

Mercurial vs. Git Workflows

Remote
Repository

Local
Repository

Local
Files

Mercurial
Workflow

pull

push

commit update

Remote
Repository

Local
Repository

Local
Files

Git Workflow
(without staging)

pull

push

commit -a

If we ignore Git’s staging feature, a simple workflow is similar to Mercurial.

• A difference: local files are updated automatically on pulling with Git.

• If you don’t want that, us git fetch instead of git pull.

1

Git without staging:

Remote
Repository

Local
Repository

Local
Files

Git Workflow
(without staging)

pull

push

commit -a

For this workflow, always use commit with the -a flag (add) in this workflow.

• Advantage: simple and similar to mercurial.

• Disadvantage: staging can help avoid half-finished commits. You lose this
advantage.

• You can follow along on your own computer.

2

What we’ll do.

• To get started quickly, we’ll clone an existing repository.

• The cloned repository will be our new remote repository.

• We’ll clone it again to get our new local repository.

• The remote and local repositories will be on the same computer (yours)

• This will simplify matters of permission.

Original

Repository

at sporadic

New Remote

Repository

Local

Repository

Local

Files

clone --bare

does not produce

local files

clone

does produce

local files

clone --bare clone

3

The remote repository

• For simplicity, let’s just clone an existing repository.

• Use clone --bare.

• A bare repository contains git files but not working files.

$ mkdir remote; cd remote; pwd

/home/bump/remote

$ git clone --bare http://sporadic.stanford.edu/pi.git

Cloning into bare repository ’pi.git’...

4

The Local Repository(s)

Now clone the “remote” repository to make the local repository.

• Typically this would involve ssh or other internet protocol.

• But our “remote” repository is on the same computer, so not this time.

• Clone without the --bare option to get a working directory with files.

• The repository git files are in .git subdirectory (like Mercurial).

$ pwd

/home/bump

$ git clone /home/bump/remote/pi.git

Cloning into ’pi’...

done.

$ cd pi; pwd

/home/bump/pi

$ ls -a

. .. digits .git pi.txt rhymes

$ ls .git/

branches config description HEAD ...

5

1. pull
from remote
repository

2. Work
on files in local

working directory

3. commit -a

to local repository
(without staging)

4. push
to remote
repository

$ git pull

Already up-to-date.

Nothing has changed on remote, but if someone else had pushed a change, from
another local repository pulling would update both the local repository and
the local files. A merge conflict might need to be resolved.

Remote
Repository

Local
Repository 1

Local
Files 1

Local
Repository 2

Local
Files 2Multiple

Local Repositories

pull

commit -a

push commit -a

6

Do some work.

$ emacs pi.txt

$ git diff

diff --git a/pi.txt b/pi.txt

index 454909a..5f8cf88 100644

--- a/pi.txt

+++ b/pi.txt

@@ -1,5 +1,7 @@

-Memorize this little poem and you’ll know

-ALL the digits of pi!

+ PI

+

+Memorize this little poem and you’ll know ALL the digits of pi!

+(But first we must finish writing the poem.)

Three point one four one five nine,

We eat pi all of the time.

Use commit -a to commit without staging

$ git commit -a -m "rewrote exordium"

7

The Repository
As with Mercurial, the repository contains a directed acyclic graph (DAG),
node a snapshot of the file system. Each node is created when you commit.

pi.digits
6bc7c93

newfiles rhymes ...
59e7150

some digits
d8d9bf2

pi poem started
0906e5c

Merge
2cd80b4

A few more ...
e16be78

Local
Files

HEAD

oldest
commit

Commit objects get a commit message and a 39 hex digit SHA1 hash. Only
the first few digits of the hash are needed to identify the node.

• HEAD points to the “current” node. If we commit, we attach a new node
here. The local file system is derived from this snapshot.

• Use gitk --all to view the repository as a DAG.

8

Branches

A branch is a pointer into the DAG. The “main” branch is called master.

The special pointer HEAD may point directly to a node. But usually it points
to a branch which points to a node. The last picture was incomplete since it
showed HEAD but not master. More correctly:

newfiles rhymes ...
59e7150

some digits
d8d9bf2

pi poem started
0906e5c

Merge
2cd80b4

A few more ...
e16be78

Local
Files

master

HEAD

9

Committing

If HEAD points to a branch, say master, and we commit changes, a new node
is created this point.

Merge
2cd80b4

A few more ...
e16be78

Local
Files

master

HEAD

�

Merge
2cd80b4

A few more ...
e16be78

The medium
c34263c

Local
Files

master

HEAD

$ git commit -a -m "The medium"

10

git checkout

To switch to a different branch, use

$ git checkout [branch name].

Merge
2cd80b4

A few more ...
e16be78

Local
Files

masterolive

HEAD

�

Merge
2cd80b4

A few more ...
e16be78

Local
Files

masterolive

HEAD

$ git checkout olive

11

git checkout

To switch to a different branch, use

$ git checkout [branch name].

Merge
2cd80b4

A few more ...
e16be78

Local
Files

masterolive

HEAD

�

Merge
2cd80b4

A few more ...
e16be78

Local
Files

masterolive

HEAD

$ git checkout olive

HEAD can change the active snapshot. We recover the (tracked) local files.

12

Revisiting Old Snapshots

We can also git checkout [SHA1 hash].
Moving HEAD the local filesystem will instantly change to an older version.

newfiles rhymes ...
59e7150

some digits
d8d9bf2

pi poem started
0906e5c

Merge
2cd80b4

A few more ...
e16be78

Local
Files

HEAD

master

$ git checkout 0906e5c

The local filesystem has reverted to an earlier state. HEAD points to the node
where a new node will be attached if you commit now. But ...

13

Detached HEAD

Checking out an older snapshot gives us the files, but if we want to commit
we will need to create a branch. (We’ll get to this ...)

$ git checkout 0906e5c

Note: checking out ’0906e5c’.

You are in ’detached HEAD’ state. You can look around, make

experimental changes and commit them, and you can discard any

commits you make in this state without impacting any branches

by performing another checkout.

If you want to create a new branch to retain commits you create,

you may do so (now or later) by using -b with the checkout

command again. Example:

git checkout -b new_branch_name

HEAD is now at 0906e5c... pi poem started

14

Checkout and branch

Unless we just want to look at the file system, or if there is already a branch at
the given node, we will need to create a branch there before we do any real work.

So we may prefer to git checkout -b [new branch name] [SHA1 hash]

newfiles rhymes ...
59e7150

some digits
d8d9bf2

pi poem started
0906e5c

Merge
2cd80b4

A few more ...
e16be78

Local
Files

HEAD

master

olive

$ git checkout -b olive 0906e5c

15

The Staging Area (index)

In Git, add and commit are separate commands though they can be combined
in commit -a. Why?

• There are two reasons to commit a file.

• Reason 1: to save correct (but unfinished) work.

• Reason 2: to add what is finished to the local or remote repository.

Reason 1 suggests we should save frequently. But if we use commit -a too
often we get snapshots of unfinished work in the repository.

• Git has both short term and long term solutions to this dilemma.

Short term: Git has a staging area (index) where the commit is prepared.
Long term: branches can be used where Mercurial would use mq.

16

Staging

The staging area (index) contains a snapshot of the local file system that will
be copied into the repository if a commit is done now.

Earlier
Commit

Head
(Most Recent Commit)

Staging
Area

Local
Files

commit

add

• Not all files are tracked. Only tracked files go into the repository.

• Even if a file is tracked, it may not be in the same state in the local file
system as in the staging area.

• To copy a file into the staging area use git add.

• git commit copies staged files into the repository creating a new node.

17

More on git add

• Roughly git commit -a is the same as git add followed by git commit.

• But not quite since git add must specify a file or files to add.

Not all files are tracked. A file is untracked until you explicitly add it to the
repository using git add.

• git commit -a only commits tracked files.

• git commit -a copies all tracked files into the staging area then commits.

• git add [file] copies the file into the staging area and (if necessary)
begins tracking it.

18

Staging Demonstration.

$ git status

On branch master

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working

directory)

#

modified: pi.txt

no changes added to commit (use "git add" and/or "git commit -a")

Do some work.

$ emacs pi.txt

No files staged yet so index and HEAD contain the same files.

$ git diff shows the difference between local files and index.

19

Stage your work

$ add pi.txt

We have staged one file. Now index differs from HEAD. But local files are
the same as index so:

$ git diff without arguments shows no changes.
$ git diff --staged shows the staged changes that will be committed.

Work some more.

$ emacs pi.txt

Now HEAD and index and local files all differ. Use git diff with or without
--staged to see the changes.

20

$ git status

On branch master

Changes to be committed:

(use "git reset HEAD <file>..." to unstage)

#

modified: pi.txt

#

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working

directory)

#

modified: pi.txt

• git add moves the local changes into the staging area.

• git commit followed by git add commits the staged changes, then moves
the local files into the staging area.

• git add followed by git commit commits all changes.

21

Branches (Review)

• HEAD is a pointer to the place where a new commit will be attached.

• Usually HEAD points to a branch which points to a node.

• There is a default branch called master.

newfiles rhymes ...
59e7150

some digits
d8d9bf2

pi poem started
0906e5c

Merge
2cd80b4

A few more ...
e16be78

Local
Files

master

HEAD

• There can be other branches pointing to other nodes. You can move
HEAD to an existing branch using git checkout [branch name] .

• gitk --all is a good way to see the branches.

22

Use Branches For Experimental Features

Create a new branch, and add a couple of commits.

$ git checkout -b olive

$ emacs olive_pi.txt

$ git add olive_pi.txt

$ git commit -a -m "olive pi"

$ emacs olive_pi.txt

$ git commit -a -m "olive pi (finished)"

Merge
2cd80b4

A few more ...
e16be78

olive pi
c4f5155

olive pi (finished)
c4f5155

Local
Files

master

olive

HEAD

Perhaps better:
Create the branch

on the remote repository.

23

Use master for permanent changes

$ git checkout master (Then add a couple of commits.)

Merge
2cd80b4

A few more ...
e16be78

olive pi
c4f5155

olive pi (finished)
c4f5155

work on pi poem
b1445b8

more pi work
6e2b97b

master

olive

HEAD

Problem: how to merge the two lines of development.

24

git merge -m "merge olive branch" olive

Merge
2cd80b4

A few more ...
e16be78

olive pi
c4f5155

olive pi (finished)
c4f5155

work on pi poem
b1445b8

more pi work
6e2b97b

merge olive branch
df32cf

master

olive

HEAD

The branch olive is not needed now, so we may delete it.

$ git branch -d olive

25

git rebase

Starting with the same situation we can use git rebase to obtain a merge
with a better topology. This is useful in realistic workflows so we cover it.

Merge
2cd80b4

A few more ...
e16be78

olive pi
c4f5155

olive pi (finished)
c4f5155

work on pi poem
b1445b8

more pi work
6e2b97b

master

olive

HEAD

26

Make sure you are on the right branch.
$ git checkout olive

Merge
2cd80b4

A few more ...
e16be78

olive pi
c4f5155

olive pi (finished)
c4f5155

work on pi poem
b1445b8

more pi work
6e2b97b

master

olive

HEAD

27

$ git rebase master

First, rewinding head to replay your work on top of it...

Applying: olive pi

Applying: olive pi (finished)

Merge
2cd80b4

A few more ...
e16be78

olive pi
c4f5155

olive pi (finished)
c4f5155

work on pi poem
b1445b8

more pi work
6e2b97b

master

olive

HEAD

This involves rewriting history to move the patches from the point where the
branches olive and master diverge to apply after master.

28

git rebase -i

• Git rebase interactive gives you functionality like Mercurial queues.

• Like mq git rebase is all about rewriting history.

• A commit plays the role of a queue patch.

• You can reorder the commits that are about to be rebased.

• (Or already rebased!)

• You may also squash commits, which is the same as folding patches.

(demo)

29

Fast Forward

If you now want to move master up to the end of the tree, you may do this.

You probably don’t want to do this unless you are release manager
because master should parallel the remote branch origin/master.

$ git checkout master

$ git merge olive

Merge
2cd80b4

A few more ...
e16be78

olive pi
c4f5155

olive pi (finished)
c4f5155

work on pi poem
b1445b8

more pi work
6e2b97b

master

olive

HEAD

master moves
to here

30

Remote branches

If either $ gitk --all or $ git branch -a

we will see any remote branches that have been pulled. Let us create a new
branch and push it to remote. We can work on the local repository for this.

$ git checkout -b olive

Switched to a new branch ’olive’

$ git push origin olive

Total 0 (delta 0), reused 0 (delta 0)

To /Users/bump/remote/pi.git/

* [new branch] olive -> olive

$ git branch -a

master

* olive

remotes/origin/HEAD -> origin/master

remotes/origin/master

remotes/origin/olive

31

Remote branches

• If we clone a repository, we get all the remote branches.

• If new branches are created on remote, we get them when we pull.

• The remote branch olive is identified as origin/olive.

To see the remote branche I can use gitk --all or

$ git branch -a

* master

remotes/origin/HEAD - origin/master

remotes/origin/master

remotes/origin/newbranch

remotes/origin/olive

The * indicates that master is the active branch, but the other remote branches
are shown. If I want to work on olive I create a corresponding local branch.

32

Working on a remote branch

$ git checkout -b olive origin/olive

Branch olive set up to track remote branch olive from origin.

Switched to a new branch ’olive’

Now I can work on the local branch olive and push and pull changes to the
remote repository.

To pull changes use

$ git pull origin olive

To push changes, it is a good idea to configure git so that only changes on the
active branch are pushed. Assuming you have configured git this way:

$ git config --global push.default simple

git will push the current branch to the one it would pull from. This is probably
what you want.

33

Making patches

Used git format-patch

Automation

Git can do tasks automatically. For example, we wanted to update web pages
automatically every time someone pushed to a repository.

We added a script to hooks/post-recieve in the bare repository:

#!/bin/sh

cd /var/www/icerm; GIT_DIR=’.git’; git pull; git update-server-info

34

