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1 The Kubota Symbol

Let F be a global field with ring o of integers, and let µn denote the group of n-th roots of unity
in F . Let Γ(f) be the principal congruence subgroup of SL3(o) consisting of elements that are
congruent to the identity modulo f. The Kubota symbol κ : Γ(f) −→ µn is a character constructed
by Bass, Milnor and Serre [1].

We will give a direct construction, obtaining on the way new formulas for the map. We will
handle two cases simultaneously.
Case 1: n = 2, F = Q(i), o = Z[i], λ = 1 + i and f = λ3o.
Case 2: n = 3, F = Q(ρ) where ρ = e2πi/3, o = Z[ρ], λ = 1− ρ, and f = λ2o = 3o.
For these two fields the particular level f may be new.

Although we specialize to these particular fields, our formulas should be correct (for some level,
with perhaps some other minor modifications) when n > 1 is arbitrary, assuming that F is a totally
complex field containing the n-th roots of unity such that −1 is an n-th power in F . We specialize
to these particular cases since it is convenient that the class number is 1 and the level f can be
chosen so that the map o× −→ (o/f)× is surjective.

If c and d are in o and gcd(d, f) = 1 the power residue symbol
(
c
d

)
is defined as follows. First, if

c and d are not coprime then
(
c
d

)
= 0. If d = p is prime, then

(
c
d

)
is the unique n-th root of unity

such that

c(Np−1)/n ≡
(
c

p

)
mod p.

Finally, if d is not prime, we factor d = ε
∏
pk1i where ε is a unit and the pi are prime, and define(

c
d

)
=
∏(

c
pi

)ki

. Our convention is that
(

0
1

)
= 1.
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Lemma 1 If λ - d then there exists a unique unit ε ∈ o× such that ελ ≡ 1 modulo f.

We will use this fact frequently and without comment.

Proposition 1 The power residue symbol has the following properties.
(i) If ε ∈ o× then

(
c
εd

)
=
(
c
d

)
.

(ii) If c ≡ c′ modulo d then
(
c
d

)
=
(
c′

d

)
.

(iii) We have
(
cc′

d

)
=
(
c
d

) (
c′

d

)
.

(iv) We have
(
c
dd′

)
=
(
c
d

) (
c
d′

)
.

(v) If p is prime (and prime to n) then
(
b
p

)
= 1 if and only if b is an n-th power residue

modulo p.
(vi) We have

(−1
d

)
= 1.

Proposition 2 (Reciprocity law) If c, d ≡ ±1 modulo f, then( c
d

)
=
(
d

c

)
.

Proposition 3 (i) Assume that n = 3 and F = Z[ρ]. If d = 1 + 3(m+ nρ) then(ρ
d

)
= ρ−m−n,

(
λ

d

)
= ρm

(ii) Assume that n = 2 and F = Z[i]. If d = a+ bi ≡ 1 modulo f then(
i

d

)
= (−1)(a−1)/2,

(
λ

d

)
= (−1)(a−3b−1)/4.

Proof These three propositions can all be deduced easily from the discussion of the cubic symbol
and its properties in Ireland and Rosen [4]. For the quadratic symbol, one may use results found
there for the quartic residue symbol, remembering that the quadratic symbol is the square of the
quartic residue symbol. �

Proposition 4 Suppose that λ - d, d′ and that gcd(c, d) = gcd(c, d′) = 1. Assume that one of the
following three cases applies:

(i) d ≡ d′ modulo f2 and d ≡ d′ modulo c;
(ii) d ≡ d′ modulo fλ, d ≡ d′ modulo c and gcd(c, λ) = 1;
(iii) c is of the form θλb where θ is a unit and d ≡ d′ modulo f2.
Then ( c

d

)
=
( c
d′

)
.

Proof Let us write d = εd0 and d′ = ε′d′0 where ε, ε′ are units and d0 ≡ d′0 ≡ 1 modulo f. We note
that since d ≡ d′ modulo f in each of the 3 cases we have ε ≡ ε′ modulo f which implies that ε = ε′.
Therefore d0 ≡ d′0 for any modulus such that d ≡ d′. Furthermore,

(
c
d

)
=
(
c
d0

)
and

(
c
d′

)
=
(
c
d′0

)
.
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As a result of these observations we may replace d and d′ by d0 and d′0. In other words, there is no
harm in assuming that d ≡ d′ modulo f and we will assume this.

Let us write c = c0 θ λ
u where θ is a unit and c0 ≡ 1 modulo f. Then by the reciprocity law( c

d

)
=
(
θλu

d

)(
d

c0

)
.

In each of the three cases we have d ≡ d′ modulo c0 and so
(
d
c0

)
=
(
d′

c0

)
. Thus we have only to

show that (
θλu

d

)
=
(
θλu

d′

)
.

This is true if d ≡ d′ modulo f2 by Proposition 3, which settles cases (i) and (iii). In case (ii), we
have u = 0, and the statement follows again from Proposition 3.

�

Let

w =

 1
1

1

 . (1)

Then G = SL3 has an involution defined by

ιg = w · tg−1 · w.

It preserves the group Γ(f) and its subgroup Γ∞(f), consisting of the upper triangular matrices in
Γ(f). If g ∈ Γ(f), let [A1, B1, C1] and [A2, B2, C2] be the bottom rows of g and ιg, respectively.
Then

(A1, B1, C1) ≡ (A2, B2, C2) ≡ (0, 0, 1) mod f,

A1C2 +B1B2 + C1A2 = 0, (2)

gcd(A1, B1, C1) = gcd(A2, B2, C2) = 1.

We call A1, B1, C1, A2, B2, C2 the invariants of g. We will refer to (2) as the Plücker relation. The
invariants depend only on the orbit of g in Γ∞(f)\Γ(f).

Proposition 5 If gcd(A1, B1, C1) = gcd(A2, B2, C2) = 1 and the Plücker relation (2) is satisfied,
then we may factor

A1 = p1p2q1a1, A2 = q1q2p2a2,

B1 = q1q2r1b1, B2 = p1p2r2b2,

C1 = r1r2p1c1, C2 = r1r2q2c2,

where

gcd(a1, b1) = gcd(a1, c1) = gcd(a1, a2) = gcd(a1, b2) = gcd(b1, c1) = gcd(b1, a2)
= gcd(b1, c2) = gcd(c1, b2) = gcd(c1, c2) = gcd(a2, b2) = gcd(a2, c2) = gcd(b2, c2)

= gcd(p1, q1) = gcd(p1, q2) = gcd(p1, r1) = gcd(q2, p2) = gcd(q2, r2) = gcd(r1, p2)
= gcd(b2, q2) = gcd(c1, q1) = gcd(c2, p2) = 1.
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Proof Let Ω be the set of ordered triples (P,Q,R) such that P |(A1, B2), Q|(B1, A2) and R|(C1, C2)
and PQR| gcd(A1C2, B1B2, C1A2). Define a partial order on Ω by (P,Q,R) 6 (P ′, Q′, R′) if P |P ′,
Q|Q′ and R|R′. Let (P,Q,R) be a maximal element of Ω, and write A1 = P A′1, B1 = QB′2,
C1 = RC ′1, A2 = QA′2, B2 = P B′2, C2 = RC ′2. Since PQR|B1B2, we have R|B′1B′2, so we may
factor R = r1r2 with r1|B′1 and r2|B′2; let B′1 = r1b1 and B′2 = r2b2. Similarly P = p1p2 where
C ′1 = p1c1 and A′2 = p2a2, and Q = q1q2 where A′1 = q1a1 and C ′2 = q2c2. The maximality of
Ω, together with gcd(A1, B1, C1) = gcd(A2, B2, C2) = 1, implies the coprimality conditions of the
theorem. �

Proposition 6 Suppose in the context of Proposition 5 that A1 ≡ B1 ≡ A2 ≡ B2 ≡ 0 and C1 ≡
C2 ≡ 1 modulo f. Then we may choose the factorizations so that r1 ≡ r2 ≡ p1 ≡ q2 ≡ c1 ≡ c2 ≡ 1
modulo f and so that one of the following three cases applies:

(i) f|b1, λ2|b2, f2|b1b2, a1 ≡ 1 and a2 ≡ −1 modulo f;
(ii) b1 ≡ a2 ≡ 1 modulo f and f|p2a1; or
(iii) b2 ≡ a1 ≡ 1 modulo f and f|q1a2. We have

(
b1
c1

)(
b2
c2

)(
c1
c2

)−1

=



(
a1
c1

)(
b2
a2

)(
b2
a1

)−1

=
(
b1
a1

)(
b2
a2

)(
a1
a2

)−1

in case (i);(
b1
c1

)(
a2
c2

)(
b1
c2

)−1

=
(
a1
b1

)(
b2
a2

)(
a1
a2

)−1

in case (ii);(
b2
c2

)(
a1
c1

)(
b2
c1

)−1

=
(
b1
a1

)(
a2
b2

)(
a2
a1

)−1

in case (iii).

Proof We first note that it is sufficient to obtain a decomposition in which one of the following is
true:

(i’) f|b1, λ|b2, f2|b1b2, and λ - a1, a2;
(ii’) λ - b1, a2 and f|p2a1; or
(iii’) λ - b2, a1 and f|q1a2.
Indeed, since C1 ≡ C2 ≡ 1 modulo f, in any decomposition as in Proposition 5 we have auto-

matically that λ - r1, r2, p1, q2, c1, c2. Now we make use of the fact that if λ - c then there exists
a unit ε such that εc ≡ 1 modulo f to see that we may adjust r1, r2, p1, q2, c1, c2 by units so that
r1 ≡ r2 ≡ p1 ≡ q2 ≡ 1 modulo f, and it follows that c1 ≡ c2 ≡ 1 also. There are compensating
adjustments, of course, to a1, a2, b1, b2 but these will be adjusted again. If (i’) is satisfied, we may
then adjust a1 and by a unit, with compensating changes to q1, a2 and b2, so that a1 ≡ 1 modulo f.
Then, since a1c2 + a2c1 ≡ a1c2 + b1b2 + c1a2 = 0 modulo f, it follows that a2 ≡ −1 modulo f. The
cases (ii’) and (iii’) are handled similarly.

To establish (i’), (ii’) or (iii’), let us denote αi = ordλ(Ai) and βi = ordλ(Bi). Let r = ordλ(f);
thus r = 2 if n = 3 and r = 3 if n = 2. Since f|A1, A2, B1, B2 we have αi > r and βi > r.

Suppose that α1 > α2. Then α1 = ordλ(A1C2) > α2 = ordλ(A2C1)

β1 + β2 = ordλ(−A1C2 −A2C1) = α2.

Now, with Ω as in the proof of Proposition 5, we have (λβ2 , λβ1 , 1) ∈ Ω, and we choose maximal
(P,Q,R) > (λβ2 , λβ1 , 1). Then λβ2 |p1p2 and since λ - p1, we have λβ2 |p2; similarly λβ1 |q1. Now a2

and b1 are both prime to λ and f|p2 so f|p2a1 so we are in case (ii’).
The case α2 > α1 similarly leads to case (iii’).
We are left with the case where α1 = α2 and β1 and β2 are both > α1 + 1. Let us write

α1 = 2a+ε, where ε = 0 or 1 and a > 0. It is easy to see that a+ε > r−1. Then (λa+ε, λa, 1) ∈ Ω.
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Choosing (P,Q,R) > (λa+ε, λa, 1) we have λa+ε|p2 and λa|q1. In fact we have λa+ε‖p2 and λa‖q1

since if any larger power of λ than λa+ε were to divide p2 then a larger power than α1 = 2a + ε
would divide A1 = p1p2q1a2, which is a contradiction; and similarly with q1. Now it is clear that
a1 and a2 are both not divisible by λ. Now, since λ - r1, r2, p1, q2 (because λ - C1, C2) we have
λβ1−a|b1 and λβ2−a−ε|b2. Since β1 − a > a + ε + 1 > r and β2 − a − ε > a + 1 > 2 we have f|b1,
λ2|b2, f2|b1b2 and λ - a1, a2. Thus we are in case (i’).

It remains to prove the identities for
(
b1
c1

)(
b2
c2

)(
c1
c2

)−1

. Let us tackle case (i) first. Since
a1c2 + b1b2 + c1a2 = 0 we have(

b1
c1

)(
b2
c2

)(
c1
c2

)−1

= [reciprocity, c1 ≡ c2 ≡ 1 mod f](
b1
c1

)(
b2
a1c2

)(
c2
c1

)−1(
b2
a1

)−1

= [Prop. 5 (i), a1c2 ≡ −a2c1 mod b2 and f2](
b1
c1

)(
b2
a2c1

)(
c2
c1

)−1(
b2
a1

)−1

= [multiplicativity](
b1b2
c1

)(
b2
a2

)(
c2
c1

)−1(
b2
a1

)−1

= [a1c2 ≡ −b1b2 modulo c1](
a1c2
c1

)(
b2
a2

)(
c2
c1

)−1(
b2
a1

)−1

= [multiplicativity](
a1

c1

)(
b2
a2

)(
b2
a1

)−1

= [multiplicativity](
a1

c1a2

)(
b2
a2

)(
b2
a1

)−1(
a1

a2

)−1

= [reciprocity, a1 ≡ c1a2 ≡ 1 mod f](
c1a2

a1

)(
b2
a2

)(
b2
a1

)−1(
a1

a2

)−1

= [c1a2 ≡ −b1b2 mod a1](
b1b2
a1

)(
b2
a2

)(
b2
a1

)−1(
a1

a2

)−1

=
(
b1
a1

)(
b2
a2

)(
a1

a2

)−1

.
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Next let us consider case (ii). We have c1 ≡ c2 ≡ b1 ≡ a2 ≡ 1 modulo f, and we have(
b1
c1

)(
b2
c2

)(
c1
c2

)−1

= [multiplicativity](
b1
c1

)(
b1b2
c2

)(
c1
c2

)−1(
b1
c2

)−1

= [b1b2 ≡ −a2c1 modulo c2](
b1
c1

)(
a2c1
c2

)(
c1
c2

)−1(
b1
c2

)−1

= [multiplicativity](
b1
c1

)(
a2

c2

)(
b1
c2

)−1

= [reciprocity, multiplicativity](
a2c1
b1

)(
a2

c2

)(
b1
c2

)−1(
a2

b1

)−1

= [a2c1 ≡ a1c2 modulo b1, reciprocity](
a1c2
b1

)(
a2

c2

)(
c2
b1

)−1(
a2

b1

)−1

= [reciprocity, multiplicativity](
a1

b1

)(
c2
a2

)(
a2

b1

)−1

= [reciprocity, multiplicativity](
a1

b1

)(
a1c2
a2

)(
a2

b1

)−1(
a1

a2

)−1

= [a1c2 ≡ b1b2 mod a2](
a1

b1

)(
b1b2
a2

)(
b1
a2

)−1(
a1

a2

)−1

=
(
a1

b1

)(
b2
a2

)(
a1

a2

)−1

.

Case (iii) is similar to (ii). �

Proposition 7 Suppose that gcd(A1, B1, C1) = gcd(A2, B2, C2) = 1, A1C2 + B1B2 + C1A2 = 0
and (A1, B1, C1) ≡ (A2, B2, C2) ≡ (0, 0, 1) modulo f. Assume further that gcd(C1, C2) = 1. Then
also gcd(B1, C1) = gcd(B2, C2) = 1. There exist factorizations

A1 = p2q1A
′
1, A2 = p2q1A

′
2,

B1 = q1B
′
1 B2 = p2B

′
2,

where p2q1 = gcd(A1, A2). We have

gcd(B′1, A
′
1) = gcd(B′2, A

′
2) = gcd(A′1, A

′
2) = gcd(q1, C1) = gcd(p2, C2) = 1 (3)

and we may assume that one of the three following cases applies:
(i) f|B′1, λ2|B′2, f2|B′1B′2 and A′1 ≡ −A′2 ≡ 1 modulo f;
(ii) B′1 ≡ A′2 ≡ 1 modulo f and f|p2A

′
1; or

(iii) B′2 ≡ A′1 ≡ 1 modulo f and f|q1A
′
2.

We have

(
B1

C1

)(
B2

C2

)(
C1

C2

)−1

=



(
B′1
A′1

)(
B′2
A′2

)(
A′1
A′2

)−1 (
q1
C1

)(
p2
C2

)
in case (i);(

A′1
B′1

)(
B′2
A′2

)(
A′1
A′2

)−1 (
q1
C1

)(
p2
C2

)
in case (ii);(

B′1
A′1

)(
A′2
B′2

)(
A′2
A′1

)−1 (
q1
C1

)(
p2
C2

)
in case (iii).

(4)
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The assumption that gcd(C1, C2) = 1 will be removed in Proposition 10.
Proof The coprimality of B1 and C1 follows from the coprimality of C1 and C2 since any com-
mon prime divisor of B1 and C1 divides −A1C2 = B1B2 + C1A2, and it cannot divide A1 since
gcd(A1, B1, C1) = 1.

The existence of the a factorization follows from the factorization in Proposition 6 with A′1 =
p1a1, A′2 = q2a2, B′1 = q2b1 and B′2 = p1b2. (We note that every such factorization may be obtained
this way.) Since C1 and C2 are coprime, we have r1 = r2 = 1 so C1 = p1c1 and C2 = q2c2. Using
the multiplicativity of the symbol and the reciprocity law, we have(

B1

C1

)(
B2

C2

)(
C1

C2

)−1

=
(
q2

p1

)(
b1
p1

)(
b2
q2

)(
b1
c1

)(
b2
c2

)(
c1
c2

)−1(
q1

C1

)(
p2

C2

)
.

In case (i), we use Proposition 6 to write this(
q2

p1

)(
b1
p1

)(
b2
q2

)(
b1
a1

)(
b2
a2

)(
a1

a2

)−1(
q1

C1

)(
p2

C2

)
.

We have (
B′1
A′1

)(
B′2
A′2

)(
A′1
A′2

)−1

=
(
q2

p1

)(
b1
p1

)(
b2
q2

)(
b1
a1

)(
b2
a2

)(
a1

a2

)−1

,

and the statement follows. Cases (ii) and (iii) are similar. �

Let Σ be the set of g ∈ Γ(f) whose invariantsA1, B1, C1 andA2, B2, C2 are such that gcd(C1, C2) =
1. If g ∈ Σ denote

κ0(g) =
(
B1

C1

)(
B2

C2

)(
C1

C2

)−1

.

Let Γ∞(f) denote the subgroup of elements of Γ(f) that are upper triangular and unipotent.

Proposition 8 Suppose that u ∈ Γ∞(f) and that both g, gu ∈ Σ. Then κ0(g) = κ0(gu).

Proof Let A1, B1, C1, A2, B2, C2 be the invariants of g, and let Ā1, B̄1, C̄1, Ā2, B̄2, C̄2 be the
invariants of gu. Writing

u =

 1 u2 u3

1 u1

1

 , u4 = u1u2 − u3, (5)

we have

Ā1 = A1, Ā2 = A2,

B̄1 = B1 + u2A1, B̄2 = B2 − u1A2,

C̄1 = C1 + u1B1 + u3A1, C̄2 = C2 − u2B2 + u4A2. (6)

As in Proposition 7 let

A1 = p2q1A
′
1, A2 = p2q1A

′
2,

B1 = q1B
′
1, B2 = p2B

′
2,
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where A1 and A′1 are coprime. Then we may also write

Ā1 = p2q1Ā
′
1, Ā2 = p2q1Ā

′
2,

B̄1 = q1B̄
′
1, B̄2 = p2B̄

′
2,

where

Ā′1 = A′1, Ā′2 = A′2,

B̄′1 = B′1 + u2p2A
′
1, B̄′2 = B′2 − u1q1A2.

We note that C1 ≡ C̄1 modulo q1 and modulo f2 and similarly for C2, so(
q1

C1

)
=
(
q1

C̄1

)
,

(
p2

C2

)
=
(
p2

C̄2

)
.

Now suppose we are in case (i) of Proposition 7. Then

κ0(g) =
(
B′1
A′1

)(
B′2
A′2

)(
A′1
A′2

)−1(
q1

C1

)(
p2

C2

)
.

Since Ā′i = A′i and B̄′i ≡ B′i modulo Ā′i, we may replace A′i by Ā′i and B′i by B̄′i and obtain κ0(gu).
Next suppose we are in case (ii). Then

κ0(g) =
(
A′1
B′1

)(
B′2
A′2

)(
A′1
A′2

)−1(
q1

C1

)(
p2

C2

)
.

In this case, the handling of the first symbol requires noting that f2|u2p2A
′
1 since f|u2 and f|p2A

′
1.

Hence we may apply Proposition 4 (i) and conclude that(
A′1
B′1

)
=
(
A′1
B̄′1

)
so that κ0(g) = κ0(gu). The case (iii) is identical. �

Lemma 2 Suppose that gcd(A,B,C) = 1. Then there exists λ such that gcd(A+ λB,C) = 1.

Proof Let θ = gcd(A,B), and write A = θA0, B = θB0 with A0, B0 coprime. By the extension to o
of Dirichlet’s theorem on primes in an arithmetic progression, there exists λ such that π = A0 +λB0

is prime, and we may avoid the finite number of primes that divide C. Then A + λB = θπ, and
both θ and π are prime to C. �

Proposition 9 If g ∈ Γ(f) then there exists u ∈ Γ∞(f) such that gu ∈ Σ.

Proof Let A1, B1, C1, A2, B2, C2 be the invariants of g. If u is as in (5) then Ā1, B̄1, C̄1, Ā2, B̄2, C̄2

as in (6) are the invariants of gu. First, taking u2 = u3 = u4 = 0, Lemma 2 shows that we may
choose u1 such that gcd(Ā1, C̄1) = 1; replacing g by another element of g Γ∞(f) we may therefore
assume that gcd(A1, C1) = 1.
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With this assumption, we now work with u1 = u2 = 0 and use only u3. By the extension to o of
Dirichlet’s theorem on primes in an arithmetic progression, we may find u3 such that C̄1 = C1+u3A1

is prime, and we may avoid the finite number of primes that divide B1B2. Noting that in the
notation of (6) when u1 = u2 = 0 we have u4 = −u3, gcd(C̄1, C̄2) = gcd(C1 + u3A1, C2 − u3A2)
divides A2(C1 + u3A1) + A1(C2 − u3A2) = −B1B2. Since C̄1 is prime to B1B2, this means that
gu ∈ Σ. �

We may now define the Kubota symbol, which we will eventually prove to be a homomorphism.

Definition 1 Let g ∈ Γ(f). Then the Kubota symbol κ(g) = κ0(gu), where u is any element of
Γ∞(f) such that gu ∈ Σ.

The existence of such a u follows from Proposition 9, and the independence of κ0(gu) on the
choice of u follows from Proposition 8.

We can now improve the result of Proposition 7 by removing the assumption that gcd(C1, C2) =
1.

Proposition 10 Suppose that g ∈ Γ(f) has invariants A1, B1, C1, A2, B2, C2. Then there exists a
factorization

A1 = p2q1A
′
1, A2 = p2q1A

′
2,

B1 = q1B
′
1, B2 = p2B

′
2,

where p2q1 = gcd(A1, A2). The coprimality (3) conditions are true, and we may assume that one
of the three following cases applies:

(i) f|B′1, λ2|B′2, f2|B′1B′2 and A′1 ≡ −A′2 ≡ 1 modulo f;
(ii) B′1 ≡ A′2 ≡ 1 modulo f and f|p2A

′
1; or

(iii) B′2 ≡ A′1 ≡ 1 modulo f and f|q1A
′
2.

We have

κ(g) =



(
B′1
A′1

)(
B′2
A′2

)(
A′1
A′2

)−1 (
q1
C1

)(
p2
C2

)
in case (i);(

A′1
B′1

)(
B′2
A′2

)(
A′1
A′2

)−1 (
q1
C1

)(
p2
C2

)
in case (ii);(

B′1
A′1

)(
A′2
B′2

)(
A′2
A′1

)−1 (
q1
C1

)(
p2
C2

)
in case (iii).

Proof Let A1, B1, C1, A2, B2, C2 be the invariants of g, and let Ā1, B̄1, C̄1, Ā2, B̄2, C̄2 be the
invariants of gu, where u is chosen so that gcd(C̄1, C̄2) = 1.

Ā1 = A1, Ā2 = A2,

B̄1 = B1 + u2A1, B̄2 = B2 − u1A2,

C̄1 = C1 + u1B1 + u3A1, C̄2 = C2 − u2B2 + u4A2.

By Proposition 7 we may factor

Ā1 = p2q1Ā
′
1, Ā2 = p2q1Ā

′
2,

B̄1 = q1B̄
′
1, B̄2 = p2B̄

′
2,

9



where gcd(Ā′1, Ā
′
2) = 1, and taking

A′1 = Ā′1, A′2 = Ā′2,

B′1 = B̄′1 − u2p2Ā
′
1, B′2 = B̄′2 + u1q1A2,

we have the required factorization. Proceeding as in Proposition 8 we get(
B′1
A′1

)(
B′2
A′2

)(
A′1
A′2

)−1(
q1

C1

)(
p2

C2

)
=
(
B̄′1
Ā′1

)(
B̄′2
B̄′2

)(
B̄′1
B̄′2

)−1(
q1

C̄1

)(
p2

C̄2

)
in case (i), and since the right-hand side is κ0(gu) = κ(g), we are done in this case; the other cases
are similar. �

Proposition 11 If g ∈ Γ(f), then we may obtain a factorization as in Proposition 5 where r1 ≡
r2 ≡ p1 ≡ q2 ≡ c1 ≡ c2 ≡ 1 modulo f. In this case

κ(g) =
(
q1

p1

)(
q2

p1

)(
r1

p1

)(
p2

q2

)(
p2

r1

)(
p2

r2

)(
q1

r1

)(
q1

r2

)(
r2

q2

)
(
b1
p1

)(
b2
q2

)(
q1

c1

)(
p2

c2

)(
r1

a1

)(
r2

a2

)
×
(
b1
c1

)(
b2
c2

)(
c1
c2

)−1

. (7)

Proof Given any factorization as in Proposition 5 we may adjust r1, r2, p1, q1 by units, with
compensating changes in ai, bi, ci so that r1 ≡ r2 ≡ p1 ≡ q2 ≡ c1 ≡ c2 ≡ 1.

It follows from the proof of Proposition 6 that there exists a particular factorization of this type
in which cases (i), (ii) or (iii) of that proposition applies. Moreover, passing to such a factorization
from an arbitrary one involves replacing b1, q1, p2, b2 by αb1, α−1q1, αp2, α−1b2 for some α ∈ F×,
and it may be checked easily that such a change does not alter (7). Therefore we may assume that
cases (i), (ii) or (iii) applies.

Let

A′1 = p1a1, A′2 = q2a2,

B′1 = q2r1b1, B′2 = p1r2b2.

This factorization satisfies the conditions of Proposition 10, and we may use one of the expressions
from that Proposition. Expanding the symbols, using reciprocity when necessary, together with the
identify from Proposition 6 gives (7). �

Theorem 1 Suppose that g ∈ Γ(f) has invariants A1, B1, C1, A2, B2, C2. Then there exists a fac-
torization

C1 = r1r2C
′
1 C2 = r1r2C

′
2

B1 = r1B
′
1, B2 = r2B

′
2,

where r1 ≡ r2 ≡ C ′1 ≡ C ′2 ≡ 1 modulo f, and gcd(C1, C
′
1) = 1. We have

gcd(B′1, C
′
1) = gcd(B′2, C

′
2) = gcd(A1, r1) = gcd(A2, r2) = 1

10



and

κ(g) =
(
B′1
C ′1

)(
B′2
C ′2

)(
C ′1
C ′2

)−1(
A1

r1

)(
A2

r2

)
. (8)

Proof The existence of such a factorization may be proved directly very easily, or alternatively
follows from Proposition 5, on taking

B′1 = q1q2b1, B′2 = p1p2b2,

C ′1 = p1c1, C ′2 = q2c2.

We need to know that every such factorization arises from Proposition 6 in this way, which we may
see by taking any (P,Q,R) > (1, 1, r1r2) in the proof of Proposition 6. Once the factorization of
Proposition 6 is obtained, we may adjust p1 and q2 by units so that r1 ≡ r2 ≡ p1 ≡ q2 ≡ c1 ≡
c2 ≡ 1 modulo f. Plugging in these expressions for B′1, B

′
2, C

′
1, C

′
2, as well as A1 = p1p2q1a1 and

A2 = q1q2p2a2, into the right-hand side of (8) then expanding and using the reciprocity law, we
obtain (7), proving (8). �

Proposition 12 Suppose that g ∈ Γ(f) and let

h =

 p q
r s

1

 ∈ Γ(f).

Then κ(gh) = κ(g)κ(h).

Proof We prove this first under the assumption (to be removed later) that g ∈ Σ. Thus let
A1, B1, C1, A2, B2, C2 be the invariants of g, and let A′′1 , B

′′
1 , C

′′
1 , A

′′
2 , B

′′
2 , C

′′
2 be the invariants of

g′′ = gh. Our assumption on g is that gcd(C1, C2) = 1.
We find that

sA′′1 − rB′′1 = A1, (9)
sB′′2 + rC ′′2 = B2, (10)
sC2 − qB2 = C ′′2 . (11)

The following identities are also easily established:

pC1A2 = −A′′1C2 −B1B
′′
2 , (12)

qC1A2 = −B′′1C2 +B1C
′′
2 , (13)

rC1A2 = −A′′1B2 +A1B
′′
2 , (14)

sC1A2 = −B′′1B2 −A1C
′′
2 . (15)

As in Theorem 1 let us factor

B′′1 = r1B
′
1, B′′2 = r2B

′
2,

C ′′1 = r1r2C
′
1, C ′′2 = r1r2C

′
2,
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where r1 ≡ r2 ≡ C ′1 ≡ C ′2 ≡ 1 modulo f and gcd(C ′1, C
′
2) = 1. The fact that g ∈ Σ implies that

gcd(B′′2 , C
′′
2 ) = gcd(B2, C2) = 1 and so r2 = 1. Thus by Theorem 1

κ(gh) =
(
B′1
C ′1

)(
B′2
C ′2

)(
C ′1
C ′2

)−1(
A′′1
r1

)
.

Note that r1 divides C ′′1 = C1 and so it is prime to C2 and B1. Next we prove that(
B′1
C ′1

)(
C ′1
C ′2

)−1

=
(
B1

C1

)(
C1

C2

)−1(
B1

r1

)−1(
C2

r1

)
. (16)

By (13) we have qC ′1A2 = −B′1C2 +B1C
′
2. Thus(

B′1
C ′1

)(
C ′1
C ′2

)−1

=
(
B′1C2

C ′1

)(
C ′1
C ′2

)−1(
C2

C ′1

)−1

=
(
B1C

′
2

C ′1

)(
C ′1
C ′2

)−1(
C2

C ′1

)−1

=(
B1

C ′1

)(
C2

C ′1

)−1

.

Now (16) follows, using reciprocity (again), since C1 = C ′′1 = r1C
′
1.

Let us factor s = σd, C ′′2 = dγ′′2 with σ ≡ d ≡ γ′′2 ≡ 1 modulo f and gcd(σ, γ′′2 ) = 1. We have
C ′′2 = sC2 − qB2 and since gcd(s, q) = 1, d divides B2; write B2 = dβ2. Now since C ′′2 = r1C

′
2 we

may factor d = d1d2, with r1 = ρ1d1 and C ′2 = d2γ
′
2. This factorization may be chosen so that

gcd(ρ1, d2) = 1, and d1 ≡ d2 ≡ 1 modulo f. We note that γ′′2 = ρ1γ
′
2. We now show that(

B′2
C ′2

)
=
(r
s

)(B2

C2

)( r
d

)−1
(
d

C2

)−1 (ρ1

σ

)(B′2
d2

)(
β2

ρ1

)−1

. (17)

By (10) and (11) we have

σB′′2 + rγ′′2 = β2, (18)
σC2 − qβ2 = γ′′2 (19)

Using (18) we have(
B′2
C ′2

)
=
(
B′2
d2

)(
B′2
γ′2

)
=
(
B′2
d2

)(
σB′2
γ′2

)(
σ

γ′2

)−1

=
(
B′2
d2

)(
β2

γ′2

)(
σ

γ′2

)−1

.

Note that gcd(β2, γ
′′
2 ) = 1. Indeed by (19) any prime dividing both γ′′2 and β2 would divide either σ

(impossible since σ and γ′′2 are coprime) or C2 (impossible since B2 and C2 are coprime). Therefore(
B′2
C ′2

)
=
(
B′2
d2

)(
β2

γ′′2

)(
β2

ρ1

)−1(
σ

γ′2

)−1

= [by (19) and Proposition 4 (i)](
B′2
d2

)(
β2

σ

)(
β2

C2

)(
β2

ρ1

)−1(
σ

γ′2

)−1

= [by (18), reciprocity](
B′2
d2

)( r
σ

)(γ′′2
σ

)(
β2

C2

)(
β2

ρ1

)−1(
γ′2
σ

)−1

,
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and (17) follows. Since κ(h) =
(
r
s

)
, and since we are assuming that g ∈ Σ, we now have

κ(gh)
κ(g)κ(h)

=
(
B′1
C ′1

)(
B′2
C ′2

)(
C ′1
C ′2

)−1(
A′′1
r1

)(
B1

C1

)−1(
B2

C2

)−1(
C1

C2

)(r
s

)−1

,

which by (16) and (17) equals(
B1

r1

)−1(
C2

r1

)( r
d

)−1
(
d

C2

)−1 (ρ1

σ

)(B′2
d2

)(
β2

ρ1

)−1(
A′′1
r1

)
.

We will show that this equals 1. By (9), d1 divides A1, say A1 = d1α1 so (9) implies

σd2A
′′
1 − rρ1B

′
1 = α1. (20)

Since gcd(ρ1, d2) = 1 and r1 = ρ1d1 our previous expression equals(
B1

r1

)−1(
C2

r1

)( r
d

)−1
(
d

C2

)−1(
B′2
d2

)(
β2

ρ1

)−1(
d2

ρ1

)−1(
σd2A

′′
1

ρ1

)(
A′′1
d1

)
.

Using (20), r1 = ρ1d1 and α1C2 + d2B1β2 + ρ1C
′
1A2 = 0, this reduces to(

B1

d1

)−1(
C2

d1

)(
B′2
d1

)−1(
A′′1
d1

)
·
( r
d

)−1
(
C2

d

)−1(
B′2
d

)
The product of the first four four is 1 by (12), together with the fact that B′2 = B′′2 . The product
of the last four factors is 1 by (10).

The result is now proved under the assumption that g ∈ Σ. Replacing g by gh and h by h−1 and
noting that κ(h−1) = κ(h)−1, we have also proved the result under the assumption that gh ∈ Σ.
We may remove this assumption by the following considerations. By Proposition 9 there exists

u =

 1 u2 u3

1 u1

1

 ∈ Γ∞(f)

such that ghu ∈ Σ, and by definition κ(gh) = κ(ghu). Now hu = u′h′ where

u′ =

 1 pu3 + qu1

1 ru3 + su1

1

 , h′ =

 p q + u2p
r s+ u2r

1

 .

Thus the case that we have just settled shows that κ(gh) = κ(gu′)κ(h′) = κ(g)κ(h′). But

κ(h′) =
(

r

s+ u2r

)
=
(r
s

)
= κ(h)

by Proposition 4 (i), and we are done. �

Lemma 3 Let G and H be a groups, S a generating subset of G that is closed under the inverse
map of G. Assume that χ : G −→ H is a map such that χ(gx) = χ(g)χ(x) for all x ∈ S, g ∈ G.
Then χ is a homomorphism.
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Proof By induction if x1, · · · , xN ∈ S we have χ(x1 · · ·xN ) = χ(x1) · · ·χ(xN ), and since every
element of G can be written in this form, the statement follows. �

Theorem 2 The map κ : Γ(f) −→ µn is a homomorphism.

Proof We may take S to be the subset of g of the three forms p q
r s

1

 ,

 1
p q
r s

 ,

 1 u2 u3

1 u1

1

 .

We have proved that κ(gx) = κ(g) when x is of the first or third form. For the second type of
element, we may deduce this from the first type by applying the involution. The result now follows
from Lemma 3. �

2 Some Exponential Sums

In this Section, o will be the ring of integers in a totally complex number field F . We assume that
o× contains the group µn of n-th roots of unity, and that −1 is an n-th power in o×. We assume
that there is given an ideal f of o such that

d ≡ c ≡ 1 mod f, gcd(d, c) = 1 ⇒
( c
d

)
=
(
d

c

)
. (21)

We also assume that if d ≡ d′ ≡ 1 modulo f then

d ≡ d′ mod f2 and d ≡ d′ mod c ⇒
( c
d

)
=
( c
d′

)
. (22)

Note that this condition is satisfied in the two cases of Section 1 by Proposition 4.
We embed F −→ F∞, the product of the archimedean completions of F . Let ψ : F∞ −→ C be

a nontrivial additive character. We assume that the conductor of ψ is precisely o that is, ψ(xo) = 1
if and only if x ∈ o.

The exponential sums that we describe are analogs of classical Gauss sums, and they will be
evaluated in terms of Gauss sums. Some of what we will prove about the H-sums proved in this
Section (particularly the multiplicativity) are analogous to properties of the Gauss sums, so this is
the place to discuss the Gauss sums, even though they won’t be used until the next Section. If
c ≡ 1 modulo f let

g(m, c) =
∑

d mod c

(
d

c

)
ψ

(
md

c

)
. (23)

Also, let φ(c) be the cardinality of (o/(c))×.

Proposition 13 The Gauss sum has the following properties.
(i) We have

g(m, cc′) =
( c
c′

)(c′
c

)
g(m, c) g(m, c′), if c, c′ are coprime;

14



(ii) We have

g(am, c) =
(a
c

)−1

g(m, c) if a, c are coprime;

(iii) Suppose that p is prime. The Gauss sum g(pk, pl) is zero unless either l = k + 1 or k > l and
n|l. If n|l then

g(pk, pl) =


0 if k < l − 1;
−Npk if k = l − 1;
φ(pl) if k > l.

(iv) If n - l then |g(pl−1, pl)| = Npl− 1
2 .

(v) If k, k + b > 0 and n|b then g(pk+b, pl+b) = Npb g(pk, pl).

Let C1 and C2 be elements of o that are congruent to 1 modulo f, and let m1, m2 ∈ o. We
define

H(C1, C2;m1,m2) =∑
A1, B1 mod C1
A2, B2 mod C2

gcd(A1, B1, C1) = 1
gcd(A2, B2, C2) = 1

A1 ≡ B1 ≡ A2 ≡ B2 ≡ 0 mod f
A1C2 + B1B2 + C1A2 ≡ 0 mod C1C2

(
B′1
C ′1

)(
B′2
C ′2

)(
C ′1
C ′2

)−1(
A1

r1

)(
A2

r2

)
ψ

(
m1B1

C1
+
m2B2

C2

)
,

where we have chosen a factorization

C1 = r1r2C
′
1 C2 = r1r2C

′
2

B1 = r1B
′
1, B2 = r2B

′
2,

where r1 ≡ r2 ≡ C ′1 ≡ C ′2 ≡ 1 modulo f, and gcd(C1, C
′
1) = 1.

Remark 1 The summation is more correctly written∑
B1 mod C1
B2 mod C2

B1 ≡ B2 ≡ 0 mod f

∑
A1 mod C1
A2 mod C2

gcd(A1, B1, C1) = 1
gcd(A2, B2, C2) = 1
A1 ≡ A2 ≡ 0 mod f

A1C2 + B1B2 + C1A2 ≡ 0 mod C1C2

. (24)

The reason that this way of writing the sum is correct is that if B1 is changed to B1 + tC1 then
the terms of the inner sum are permuted, with a compensating change A2 −→ A2 − tB2. We will
check this in the proof of the following Proposition.

Proposition 14 The sum H(C1, C2;m1,m2) is well-defined.
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Proof First, it must be checked that for fixed A1, B1, C1, A2, B2, C2 the expression is independent
of the factorization. We do this in two steps. First, with C ′1 and C ′2 fixed, we might vary the
factorization by changing r1 and r2, with compensating changes to B′1 and B′2:

r1 −→ αr1, B′1 −→ α−1B′1,

r2 −→ α−1r2, B′2 −→ αB′2.

Here α ∈ F× must be such that αr1, α
−1r2, α

−1B′1, αB
′
2 as well as r1, r2, B

′
1, B

′
2 are integral, and

α−1B′1, αB
′
2 ∈ f. Writing α as a fraction, this may be done in two steps; first we consider the case

where α is integral, dividing r2 and B′1; then we take α−1 to be integral, dividing r1 and B′2. The
two steps are identical, so we only check the first; thus α is an integer dividing gcd(r2, B

′
1). Since

r1 ≡ 1 modulo f, and αr1 is to satisfy the same congruence, we have α ≡ 1 modulo f. This variable
change multiplies the symbol in the definition of H by(

α

C ′1

)−1(
α

C ′2

)(
A1

α

)(
A2

α

)−1

=
(
A2C

′
1

α

)−1(
A1C

′
2

α

)
,

where we have used (21). Now A2C
′
1 ≡ A1C

′
1 modulo both f2 and α, since both f2 and α divide

B′1B
′
2, so the symbol is unchanged. One must also check invariance under

C ′1 −→ εC ′1, C ′2 −→ εC ′2,

r′1 −→ ε−1r1, B′1 −→ εB′1,

with r2 and B′2 unchanged, where ε is a unit ≡ 1 modulo f. This is straightforward as a consequence
of reciprocity and the invariance of

(
c
d

)
when d is changed by a unit.

The next thing that must be checked is that in (24) the inner sum over A1 and A2 does not de-
pend on the choice of A1 and A2 modulo C1 and C2 respectively. This follows from Proposition 1 (ii)
since r1 and r2 both divide C1 and C2.

Lastly, it must be checked is that the sum is invariant under B1 −→ B1 + tC1 and A2 −→
A2 − tB2. This variable change corresponds to B′1 −→ B′1 + tr2C

′
1, with no changes in r1, r2 and

B2, and it is easy to check using Proposition 1 (ii) that the sum is unchanged. This proves the
assertion in Remark 1 that the terms of the inner sum are permuted when B1 is changed modulo
C1. There is a similar verification for B2 −→ tC2 and A1 −→ A1 − tB1. �

Proposition 15 If gcd(C1C2, C
′
1C
′
2) = 1 with C1 ≡ C2 ≡ C ′1 ≡ C ′2 ≡ 1 modulo f, then

H(C1C
′
1, C2C

′
2;m1,m2) =(

C1

C ′1

)2(
C2

C ′2

)2(
C1

C ′2

)−1(
C2

C ′1

)−1

H(C1, C2;m1,m2)H(C ′1, C
′
2;m1,m2).

Proof Let p, p′ ∈ o such that pC1C2 + p′C ′1C
′
2 = 1. Let B1, A1 be given modulo C1 and B2, A2

modulo C2 such that A1 ≡ B1 ≡ A2 ≡ B2 ≡ 0 modulo f, gcd(A1, B1, C1) = gcd(A2, B2, C2) = 1
and A1C2 +B1B2 + C1A2 ≡ 0 modulo C1C2, and let similar data B′1, A

′
1 modulo C ′1. Let

c1 = C1C
′
1, c2 = C2C

′
2,

b1 = p′C ′21 C
′
2B1 + pC2

1C2B
′
1, b2 = p′C ′1C

′2
2 B2 + pC1C

2
2B
′
2,

a1 = p′C ′21 C
′
2A1 + pC2

1C2A
′
1 a2 = p′C ′1C

′2
2 A2 + pC1C

2
2A
′
2.
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Then b1, a1 and b2, a2 run through the residue classes modulo c1 and c2 respectively such that
a1c2 + b1b2 + c1a2 ≡ 0 modulo c1c2 and gcd(a1, b1, c1) = gcd(a2, b2, c2) = 1, and we may use these
to parametrize the sum H(c1, c2;m1,m2). We show that we can choose factorizations

C1 = r1r2Ĉ1, C2 = r1r2Ĉ2,

B1 = r1B̂1, B2 = r2B̂2,

C ′1 = r′1r
′
2Ĉ
′
1, C ′2 = r′1r

′
2Ĉ
′
2,

B′1 = r′1B̂
′
1, B′2 = r′2B̂

′
2,

c1 = R1R2ĉ1, c2 = R1R2ĉ2,

b1 = R1b̂1, b2 = R2b̂2,

such that ri ≡ r′i ≡ Ri ≡ 1 modulo f and gcd(C1, C2) = gcd(Ĉ ′1, Ĉ
′
2) = gcd(c1, c2) = 1 and(

b̂1
ĉ1

)(
b̂2
ĉ2

)(
ĉ1
ĉ2

)−1(
a1

R1

)(
a2

R2

)
=

(
B̂1

Ĉ1

)(
B̂2

Ĉ2

)(
Ĉ1

Ĉ2

)−1(
A1

r1

)(
A2

r2

)(
B̂′1

Ĉ ′1

)(
B̂′2

Ĉ ′2

)(
Ĉ ′1

Ĉ ′2

)−1(
A′1
r′1

)(
A′2
r′2

)

×
(
C1

C ′1

)2(
C2

C ′2

)2(
C1

C ′2

)−1(
C2

C ′1

)−1

. (25)

We first choose the factorizations of the Ci and C ′i, then take R1 = r1r
′
1, R2 = r2r

′
2,

ĉ1 = Ĉ1Ĉ
′
1, ĉ2 = Ĉ2Ĉ

′
2,

b̂1 = r′21 r
′3
2 p
′Ĉ ′21 Ĉ

′
2B̂1 + pr2

1r
3
2Ĉ

2
1 Ĉ2B̂

′
1, b̂2 = p′r′31 r

′2
2 Ĉ
′
1Ĉ
′2
2 B̂2 + pr3

1r
2
2Ĉ1Ĉ

2
2 B̂
′
2.

We will show that(
b̂1
ĉ1

)
=

(
r2Ĉ1B̂

′
1

Ĉ ′1

)(
r′2Ĉ

′
1B̂1

Ĉ1

)
,

(
b̂2
ĉ2

)
=

(
r′1Ĉ

′
2B̂2

Ĉ2

)(
r1Ĉ2B̂

′
2

Ĉ ′2

)
,

(
a1

R1

)
=

(
r′1r
′
2Ĉ
′
1A1

r1

)(
r1r2Ĉ1A

′
1

r′1

)
,

(
a2

R2

)
=

(
r′1r
′
2Ĉ
′
2A2

r2

)(
r1r2Ĉ2A

′
2

r′2

)
. (26)

We begin by noting that (
b̂1
ĉ1

)
=

(
pr2

1r
3
2Ĉ

2
1 Ĉ2B

′
1

Ĉ ′1

)(
r′21 r

′3
2 p
′Ĉ ′21 Ĉ

′
2B̂1

Ĉ1

)

and since pr2
1r

2
2Ĉ1Ĉ2 + p′r′21 r

′2
2 Ĉ
′
1Ĉ
′
2 = 1, one may simplify both factors to obtain the first identity.

The others are similar. Now substituting (26) into the left-hand side of (25) and simplifying one
(using the reciprocity law) obtains the result. �

Proposition 16 Suppose that gcd(m′1m
′
2, C1C2) = 1. Then

H(C1, C2;m1m
′
1,m2m

′
2) =

(
m′1
C1

)−1(
m′2
C2

)−1

H(C1, C2;m1,m2)
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Proof This is much easier than the multiplicativity of Proposition 15, and we leave it to the
reader. �

We now prove the main theorem of [2], giving fuller details than we had space for in that paper.
IWe will make use of strict Gelfand-Tsetlin patterns of the form

T =

 l1 + l2 + 2 l2 + 1 0
a b

c

 . (27)

For each such T define

G(T) = g(pa−b−1, pc−b) g(pl2 , pb) g(pl1+b, pa+b−l2−1) (28)

unless a = l2 + 1; in the latter case we modify the definition and write

G

 l1 + l2 + 2 l2 + 1 0
l2 + 1 b

c


 = Npb g(pa−b−1, pc−b) g(pl2 , pb). (29)

Note that the pattern T with a = b = l2 + 1 is not strict, and will be omitted from our summations.
Thus a− b− 1 > 0.

If T is as in (27), let k(T) = (a+ b− l2 − 1, c). Let k1(T) = a+ b− l2 − 1 and k2(T) = c.

Theorem 3 Let l1, l2 be nonnegative integers. Then∑
k1,k2

H(pk1 , pk2 ; pl1 , pl2)Np−k1s1−k2s2 =
∑
T

G(T)Np−k1(T)s1−k2(T)s2 ,

where the summation is over all strict Gelfand-Tsetlin patterns T of the form (27).

Proof Let us denote k(T) = (a + b − l2 − 1, c). Let Υ(k1, k2; l1, l2) be the set of all T of the
form (27) such that k(T) = (k1, k2). Evidently what must be proved is that

H(k1, k2; l1, l2) = H ′(k1, k2; l1, l2) (30)

where
H ′(k1, k2; l1, l2) =

∑
T∈Υ(k1,k2;l1,l2)

G(T).

Lemma 4 Let

T =

 l1 + l2 + 2 l2 + 1 0
a b

c


be a Gelfand-Tsetlin pattern. Assume that

l2 > b,

c+ l2 + 1 > a,

c− 2a+ l1 + 2l2 + 2 > b. (31)
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Let

a′ = c− a+ l1 + l2 + 2,
b′ = a− l2 − 1,
c′ = a+ b− l2 − 1,

and

T′ =

 l1 + l2 + 2 l1 + 1 0
a′ b′

c′

 .

Then T′ is also a Gelfand-Tsetlin pattern and G(T) = G(T′). The hypothesis (31) is always satisfied
if k2 = c is greater than k1 = a+ b− l2 − 1.

Proof It is straightforward to check that (31) implies that T′ is a Gelfand-Tsetlin pattern. It is
also easy to check that that k2 > k1 implies (31).

We turn to the proof that G(T) = G(T′). First suppose that a > l2 + 1. We note that our
assumptions imply that a′ > l1 + 1. Assuming (31) we must show that

g(pa−b−1, pc−b) g(pl2 , pb) g(pl1+b, pa+b−l2−1) =
g(pc−2a+l1+2l2+2, pb) g(pl1 , pa−l2−1) g(pa−1, pc).

Since we are assuming l2 > b and c−2a+2l1 + l2 +2 > b both sides vanish unless n|b. We therefore
assume n|b. Since

g(pl2 , pb) = g(pb, pb) = g(pc−2a+2l1+l2+2, pb) (32)

so we must show that

g(pa−b−1, pc−b) g(pl1+b, pa+b−l2−1) = g(pa−1, pc)g(pl1 , pa−l2−1) .

This follows since n|b implies that

g(pa−1, pc) = Npb g(pa−b−1, pc−b) (33)

and
g(pl2+b, pa+b−l1−1) = Npb g(pl2 , pa−l1−1).

If a = l2 + 1 then what we must show is that

Npb g(pa−b−1, pc−b) g(pl2 , pb) =
g(pc−2a+l1+2l2+2, pb) g(pl1 , pa−l2−1) g(pa−1, pc).

Again both sides vanish unless n|b, which we assume, and proceeding as before, the statement now
follows from (32) and (33), together with the fact that g(pl1 , pa−l2−1) = 1. �

Lemma 4 gives a bijection Υ(k1, k2; l1, l2) −→ Υ(k2, k1; l2, l1) when k2 > k1; since the bijection
preserves G(T), this means that the right-hand side of (30) satisfies

H ′(pk1 , pk2 ; pl1 , pl2) = H ′(pk2 , pk1 ; pl2 , pl1)

when k2 > k1; on the other hand it is evident from the definition that

H(pk1 , pk2 ; pl1 , pl2) = H(pk2 , pk1 ; pl2 , pl1) (34)

for all k1 and k2. Hence we are reduced to proving the Theorem when k1 > k2.
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Lemma 5 If k1 > k2, then

H(pk1 , pk2 ; pl1 , pl2) =
min(k2,k2−k1+l1+1)∑
i=max(0,k2−l2−1)

g(pi, pi) g(pl2 , pk2−i) g(pl1+k2−i, pk1).

Proof We note that since g(pa, pb) = 0 if a < b− 1, the statement is equivalent to

H(pk1 , pk2 ; pl1 , pl2) =
k2∑
i=0

g(pi, pi) g(pl2 , pk2−i) g(pl1+k2−i, pk1) (35)

since any terms in this sum with i < k2− l2−1 or i > k2−k1 + l1 +1 contribute zero. We prove (35).
In the definition of H, we have r1r2 = pk2 and we can take C ′1 = pk1−k2 , C ′2 = 1. Thus

H(pk1 , pk2 ; pl1 , pl2) =∑
A1, B1 mod pk1

A2, B2 mod pk2

gcd(A1, B1, p) = gcd(A2, B2, p) = 1

A1p
k2 + B1B2 + A2p

k1 ≡ 0 mod pk1+k2

(
B′1

pk1−k2

)(
A1

r1

)(
A2

r2

)
ψ

(
B1p

l1

pk1
+
B2p

l2

pk2

)
. (36)

It is understood that A1, A2, B1 and B2 are always chosen to be divisible by the conductor f; we
will omit this condition from all summations since it really plays no role in the computation. We
break the sum up into 3 pieces: (1) gcd(B2, p) = 1, (2) pi exactly divides B2 with 1 6 i < k2, and
(3) pk2 |B2.

First we consider the contribution where gcd(B2, p) = 1. Here r2 = 1, r1 = pk2 , and from the
Plücker relation, B1 ≡ 0 mod pk2 . After replacing B1 by pk2B′2 and dropping the prime, we get∑

A1 mod pk1 , B1 mod pk1−k2

A2, B2 mod pk2

gcd(B2, p) = gcd(A1, p) = 1

A1 + B1B2 + A2p
k1−k2 ≡ 0 mod pk1

(
B1

pk1−k2

)(
A1

pk2

)
ψ

(
B1p

l1

pk1−k2
+
B2p

l2

pk2

)
. (37)

We may use the Plücker relation to determine A1. The sum becomes∑
B1 mod pk1−k2

A2, B2 mod pk2

gcd(B2, p) = gcd(A2p
k1−k2 + B1B2, p) = 1

(
B1

pk1−k2

)(
A2p

k1−k2 +B1B2

pk2

)
ψ

(
B1p

l1

pk1−k2
+
B2p

l2

pk2

)
.

Since k1 > k2 we may replace the condition gcd(A2p
k1−k2 + B1B2, p) = 1 by just gcd(B1, p) = 1,

and we also have
(
A2p

k1−k2+B1B2
pk2

)
=
(
B1B2
pk2

)
. The summand is independent of A2, and we may

drop this summation to obtain

Npk2
∑

B1 mod pk1−k2

B2 mod pk2

gcd(B1B2, p) = 1

(
B1

pk1

)(
B2

pk2

)
ψ

(
B1p

l1

pk1−k2
+
B2p

l2

pk2

)
.

20



Now we may drop the leading factor of Npk2 by summing B2 over pk1 instead of pk1−k2 . Hence we
obtain

g(pl2 , pk2) g(pl1+k2 , pk1).

This is the contribution i = 0 in (35).
Next, we have the contributions where pi exactly divides B2 for some i, 1 6 i < k2. Note that

B1 ≡ 0 mod pk2−i. We have r2 = pi, r1 = pk1−i. After writing B1 = pk2−iB′1, B2 = piB′2 and
dropping the primes from the notation, the sum becomes∑

A1 mod pk1 , B1 mod pk1−k2+i

A2 mod pk2 , B2 mod pk2−i

gcd(A1, p) = gcd(B2, p) = gcd(A2, p) = 1

A1 + B1B2 + A2p
k1−k2 ≡ 0 mod pk1

(
B1

pk1−k2

)(
A1

pk2−i

)(
A2

pi

)
ψ

(
B1p

l1

pk1−k2+i
+
B2p

l2

pk2−i

)
. (38)

Next we use the Plücker relation to eliminate A1. The sum is∑
B1 mod pk1−k2+i

A2 mod pk2 , B2 mod pk2−i

gcd(B2, p) = gcd(A2, p) = 1
gcd(B1B2, p) = 1

(
B1

pk1−k2

)(
B1B2

pk2−i

)(
A2

pi

)
ψ

(
B1p

l1

pk1−k2+i
+
B2p

l2

pk2−i

)
.

The A2 sum gives zero unless n|i; since the i contribution in (35) is also zero unless n|i due to the
factor g(pi, pi), we may now assume that n|i. The A2 sum produces φ(pk2) = Npk2−i g(pi, pi) and
the B2 sum produces g(pl2 , pk2−i). We obtain

Npk2−i g(pi, pi) g(pl2 , pk2−i)
∑

B1 mod pk1−k2+i

(
B1

pk1−i

)
ψ

(
B1p

l1

pk1−k2+i

)
.

We can absorb the Npk2−i into the summation by extending the summation to the larger modulus
pk1 . Since n|i, we may also write

(
B1
pk1−i

)
=
(
B1
pk1

)
and obtain the i-th term in (35).

Finally, we have the contribution when pk2 |B2. We have r1 = 1 and r2 = pk2 . We may take
B2 = 0 in the sum. We obtain ∑

A1, B1 mod pk1

A2 mod pk2

gcd(A1, B1, p) = gcd(A2, p) = 1

A1 + pk1−k2A2 ≡ 0 mod pk1

(
B1

pk1−k2

)(
A2

pk2

)
ψ

(
B1p

l1

pk1

)
. (39)

We may use the Plücker relation to eliminate A1, which is divisible by p. The sum is therefore∑
B1 mod pk1

A2 mod pk2

gcd(B1, p) = gcd(A2, p) = 1

(
B1

pk1−k2

)(
A2

pk2

)
ψ

(
B1p

l1

pk1

)
=

g(pk2 , pk2)
∑

B1 mod pk1

gcd(B1, p) = 1

(
B1

pk1−k2

)
ψ

(
B1p

l1

pk1

)
.
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Note that g(pk2 , pk2) = 0 unless n|k2, in which case
(

B1
pk1−k2

)
=
(
B1
pk1

)
. Hence this contribution is

g(pk2 , pk2) g(pl1 , pk1), which is the contribution of i = k2 in (35). �

Now suppose that k1 > k2. Then given an integer i we consider

T =

 l1 + l2 + 2 l2 + 1 0
a b

c

 ,
a = k1 − k2 + i+ l2 + 1,
b = k2 − i,
c = k2.

A necessary and sufficient condition for this to be a Gelfand-Tsetlin pattern is that

max(0, k2 − l2 − 1) 6 i 6 min(k2, k2 + l1 + 1− k1).

This gives a complete enumeration of Υ(k1, k2; l1, l2). We have a− b− 1 > c− b and so

G(T) = g(pc−b, pc−b) g(pl2 , pb) g(pl1+b, pa+b−l2−1) =
g(pi, pi) g(pl2 , pk2−i) g(pl1+k2−i, pk1).

In this case, the result now follows from Lemma 5.
It remains for us to handle the case k1 = k2.

Lemma 6 We have

H(pk, pk; pl1 , pl2) =
min(k−1,l2+1)∑

i=max(0,k−l1−1)

g(pl2 , pi) g(pl1+i, pk) g(pl2+k−2i, pk−i)

+
{
Npk g(pk, pk) if k 6 l2;
0 if k > l2.

Proof As in the proof of Lemma 5 we may replace the range of summation with
∑k−1
i=0 since the

fact that g(pa, pb) = 0 when a < b− 1 implies that any additional terms are zero. Now using (34)
it is equivalent to prove

H(pk, pk; pl1 , pl2) =
k−1∑
i=0

g(pl1 , pi) g(pl2+i, pk) g(pl1+k−2i, pk−i)

+
{
Npk g(pk, pk) if k 6 l1;
0 if k > l1,

(40)

which has the advantage that we may reuse parts of the proof of Lemma 5. It is possible that
l1 + k − 2i < 0 but if this occurs the meaning of g(pl1+k−2i, pk−i) can be assigned arbitrarily since
then i > l1 + 1, and the first Gauss sum will be zero.

We start with (36) and break the sum up as in Lemma 5.
First let us consider the contribution when gcd(B2, p) = 1. This is still given by (37). Since B1

is chosen modulo 1 it is arbitrary, and we take B1 = p. We may omit the summation over A2 since
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it is determined by A1 and B2. We obtain

∑
A1 mod pk

B2 mod pk2

gcd(B2, p) = gcd(A1, p) = 1

(
A1

pk

)
ψ

(
B2p

l2

pk

)
.

The A1 summation produces g(pk, pk) = g(pl1+k, pk), which is zero unless n|k. Assuming this the
B2 sum gives g(pl2 , pk) and we get the i = 0 contribution in (40).

Next let us consider the contribution when pi‖B2 with 0 < i 6 k− 1. This is given by (38). We
can use the Plücker relation to eliminate A1. Moreover, we can extend the summations of B1 and
B2 to the larger modulus pk, dividing by Np−k to compensate for overcounting. We obtain

Np−k
∑

B1 mod pk

A2, B2 mod pk

gcd(B2, p) = gcd(A2, p) = 1
gcd(B1B2 + A2, p) = 1

(
A2 +B1B2

pk−i

)(
A2

pi

)
ψ

(
B1p

l1

pi
+
B2p

l2

pk−i

)
.

We make the variable change B1 7−→ B−1
2 (B1−A2), where the inverse is modulo pk. This produces

Np−k
∑

B1 mod pk

A2, B2 mod pk

gcd(B2, p) = gcd(A2, p) = 1
gcd(B1, p) = 1

(
B1

pk−i

)(
A2

pi

)
ψ

(
B−1

2 (B1 −A2)pl1

pi
+
B2p

l2

pk−i

)
.

Next we replace B1 and A2 by B1B2 and A2B2, respectively to get

Np−k
∑

B1 mod pk

A2, B2 mod pk

gcd(B2, p) = gcd(A2, p) = 1
gcd(B1, p) = 1

(
B1

pk−i

)(
A2

pi

)(
B2

pk

)
ψ

(
(B1 −A2)pl1

pi
+
B2p

l2

pk−i

)
.

The B2 sum produces g(pl2+i, pk), and the A2 sum gives Npk−ig(pl1 , pi). Thus we arrive at

Np−i g(pl2+i, pk)Npk−ig(pl1 , pi)
∑

B1 mod pk

gcd(B1, p) = 1

(
B1

pk−i

)
ψ

(
B1p

l1

pi

)
.

But g(pl1 , pi) is nonzero only when i 6 l1 + 1. In this case l2 + k − 2i > 0 and

Np−i
∑

B1 mod pk

gcd(B1, p) = 1

(
B1

pk−i

)
ψ

(
B1p

l1

pi

)
= g(pl2+k−2i, pk−i).

Thus we arrive at the contribution g(pl1 , pi) g(pl2+i, pk) g(pl1+k−2i, pk−i).
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It remains for us to discuss the contribution when pk|B2. We start with (39). The A1 sum is
irrelevant since A1 ≡ −A2 modulo pk. As p - A2, this implies that the condition gcd(A1, B1, p) = 1
may also be dropped. Now the summation over B1 produces a factor of pk if k 6 l1, and zero
otherwise; and the summation over A2 produces a factor of g(pk, pk). �

Assume that k1 = k2 = k. Given an integer i, consider

T =

 l1 + l2 + 2 l2 + 1 0
a b

c

 ,
a = k − i+ l2 + 1,
b = i,
c = k.

A necessary and sufficient condition for this to be a Gelfand-Tsetlin pattern is that

max(0, k − l1 − 1) 6 i 6 max(k, l2 + 1),

and this gives a complete enumeration of Υ(k, k; l1, l2). We assume first that i < k. In this case we
have

G(T) = g(pa−b−1, pc−b) g(pl2 , pb) g(pl1+b, pa+b−l2−1)

g(pl2+k−2i, pk−i) g(pl2 , pi) g(pl1+i, pk),

and these terms account for the first summation in Lemma 6. If k 6 l2 + 1 there is one more term
with i = k. Using (29), this accounts for the last term in Lemma 6, and the Theorem is proved. �
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