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Weyl Group Multiple Dirichlet Series

Weyl Group multiple Dirichlet series are under develop-
ment by Brubaker, Bump, Chinta, Friedberg, Hoffstein and
Gunnells, among others.

Data: a root system ® and a totally complex number field
F' containing the group pe, of 2n-th roots of unity.
(Though p.,, should suffice, — 1 an n-th power is handy.)

Not an Euler product, yet twisted multiplicative, the coeffi-
cients involve n-th order Gauss sums.

If n is sufficiently large, the theory is complete. The p-part
has only |W | nonzero terms, the stable coefficients.

If n is not sufficiently large, other terms will appear inside
the convex hull of the stable coefficients. These are more
difficult to understand.

In WMD3 Brubaker, Bump, Friedberg and Hoffstein con-
jectured coefficients when ® = A,. This is the Gelfand-
Tsetlin description.

Chinta and Gunnells have a different approach that avoids
specifying the unstable coefficients.

Brubaker, Beineke and Frechette have been studying a
Gelfand-Tsetlin-Proctor description for Spy.

Recently progress has been made on proving the Gelfand-
Tsetlin description. We describe that here.



The Weyl Character Formula

Let G be a complex reductive Lie group, 7' a maximal torus. Let
A€ X*(T) be a dominant weight.

e The ratio
S (- 1)l(W)e’w(>\+p)
S (- 1)l(w)ew(p)

XA = (w e W, the Weyl group)

is the character of an irreducible representation 7 of G.

e Here p = half the sum of the positive roots — at least
modulo the subgroup of characters trivial on the derived
group of G, such as the determinant if G =GL(n, C).

A

e Notation: e* =image of A in the group algebra of X*(T).

e The denominator factors as a product of %|<I>| linear factors:

H (ea/2 — e_o‘/2>.

acdt

Special case: Let GL(r + 1, C). Identify A = (A1, -+, Ap11) with
the character X*(T) 2> it —> ti‘lt?---t;\ﬂl,

t1
t= ’
tr+1
e )\ dominant means A\1>... 2 Ar.41 and p=(r,r—1,---,1,0).
e Numerator is det(¢)7 " 79).
e Denominator factorization is Vandermonde identity.

o Thus xa(t) =sa(t1, -, trr1) (Schur polynomial).



The Numerator in WCF': Ao example

) o)\ +p

Q9 .p

.O{l

Remember the numerator is 3 (— 1)X®e*P+0) where the sum
is over the Weyl group. Terms with + are indicated with e, terms
with — are indicated with —.

e In this example, A=(3,1,0).

e We have drawn the figure two dimensionally. All weights of
the representation lie in a plane C X*(T') ~Z>.



The Character 'y,

After dividing by 3 (—1){®)e(P) we obtain yx=3" m(u)er.

o . . o)\
. ® ® o
. ® ® o
. ® . © m(p) =2
. . « m(p) =1

e The support of x consists p inside the convex hull of the
w(A) that differ from A by an element of the root lattice.

e The weight multiplicities m(u) can be described by means
of Gelfand-Tsetlin patterns. We describe that next for
Type A,.

e In this example Dim(my) => m(u)=24.



Gelfand-Tsetlin Patterns

A Gelfand-Tsetlin pattern is a pattern

( \
apo ao1 ap2 T aor

a11 a12 Q1r >

\ Arr y

where the rows are monotone nonincreasing and interlace, i.e.
Qs 4 2 Q341,541 2 Qs i+1 2 ... . It is strict if the rows are monotone
decreasing.

o Let A = (A1, A2, =+, Arp1) be a highest weight vector. We
take it to be the top row of the pattern.

e Then the number of patterns is the degree of the rep’n with
character x .

e Originally Gelfand and Tsetlin parametrized vectors in the
irreducible representation with character x» (type A,) by
patterns.

e Dually, we can parametrize weights.

For As, A= (3,1,0) there are 24 patterns with this top row. Each
corresponds to a weight: a pattern

A1 A9 A3
a b A —— Weight n= A — ki — 1{32042,
C

where a; = (1,—1,0), a2 =(0,1,— 1) are the simple roots and

ki=a-+b— \o— As, ko=1c — )\s.



Example

Let A=(3,1,0), pu=(2,1,1) =X — a3 — as. To compute m(u) we
want to compute the patterns

3 1 0
a b <~ ki=a+b—-1=1,
C ko=c—0 =1.

There are two:

so m(p) =2. This is the weight marked with red.




The Shintani-Casselman-Shalika formula

The Shintani Casselman-Shalika formula is a purely local state-
ment that implies that the Whittaker coefficients of Eisenstein
series are essentially given by the Weil character formula. On
GLr—l—l

1 212 - Z1r41
1 :
/ “./ ESl,"‘,Sr . X
F1oo/0 F1oo/0 . xTaT+1
1

Y(miziz + mazes+ ... + MeZy ry1)dT12-dTr ry1
where ¢: Fo/o — C is an additive character is a coefficient
C(m1, - mr)
times a normalizing factor and a Whittaker coefficient.

e The coefficients are multiplicative due to uniqueness of
Whittaker models.

e c(p', -, p!*) = xa(A,), where A, € GL,,1(C) is the
Langlands-Satake parameter, and the highest weight vector

A= (l1—|— U S D S Ty '--,lT,O).

e The known proofs of the formula have nothing to do with
the Weyl character formula but produce the same formula
in the end.

. . . . 1 .
The Eisenstein series involves a product of -|®| zeta functions as

normalizing factors. These resemble the denominator in the Weyl
Character formula in its factored form but they are not the same.

What happens to the Weyl character formula if the

denominator is modified to agree with the zeta factor
normalizing the Eisenstein series?

10



Tokuyama’s deformation of WCF

For GL,,1, Tokuyama gave a generalization of the Weyl character
formula. It is a formula for

SA(T1, 0 Trg1)-
1< ]

[ H (xi+tz;)

Analogs for classical groups were given by S. Okada and by
Hamel and King.

Taking ¢ = 0 the formula is related to a Gelfand and
Tsetlin’s construction of a basis for my;

Taking t =1 gives a formula of Stanley.

Taking ¢t = — 1 gives Weyl character formula; the product is
in brackets is thus a deformation of the denominator in
the Weyl character formula.

The terms in the numerator in Tokuyama’s formula are
parametrized by strict Gelfand-Tsetlin patterns. In the
Weyl limit t — — 1, all but |WW| vanish, leaving the Wey-
Weyl numerator.

e o o o o)ty

In the limit t — — 1
terms at the red nodes
e o o o o o disappear, leaving just |W|.
e © © o o (Multiple terms appear at
the inner nodes.)

11



Some definitions

We will describe the Tokuyama numerator in a different notation
from Tokuyama’s paper, better adapted for our later discussion.
We won’t worry about the denominator except to state that it
corresponds to the normalizing factor of the Eisenstein series.

Let g be given; in the Eisenstein series application ¢ = Np where
p is a prime ideal. Let h(0) =1 while if a >0,

h(a)=¢*"Hq—1), gla)=—¢* " ifa>0;
h(0) =1, g(0) won’t occur.
Let A=A+ p=AM1+r, Ao+r—1, A —1, Arp1).
e Note that adding p makes A strictly decreasing.
Let T be a Gelfand-Tsetlin pattern with top row A.

,
a0o ao1 aoz aor |

a1 a a
T= . 12 o > ao,; =Niy1.

\ Qrr J

We will define two arrays I' =I'(T) and A = A(%). They will have
one fewer row that €, but we’ll mark the top row with o . Thus

we will write

( o o O o

(%)= 711 ) V12 . Tir 9

L Vrr /
e We will give rules for circling and boxing certain elements
of the I' and A arrays.

12



The I' array
The I and A arrays are defined by

r

J
’Yijzz (aik_az’—l,k)a 57;3':2 (ai—l,k—l_ai,k)-

k=j k=1

Let us explain what this means. If

(16 12 8 3 0)
15 9 -3 -1
T = 10 8 4 s
10 5
\ 7 /

then add the red numbers and subtract the green ones to get 8,
which goes at the blue location in the I' array.

e Add the entries to the right in the same row, and subtract
those above and to the right in the next row up.

(O o O O O\
5 2 (@O 1
= 9 8 3 }
3] 1
\ 2 J

e We circle v;; if a;;=a,_1,; (above and to the right).
e We box v, if a; j=a;_1,;—1 (above and to the left).

In this example, the 1 in the second row of I' is circled due to the
repeated entry 3 at that location and above and to the right in %,
and similarly the 3 is circled due to the repeated entry 10 in ¥.

We call this definition of I' (including the circling and boxing
convention) the right-hand rule.

13



The A array

The A array is not really needed for Tokuyama’s theorem, but
will become crucial later. It is defined like I' but everything is
reversed.

To explain A, we recolor ¥.

(16 12 8 3 0)
+15 +9 3 1
T = -10 -8 4 3
9 5
\ 7 )

Now adding the red numbers and subtracting the green gives 6
which again goes in the blue spot in the A array.

( 3
(@) (@) (@) O O
1 4 9 11
A=/ 5 6 7
D 4
2
\ J

We call this the left-hand rule.
e The circling and boxing conventions are reversed from I'.
e In the I' array, the rows decrease, while in A they increase.

Now define

qi if ~;; is circled,
Gr(%) = H 9(vij) if 7i; is boxed,
i,5 | h(7i;) if neither (the usual case).

We define G A the same way using the A array.

14



The Tokuyama numerator

We now describe the Tokuyama numerator from the viewpoint of
WMD3 and WMD4.. There are two versions, labeled I' and A.
Let

kr(g):(k{aakg)a kA(g):(klAaakrA)a

with ]
ki =ki (%)= (as,5 — ao,;)
and i 7=
kiA:kiA(g) = Z (aO,j—r—l—l—i —Clr+1—q;,j)-
j=r+1—i

e To reiterate these depend linearly on the row sums
of ¥ in slightly different ways. That’s all that’s important.

e We may associate a weight with ¥ by either
up(‘l):/\—z kYo or pa (%) :/\—Z k2.

Then Tokuyama’s numerator can be written either
> Gr®u(T)  or Y Ga®)pal®).
T T

Sum is over strict Gelfand-Tsetlin patterns with top row A + p.
Recall strict means that each row is strictly decreasing.

e The equivalence of the I' and A descriptions follows from
the existence of an outer involution g~ tg~! of GL,; 1(C).

e This equivalence fails to be obvious in the metaplectic gen-
eralization that we are coming to, an important issue.

e But I'm getting ahead of my story.

15



Whittaker coeflicients of Eisenstein series

Combining the results of Tokuyama and Casselman-Shalika, we
may now describe the Whittaker coefficient of the Eisenstein series
on GL, ;. It is a multiple Dirichlet series

Z(Sla'"vs’r’;mh"'vm'r) —
. —2s —2s,
E H(cy, -+, ¢cryma, -, m;)Neg “°'---Ne, =",

e This multiple Dirichlet series is an Euler product. It
is multiplicative in both the ¢’s and the m’s, so the specifi-
cation of the coefficients is reduced to c¢; and m; being
powers of the same prime.

e Tokuyama + Casselman Shalika imply

H(pkla "'7pkr; pl17 ERE) plr) —

> Gr(%) = > Ga(%).

top row=A top row=A
kl"(‘z):(kl,-.-,kr) kA((I):(kl,"‘,kr)

e Here A is

L+ ...+l +rlo+...+L+r—1,-1,—1,0.

e The I' formula is equivalent to Tokuyama’s statement.

e The A formula follows using the outer automorphism of
the L-group GL(r +1,C).

16



Down the Rabbit Hole

Weyl C.F.

l Tokuyama
Deformation

y ¥ Tokuyama &
4 Nonmetaplectic
Eisenstein Series

l Metaplectic
Deformation

e o o o o o o WMD3,WMD4%

c o 0o 0 o o Metaplectic
(unstable case)

l n —s 00
* * WMD2, WMD4
the stable case

17

Now we come to another
deformation—in the “meta-
plectic  direction. The
multiple Dirichlet series
from this point on will
involve n-th order Gauss
sums. (Until now, n=1
and the Gauss sums have
been explicitly evaluable.)
Great complexity ensues
but if n is sufficiently big,
interior terms introduced
in the Tokuyama deform-
ation go away again.



The Gelfand-Tsetlin description

The formulas conjectured in WMD3 for the A, Weyl group mul-
tiple Dirichlet series give formulas identical to what we have
already seen, but the meaning of g and h are now changed. We
assume that F' is a totally complex number field containing the
2n-th roots of unity. Let S be a finite set of places large enough
that the ring og of S-integers is principal. Let p be a fixed prime,
and g =Np. Let ¥ be an additive character of Fg/ogs and let

a am
g(m,c)— Z (E>¢( c )a
a mod ¢
when m and c are nonzero elements of og.

e The Weyl group multiple Dirichlet series is not an
Euler product. It is twisted multiplicative and therefore
determined by its p-part.

e This is defined by the same formulas as previously, but
now we let

gla)=g(p*~p%,  h(a)=g(p* p*).

e FEvery term in the Dirichlet series except the |W| terms
that are the vertices of the permutahedron involves at least
one h(a) with a > 0.

e If a does not divide n then h(a) = 0, which means
that if n is sufficiently large, only the || stable terms sur-
vive, and the theory reduces to that in WMD2.

e The correctness of the Gelfand-Tsetlin description leads to
fascinating combinatorial questions which we now discuss.

18



Example
Let us take r =2 and (I1,12) =(0,0) so A= p=(2,1,0). There are
eight patterns, one nonstrict (hence contributing 0).

e First we list the stable patterns. A pattern is stable if
every element equals one of the two above it (except of
course in the top row).

< T (k1,k2) | Gr(%)
2 1 0 (@) O O
1 0 @ © | (0,0) 1
0 ©
2 1 0 O O (@)
© ©
1 1 0 T (0,1) g9(1)
2 1 0 (@) 1 O@O
stable 2 0 0 O (1,0) 9(1)
patterns 5 NE S S
2 0 L @ | @1,2) | g(m)g2)
2 2]
2 0 O (@) (@)
9 1 1 2@1 (1,2) | 9(1)g(2)
2 1 O (@) (@) (@)
2 1 21 111 (2,2) |9(1)%9(2)
2 1]

e In the stable patterns, every nonzero entry is boxed, and
every 0 is circled. This produces a product of I(w) Gauss
sums, where /(w) is the number of boxed sums. The Weyl
group element w is explained in WMD4.

19



Example continued: unstable patterns

There are also two unstable patterns. For the second, G(%) = 0
since the pattern is nonstrict. The first has a factor of h(1) which
is 0 unless n divides 1.

5 r (k1,k2) | Gr(%)

2 0 1] © (0,0) | g(1)h(1)

unstable 1 1
patterns
2 1 0
1 1 (¥ is nonstrict) | (0,0) 0
1

e If T is unstable, Gr(%) is divisible by h(a) for some a > 0.
It is therefore 0 unless m|a. This explains why only the
unstable patterns remain when n — oo.

[ [ ] [ ] [ ] [ ] (] >

20



First reduction

e In WMD3 it was conjectured that Z has meromorphic con-
tinuation and functional equations. The major advance of
that paper was giving the conjectural Gelfand-Tsetlin
description.

e The goal of proving that Z has meromorphic continuation
and functional equations has not been reached but substan-
tial progress has been made.

e The first step was to give the alternative definition in terms
of the A array (not known when WMD3 was written).

Theorem. If
Y Gr(®)ur(D) =) Ga(T)pa(%)
T T

then Z has the conjectured meromorphic continuation and func-
tional equations.

Proof. (sketch) Using the original I' definition, one may expand
Z(s1, =y Sp; M1, -++, My Ay) in terms of lower rank A, _; series by
fixing the first two rows of the pattern and summing over the
remaining rows. This gives functional equations with respect to
the simple reflections o3, ---, 0,. Similarly the A definition gives
functional equations for the simple reflections o1, ---, o,. Com-
bining all information, one may use Bochner’s tube domain the-
orem to obtain analytic continuation to all C”. ]

e When n =1, the equivalence of the I' and A definitions fol-
lowed from the existence of an outer automorphism of the
L-group GL,11(C), but that argument is not available and
we must therefore substitute combinatorial reasoning.

21



The Schiitzenberger involution

e An involution on Young tableaux was described by
Schiitzenberger (1978) in terms of jeu de taquin.

e It was adapted to the setting of Gelfand-Tsetlin patterns by
Kirillov and Berenstein.

e It is necessary to work with nonstrict patterns since the
property of strictness is not preserved by the involution, so
we extend the I' and A definitions by Gr(%) =Ga(%) =0 if
T is not strict.

If

4 )
aoo ao1 ap2 - aor

a11 Q12 a1,
T . : 2

\

then a;; 1s constrained between

min (a;—1,j-1,i+1,;) and max(a;—1,5,ai+1,5+1),
so let

/ .
@g,; =0 (@i -1 j -1, Git1,5) +MAX (@i —1,5, Giy1,5+1) — Gi,j-

Let t;¥ be the pattern obtained by replacing the i-th row by the
elements a; ;. Thus the row is “reflected.”

e The operations ¢; do not satisfy the braid relation, so
although they can be used to define an action of the sym-
metric group, this is not in an obvious way.

o Let g= (tr”-t3t2t1)"-(trt7~_1t7~_2)(tr_1t7~)t,,~, the Schiitzen-
berger involution.

e The involution interchanges the weights kr and ka. If it is
well-behaved on patterns, then the conjecture is proved.
We are reduced to working with three rows at a time.

22



Short patterns, long definitions

A short Gelfand-Tsetlin pattern is one with just three rows:

I1 l2 I3 lrt1
T= a1 a2 Qy ’
b1 e b
The rows are nondecreasing and interleave.

e The top and bottom row may be assumed strictly
decreasing. (The middle one may not be.)

e Note: [; has a different meaning from before.

We will associate with t two arrays

O O @] O
=Tt = I'11 I'1,2 'y r
I'2 1 T2 1
and
O O see @] O
A=A(t) = Aq Aq Ay,
As 1 SEVA U

e We use the right-hand rule on the middle row of I' and
the bottom row of A.

e We use the left-hand rule on the bottom row of A and
the middle row of T'.

e This applies to the circling convention, too.

e Although I' and A have only two rows, we use the
term “middle row” instead of “top row” since the I'y ; row
corresponds to the middle row of ¥.

23



I' and A for short patterns

For example, suppose

23 15 12 5! 2 0
T= 20 12 3 4 2

14 9 5 3
We have

(@) O O (@) (@) O
9 @ @ 4 2
(%)=
%) 6 9 (© 10

e Since we are using the right-hand rule on the middle row
and the left-hand rule on the bottom one, the middle row is
decreasing, and the bottom row increasing from left to
right.

e A works the same way but with everything reversed.

Momentarily we will define an involution ¥ —— <’ on patterns,
and show that

23 15 12 5} 2 0
T = 18 14 9 4 0
14 9 5} 3

More relevant than A(%) is A(T’), and we find that

AT = 5 6 9 10 [12]

24



The involution and the cartoon

Now the involution ¥ —— ¥’ is simple to describe. It only affects
the middle row. Since with

l1 l2 l3 lr+1
T = an as Qy

by T

we have

min (I;,b;—1) > a; > max (l;41, b;)
we may ‘reflect” each a; in this range, replacing ¥ by

I l2 I3 lr41

where

CI,Z{ = min (lz, bq;_l) + max (li—i—la bz) — Q.

The effect of the involution may be diagramed by use of a car-
toon. It is a graph whose vertices are in bijection with the places
of T or I'(¥) or A(%), and whose edges diagram the above aver-
aging.

e We connect a; to l; if I, <b;_1, and to b;_1 if b;_1 <I;.
o We connect a; to lq;_|_1 if li+1 2 bi, and to bz if brL 2 lz

e Thus if we have x—a;— vy the involution replaces a; by
ai=c+ Yy — a;

(23 15 12 5 2 0)
NS // / N\ N/
T— 20 12 5 4 ) '

// N/ N\
14 9 5 3

25



The Short Pattern Conjecture

Let 1 = (I3, -+, lr4+1) and b = (b1, -+, br—1) be decreasing integer
sequences of lengths r + 1 and » — 1 respectively. Let k be an
integer. The type & =6(l,b, k) is the set of all patterns

I l2 I3 lr41
T = al a ar ;
by O

with prescribed top and bottom rows, middle row sum ). a;=k.

e The cartoon depends only on [ and b so all patterns in the
type have the same cartoon.

e So does ¥’, which lies in a different type with same I and b
but different k.

Conjecture. Let G be a type. Then

> Gr(?) =) Ga(¥).

Te6 Te6

Theorem. This conjecture implies the analytic continuation and
functional equations of Z.

Proof. The Schiitzenberger involution reduces us to working 3
rows at a time, reducing us to consideration of short patterns. If
one thinks carefully about what this entails, the present formula-
tion is arrived at where one uses the right-hand rule for one row
and the left-hand row for the other in I' and A. []

26



The Snake Lemma

¢ is superstrict [;, b;_1 > a; > l; 11, b;, that is, no entries
are circled or boxed. In some sense most patterns are
superstrict.

T is stable if each entry (except the top row ones) equals
one of the two above it.

T is nonresonant if [; # b;_;. (Nonresonance depends
only on the type or cartoon.) More about resonance later.

Theorem. If ¥ is superstrict, stable or nonresonant the Gp(%) =

GA(S).

In some sense most patterns are superstrict, so “usually”

Gr(%)=GA(%') but not always!

Still we find that we can group the patterns into fairly
small sets II called packets such that 3 . __ Gr(%) =

> cen Ga(T'). More about packets later.

The proof of Theorem 2 contains important ideas so we dis-
cuss the superstrict case.

Lemma. (Snake Lemma) There exists orderings of the I';;(%)
and A;;j(T') such that

{Fij(g)} = {’717 Y2, 0 ’727"—1}7 {A’LJ(Q/)} = {6{7 657 Ty 557‘—1}

with the following property. FExtend the labelings by letting vo =
vor=0. Then

sl =) Tk if k is even,
T k4 Yho1— Yeg1 if k ds odd.

27



Example for the Snake Lemma

Suppose
45 37 28 14 5 0
T = 40 30 15 7 3 :
34 20 10 6
45 37 28 14 5 0
T = 42 32 19 9 2
34 20 10 6
We can order the I'(¥) and A(T’) arrays as follows
4 )
O O O O O O
%)= q M 85 om0 D 3 )
ST — 29
\ /
( O O O @) (@) O )
A(E,) = < 3 Y K 8 \ 17‘ ::\22 """ "25 >
\\ 8 ,I \\ 6 K \, 5 ________ 4‘\_\1
\ )
If we write out the entries in the indicated order:
E10|1 (2345|6789 |10
|0 |11 |8(6(6[16|5]|21(22| 3 | O
0% 3 |8|8|6|17|5| 4 {2225

we get (as required)

5,;:{

Yk
Yo+ Ye—1— Ye+1 if k is odd.

28
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Proof of the Snake Lemma

If there is resonance, that is, if the cartoon contains “diamonds,”
replace them (arbitrarily) as follows:

\ //

Now read the snakes off from the following table.

['(¥) snake A(%') snake
o O O (@]
/ \ / \ First check that these rules
? *1 s, . ® o o *2 ? .
X VT are consistent.
,/’/ \ 1" ‘l\ / \\~‘\
‘c @ —-ee-. *2' ‘*1 —————— o - /
e = odd numbered ~;, J;
O\ /O O\ /O *x = 0dd numbered ~;, d;
? PR S v e .. ? Subscripts on * show
1 - S~ \ .
\ | ,// \\\\ \ / corresponding even ;, d;.
*3 Zoe ° - k4
o o o o The snakes determine the
\ \ \ \ correspondence y; <— 4,.
? I , ° - *5 < - %6 ?
] \ S NERNY . .
\ ! \ ! ‘*\\\\ *\\\ Verification that
\ ,’ \\\ \\\ \\\
x5 *6 e - Tt~ / Y (even),
%= et o — (0dd)
o o o o Y+ Ye—1— Ye+1 (O
/ / / / is then reduced to case-by-case
? I o ? analysis.
r”,/"’ r"’ “| 'l ‘l
-~ //,/’ \ A \
-~ e-" ‘<o *7' ‘*8

29



Proof of the Theorem

We are assuming ¥ is superstrict so there is no circling or boxing.

(@) =] hw):[ 11 hm)” 11 hm-)]

7 even 7 odd

By the Snake Lemma

5! { Vi k even,

k— Ve + Ve—1— Vk+1 k odd,
and so

GA@'):[ 1T hm)” 1T h(wwl—%H)].

7 odd

7 even

Now h(7;) = 0 unless n|vy;, so we may assume all the odd ~; are
multiples of n, and we are reduced to proving

[ rCvitvici=vir) =] h(v0)-
1 odd 17 odd
Since ~; 1 and ;1 are multiples of n, the left-hand side equals
H q’Yz'—l—’Yz'-f-l h(’Yz)
1 odd

The powers of ¢ cancel in pairs, and we are done!
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Resonance

Resonance occurs when the cartoon contains a diamond.
e Connected components of the cartoon are called episodes.

e Using ideas similar to the Snake Lemma, we can reduce to
studying the restriction of ¥ to a single episode.

e Thus (oversimplying only slightly) the main task is to
study totally resonant types, in which [;=0b;_4 for all .

e We would like to divide each resonant episode into a dis-
joint union of packets, where if II is a packet

D> Gr(R) =) Ga).

Tell Tell

Let us consider the case r =1 and [y = b;. Thus we are concerned
with the following resonant type &

T = x Y : r+y=k.

There are two distinguished patterns in the type.
e ¥, in which x is as large as possible,

e Ty in which z is as small as possible.

If T€ & and T # T4, Ty then ¥ is superstrict and by the Theorem
{%} is a packet.

Theorem. {%;,%s} is a packet.
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The Resohedron

We have mentioned that we may reduce the proof of the conjec-
ture to the case of a totally resonant packet, so from now on we
will consider patterns that are totally resonant.

e The patterns in a resonant type form a polyhedron.

e Many phenomena are possible.

Top pow: Ho 32 21 7 ©
k= %0 (MIPDLE Row Sum)

PotentIAL PASTED : Loyt (oda) KESOHEVFON

' “l”‘lﬂ
v~ (N Rep)

TeteaesRon gl N
s

— (&85! (bg1,6)

——G
< ' S
N S \
\ \
~
N\
\\ N
\ AN
\ \
Y P \.\
(—’x"(ﬂ e ——/-—-}
5 -
. - 7 ],
s / PorennaL
"] . S ASTED
7 ki .
/ (1,5, | TeteateproN

le (o101) (oS

Zo 1)
ToP Row: (smu)
Ho 32 21 T o
K= 16 (70:0)

(o)

A

>
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The Simplest Case

We consider Let us examine a type II resonant scheme:

cee L -
N / NN
NN S

Ly

1

where ag + a1 + ... + a, = k. We recall that T' and A’ have the fol-
lowing form, with s=k —1; — ... — 1.

O

N 7 \ / \M/
\ / \ /
(%) o
NN S NS
\ / \ /
A(%)

Assume that 0 < s < min (I; — l;4+1). Then the resohedron is a
simplex. Boxing cannot occur.

o If y;= p;11 then p; and v; 1 are circled in both arrays.

e If s= py then s is circled in the I' array, and v; = 0 is cir-
cled in both arrays.

e If u,.=0 then s is circled in the A’ array, and pu, is circled
in both arrays.

We have Gp(%) = GA(T') unless s is circled in one array and not
the other. These may be grouped into packets of order two.

e Interchange the rows u; and v; and reverse their orders.

e Combining this pattern with ¥ gives a packet.

33



The Resonant Bestiary

If r=2:
lo I lo I3
T = x Yy z , r+y+z=k.

e If k is small, we just saw the resogon is a triangle (simplex)
and the packets have size 1 or 2.

e If k is large enough, the resogon again becomes a triangle
but the packets have size 1 or 3, and tricky Gauss sum
identities are involved.

e Depending on k£ and the [;, the resogon may be a triangle,
hexagon, pentagon or trapezoid. (Slice a rectangular box.)

e Many phenomena can occur. We look at just one example.

e Assume
201 > 1o+ 1o, max (lo—i—l1+l3,l0—|—2l2) <k<2l1+1s.

This makes the resogon into a trapezoid.

o Let
a1 =1lp— 11, B1=1o—la, y1=11— g, 01 =12 — 3.
e We will also denote
ga=g(a1)g(az),  ha=h(a1)h(az),
and similarly define gg, g, g5 and hg, h,, hs.
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53 Gr(®) | Gal®)
lo Iy l2 I3
a= lo l1 k —lo—ll g(’UJ)gahIB h(u)gagg
[ lo
lo Iy l2 I3
b= ll ll k — 2[1 0 h(u)zg,y
l1 lo
(1o I l2 I3 )
c= < l1 k —l1 —l2 l2 > q“h(u)gg g(u)h(u)h5
\ l]' l2 /
(1o I l2 I3 )
0= lo k—1lo—12 l2 > | g(u)hags | g(u)gahs
\ ll l2 /
lo [ lo I3
¢ = lo 2l1 — lo k— 2l1 g(u)hahAY h(u)gah7
I l2

All patterns on the interior are superstrict, hence singleton

packets.

The above five patterns form the “big packet.”

The patterns on the interiors of
the edges [b, ¢] and [e, ] are equal
in number and can be paired up
into packets of order 2;

The patterns on the interiors of
the edges [a, b], [a,¢] and [c,d] are
equal in number and can be put
into packets of order 3.
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