] obtains a better error term than Ingham [16], at least
when o < %, and Ingham’s error term is better than we obtain by the method
that we will use. Matsumoto’s result can be written

(271.)2071

52 20)T% %7 + O(TY(1+19) 10g(T)?).

T
/0 Clo+it)[2dt = C(20)T+

His method, adapted from Atkinson [2] is based on a more subtle application
of the Oppenheim summation formula. This work is continued in Matsumoto
and Meurman [24] and [23].

We think the original approach of Atkinson [2] is still useful in giving
the crucial relationship (7) quite simply. Atkinson’s proof is repeated in
Titchmarsh [30].

Theorem 3 ]f% < o <1 we have

/TK(”“)IZdt—?W N 7, a(mnrT| = 0(1% ),
0

n<T/2m

Proof. First we note that

T 1 o+e+iT L
/ o+ i) dt — o C(o + 5)C(o — 8) ds| = O(T*+),
0

t o+e—iT

Indeed, rewriting fOT IC(o + it)|*dt = %fTT |C(o + it)|* dt, this difference
consists of the constant residue w((20 — 1) plus the contributions of two
short integrals

1 o+e+iT L
% C(o+s)C(o —s)ds = O(Tz").
+iT
We have
1 o+e+iT 1 S8 ote+iT L
— ((o+s)((0c—s)ds=— T_;n/ n~ 2" °y(oc — s)ds.
2i Joye—iT ( S ) 2i nz::l 2( ) ot+e—iT ( )
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If n > T/27, using (9) and Lemma 4.3 on p. 61 of Titchmarsh [30], the n-th

term here is
nféfzrfsT%+€
log |5 |

Since ZTgié(N)n 2777% < 0o we may discard these terms. We are left with
the problem of estimating

1
% 2 T

n<T/2m

o+e+iT L
(n) / n 2 °*x(oc —s)ds.

+e—iT"

NI

Using (9) we have
otexil L L
/ n 2 °x(c —s)ds =0 (n_1/2T5+5> :
+iT

Now by Theorem 1 or a Tauberian theorem

> Toos (W~ ((20) x,

n<e

and by partial summation it follows that

ZT _%(n)n_% = 0(z7). (27)

n<T

Therefore

1 o+ediT L
% Z 7,_1(n) / n"27%x(oc — s)ds = O(T7).

2 .
n<T/2m +iT

Thus we may move the path of integration back into the critical strip and
approximate fOT |C(o + it)|? dt by

1 i,
% Z Taé(n)/ n 2 °x(oc —s)ds.

n<T /2w -

We would like to change the limits to —ioo and ic0. By Titchmarsh’s Lemma 4.3,

100 L T0'—1/2
5 (0 — s) ds = .
/ Xl = s ds O(ﬁlog(T/%n))
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applying (27) again, the error in changing the limits is O(T?°~'/2). We
consider therefore

1 oy
% Z TU_%(n) / n~ 2%y (o — s)ds.
L n<T/2m —ioo
Since
]_ o0 1_ - 1
3 / w727y (0 — it) dt = 272277 cos(2mT),

and since cos(27n) = 1 when n is an integer, we get

27 Z Tyl (n)nz .

n<T/2m
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