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1 Introduction

There are many interesting questions one can ask about a highly symmetric graph.
A graph with a transitive automorphism group can be obtained starting with a group
G and a small set S of generators. We assume that S is closed under inverses. Then
the vertices of this Cayley graph are the elements of the group, and elements x and
y will be joined by an edge if x−1y ∈ S.

Anyone who has worked with groups knows that they have great individuality.
A nonabelian simple group is very different in character than a p-group. A Cayley
graph is just a group with additional structure (the edge relation) so one might also
expect it to have its own unique individual character. Yet if it is at all large it is a
challenge to view it as something more than just an amorphous collection of points
with an edge relationship. How can one perceive its true structure?

The Rubik’s cube is a popular toy which in reality is nothing but a group with a
given set of generators – in other words, its essence is a Cayley graph CG. Inside the
group of the Rubik’s cube, one may consider the subgroup with two generators, and
the corresponding Cayley graph. For the miniature (2 × 2 × 2) Rubik’s cube, this
group of order 29,160 and its Cayley graph (of the same size) are of just the right
size to make interesting experiments. It is small enough that a model can be kept in
memory in a computer, so that any question can potentially be answered by brute
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force computation. Yet it is large enough that it may already exhibit unexpected
properties of large highly symmetric graphs.

The decision to focus on the two-generator group (generated just by rotations
of two adjacent faces) is motivated not only by the desire to obtain a Cayley graph
of convenient size, but also by a circumstance described by Singmaster [6] – the
two-generator group is a particularly interesting group. It is a wreath product based
on the group of permutations of the six vertices that are moved by the two opera-
tions, and this permutation group is itself isomorphic to PGL2(F5), the group of the
projective line over the field of five elements; in turn it is isomorphic to S5.

Cube enthusiasts may note that the two-generator group – of either the standard
(3×3×3) miniature cube – is the basis of a good puzzle. If one scrambles a cube using
just two generators, can one then unscramble it using just those two generators? The
fact that this puzzle is a good alternative to the usual cube-scrambling puzzle is a
reflection of the remarkable richness of the two generator group.

We will try to bring this Cayley graph CG to life in this paper. We will see that
its diameter is 17. We will consider how the “ball of radius r” consisting of all points
of distance r from the origin grows with r. Perhaps surprisingly, when r is near the
diameter, the rate of growth of the ball slows dramatically. Although the graph has
thousands of vertices, only a few – 18 altogether – are at maximal distance from the
origin. We call these vertices the antipodes and we will consider the structure of the
subgraph formed by these.

We will show that the graph can be used to obtain a presentation of the group,
that is, a complete set of relations between the generators. We will apply this
information to construct interesting operations for the group of the full (3 × 3 × 3)
Rubik’s cube.

Finally we will turn to questions about the random walk on the graph – how
quickly does making random operations from the set of generators scramble the
cube? We will consider this question from a couple of different points of view.

Repeatedly making random operations chosen from the set S of generators pro-
duces a Markov process . How quickly the process converges to randomness is from
one point of view a question of computing the eigenvalues of the Markov transition
matrix. This in turn reduces to a problem in group representation theory – each
irreducible representation of the group will supply some of these eigenvalues. We
will compute all of them. On the other hand, we will also study this Markov process
brute force computation.

We would like to thank Persi Diaconis and Hua Zhou for interesting conversa-
tions and helpful comments. For support, we thank Stanford’s VPUE and Gunnar
Carlsson (Auerbach) and NSF grant DMS-0354662 (Bump).
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2 Introduction to the 2 generator group

Let G denote the group generated by taking clockwise rotations of the right and top
faces of the miniature (2 × 2 × 2) Rubik’s Cube. Denote by R a clockwise rotation
of the right face, and let U denote a clockwise rotation of the top face, so that
G = 〈R,U〉. Following Singmaster [6], we also sometimes denote R−1 by R′, U−1 by
U ′. Let K denote the subgroup of G corresponding to operations that do not change
the position of any of the 6 cubes which are generally affected by the group (i.e. K
changes only the orientation of these cubes).

Proposition 1. K is an abelian, normal subgroup of G of order 35.

Proof. Given any operation g ∈ G, and k ∈ K, we clearly have that gkg−1 ∈ K,
since cube positions are not affected by k. Hence, K is normal in G. Moreover, K
is clearly abelian.

To see that the order |K| ≤ 35, we observe that there are 3 possible orientation
changes (or twists) for each of the 6 cubes and so the order of K must be ≤ 36.
Now label each possible twist by a different number: 0 for no change, 1 for clockwise
twist, 2 for counterclockwise twist. It is well-known that the total number of twists
must be ≡ 0 modulo 3 (Singmaster [6]) and so |K| ≤ 35.

So we need only show that |K| ≥ 35. The operation RUR′URU2R′U2 ∈ K twists
three corners clockwise by one twist, and it is easy to see that this operation, together
with its conjugates, generates a group containing any operation twisting the corners
in such a way that the total number of twists is ≡ 0 modulo 3 and so |K| > 35.

Operations in G only affect the locations and orientations of 6 pieces. We label
these by the points of the projective line P1(F5) = F5 ∪ {∞} over the field with 5
elements (Figure 1).

The group G acts on the six pieces by permuting them and also affecting their
orientation. The quotient G/K also acts faithfully as a group of permutations of
P1(F5) (ignoring orientation). Thus it may be regarded as a subgroup of the group
S6 of permutations of the six element set P1(F5).

A particular group of permutations of P1(F5) is the group PGL(2, F5) acting by
linear fractional transformations. Thus the group GL(2, F5) acts by(

a b
c d

)
: x 7−→ ax + b

cx + d
, x ∈ F5 ∪ {∞},

where it is understood that if x = ∞ then ax+b
cx+d

= a
c
, while if cx + d = 0 then

ax+b
cx+d

=∞. Since the center Z of GL(2, F5) consisting of scalar matrices acts trivially,
this is really an action of GL(2, F5)/Z = PGL(2, F5).
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Figure 1: The labeling of the 6 pieces moved by G.

Proposition 2. (Singmaster [6]) As a permutation group acting on P1(F5), we
have G/K = PGL(2, F5).

Proof. Let us check that generators of G/K are contained in PGL(2, F5). Notice
that R,RU generate G, so we need only to show that R,RU ∈ PGL(2, F5). In
keeping with the labeling scheme given and the action described above, we see that
R corresponds to the cycle (012∞), while RU corresponds to the cycle (01234). But
an easy verification then shows that R and RU have corresponding fractional linear
transformations:

R =

(
0 1
2 1

)
∈ PGL(2, F5)

RU =

(
1 1
0 1

)
∈ PGL(2, F5)

So indeed we see that G/K ⊂ PGL(2, F5). It is also easy to verify that these two
elements generate PGL(2, F5).

Corollary 1. G/K ∼= S5, and |G/K| = 5!.

Proof. The well-known isomorphism PGL(2, F5) ∼= S5 may be checked by labeling
the 5-Sylow subgroups of S5 as follows:

〈(12345)〉 =∞, 〈(12354)〉 = 0, 〈(12453)〉 = 1,
〈(12543)〉 = 2, 〈(12534)〉 = 3, 〈(12435)〉 = 4.

(Here 〈(12345)〉 denotes the cyclic subgroup generated by the 5-cycle (12345).) The
group S5 acts on P1(F5) by conjugating its Sylow subgroups, and we claim that
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the group of permutations of P1(F5) thus obtained is PGL(2, F5). To see that it is
contained in PGL(2, F5) it is enough to check for generators of S5 that conjugation
induces a linear fractional transformation. For example conjugation by (12345) in-
duces the transformation that fixes∞ and cyclicly permutes 0 −→ 1 −→ 2 −→ 3 −→
4 −→ 0, which corresponds to the linear fractional transformation x 7−→ x + 1, or

the matrix

(
1 1
0 1

)
in GL(2, F5). Similarly (45) has the effect 0←→∞, 1←→ 2,

3 ←→ 4, which is the linear fractional transformation x 7−→ 2/x, or the matrix(
0 2
1 0

)
in GL(2, F5). Since S5 is generated by (12345) and (45), we see that every

permutation of the 5-Sylow subgroups thus labeled is in PGL(2, F5) and so we have
constructed a homomorphism S5 −→ PGL(2, F5). Both groups have the same order
120, and the homomorphism is nontrivial since the only nontrivial normal subgroup
of S5 is A5, and we have already seen that an element (12345) of A5 acts nontrivially,
so it is an isomorphism.

Now we show that G is a semidirect product K n H for a subgroup H. This
means that H ∩K = {1} and that G = HK. (We already know that K C G.) This
fact – that the two generator group is a semidirect product – is false for the larger
two generator group of the 3× 3× 3 Rubik’s cube.

To construct the group H, let us suppose we have a cube in a solved configuration.
Suppose further that the F (front) face is red and that the opposite face—the B
face—is orange. Consider an operation which leaves only red or orange facelets on
both the F and B faces. This element of G is said to solve the F and B faces mod
identification of F and B colors. Let H denote the set of operations of G which solve
the cube mod the identification of F and B colors. It is clear that H is a group.

Proposition 3. Every element of G/K has a unique representative in H, and so G
is the semidirect product K o H.

Proof. Exactly six cubes move during the operation of the cube. If the locations of
these six cubes are given, there is exactly one way for each them to be oriented that
solves the F and B faces mod identification of F and B colors. Thus H ∩K = {1}.
What we must show is that if a permutation of the six cubes is attainable within G,
then this orientation that solves the cube modulo identification of F and B colors
can be achieved within H. Let

h1 = RUR′URU ′R′URU2R′U ∈ H

h2 = URU ′RUR′U ′RUR2U ′R ∈ H

5



It is direct to see that these elements are in fact in H, and moreover, that h1 has the
same image as U in G/K and h2 has the same image as R in G/K. Now consider
the subgroup H1 of H generated by h1 and h2. We can write any element of G in
the form hk (where h ∈ H1 and k ∈ K), since up to a twist, the generators of G are
contained in H1. Thus, it is clear that H1 = H and that HK = G, and so we have
the desired semi-direct product.

3 The Cayley graph

As G is a semi-direct product, one can enumerate all elements of G as pairs (k, h)
with k ∈ K and h ∈ H. Given this, the Cayley graph of G is easily modelled using a
program in C++, and some facts that are set out in this section were proved using
this computer program.

Let CG denote the Cayley graph of G with respect to the set S = {R, R′, U, U ′}
of generators. This is the graph whose vertices are the elements of G, and whose
edges are the pairs of x and y such that x−1y ∈ {R,R′, U, U ′}. The group G acts
transitively on the graph on the left. The graph is kept entirely in memory during
the computations.

Proposition 4. CG has diameter 17.

Proof. This was checked by computer. We recursively label the elements of the graph
by integers d which will represent the distance from the origin. The identity element
is assigned the label d = 0, and at the d-th step, all elements that are neighbors of a
vertex at distance d that are not already labeled are given the label d + 1. After 17
steps, no more unlabeled vertices are found and the algorithm terminates.

Loops in the Cayley graph correspond to relations between the generators. For ex-
ample, after applying R2U2R2U2R2U2 one returns to the starting point. This means
that the graph has a loop, or equivalently, that the “braid relation” R2U2R2U2R2U2 =
1 is satisfied in the group.

Lemma 1. The group G admits a character χ : G −→ {±1} such that χ(x) = −1
for all x ∈ S. If x1 · · ·xr = 1 with xi ∈ S, then r is even.

Thus every loop in the Cayley graph has even length.

Proof. We have noted that G/K ∼= S5, and χ may be taken to be the sign character
of S5 pulled back to G. Applying χ to x1 · · ·xr = 1 gives (−1)r = 1, so r is even.
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This fact is the basis of a computer algorithm to compute relations in the group,
leading to a presentation. Since by Lemma 1 any relation has even length, one can
look for situations where there are two distinct paths of equal length that start at
the origin and have the same endpoint.

In the course of proving Proposition 4 we used a computer to compute the distance
from every vertex to the origin, and we may now reuse this information to implement
this idea. Let us a vertex x a H-vertex if it has at least two distinct adjacent vertices
that are closer to the identity vertex than x (i.e. they have shorter walks to the
identity than does x). To find relations, the algorithm that we will now describe
goes through the entire graph, identifying H-vertices.

Given the labeling of the vertices by their distance from the origin, the H-vertices
are easily identified. For each H-vertex N and each pair of adjacent vertices A and
B that are closer to the identity than N , the algorithm produces one relation. Let
us describe this relation. Let a be some shortest walk from the identity to N that
goes through node A, and let b be some shortest walk that goes from the identity
to N going through node B. Then ab−1 = 1 is clearly a relation, and is the relation
generated for the ordered triplet (N, A,B). If there are other H-vertices on either
path a or b, then this relation is not uniquely determined, but this does not matter.
The important thing is that some such relation exists.

After generating all such relations, the algorithm cuts down on the total number
by eliminating unnecessary relations. It does this by considering only a subset of the
total number of triplets (N, A, B) that are necessary, by eliminating relations that
contain other relations, and by eliminating redundant cycles. To illustrate this last
point, let us consider a quick example. If we have two relations abc = 1 and bca = 1,
these two relations are redundant and we can throw one of them out. So we get a
presentation of G. There are too many relations to list them all here, but we give 14
of the shortest relations below:

R4 U4

RURURU ′R′U ′R′U ′ R′U ′R′U ′R′URURU
R′U ′R′URURUR′U ′ RU ′R′U ′R′U ′RURU
R′URURUR′U ′R′U ′ RUR′U ′R′U ′R′URU
RURUR′U ′R′U ′R′U R′U ′R′U ′RURURU ′

RURU ′R′U ′R′U ′RU R′U ′RURURU ′R′U ′

R′U ′R2URURU2R′U ′ R2U ′R′URURUR′U ′R

We have listed all of the relations of length < 12 and two of the relations of length
12.

There is a homomorphism φ : G3 −→ G from the two-generator group G3 of the
3 × 3 × 3 Rubik’s cube, since any operation satisfied by the counterparts of R and
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U in G3 is obviously satisfied in G. The kernel of φ is the group of edge operations
that effect the edges of the full Rubik’s cube, but have no effect on the corners. A
reasonable strategy for solving the full Rubik’s cube is to first put the corners in
place, then deal with the edges, so a table of edge operations is a useful thing. As we
mentioned in the introduction, a pleasant puzzle is to scramble the cube using the
2 generator group, then restore it using only operations from the 2 generator group,
and if one wants to be proficient at this task, it is important to know some edge
operations that only use R and U . For example, the operation RURURU ′R′U ′R′U ′

is an extremely pleasant edge three-cycle that is easy to use and remember.
Finally, we present a table that partitions all vertices of CG into their distances

from the identity.

r
Number of

vertices at distance r
log B(r)
log(r)

0 1 −
1 4 −
2 10 2.32193
3 24 2.46497
4 58 2.6427
5 130 2.84243
6 271 3.02772
7 526 3.19162
8 980 3.33333
9 1750 3.46023
10 2731 3.57449
11 3905 3.6604
12 5229 3.72191
13 5848 3.76469
14 4792 3.77948
15 2375 3.7576
16 508 3.70136
17 18 3.62837

Table 1: The number of vertices at distance r from the origin.

Our next point is speculative. We note the striking fact is that after distance 14,
the number of vertices at each distance shrinks dramatically, with only a handful at
distance 17. One is tempted to try to visualize the graph as something like a sphere
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or other homogenous space of some dimension, since in a sphere of circumference
A the area of the set of points at distance between x and x + ∆x decreases as x
approaches A/2. But if one accepts this idea, what would be the dimension of the
manifold?

The notion of fractal dimension suggests the following considerations. Let B(r) be
the number of vertices of distance < r from the identity. In a manifold of dimension
d, we would expect the volume of a ball of radius r to satisfy:

log B(r) ∼ d log(r)

for small r. So this suggests that CG can be thought of as having fractal dimension
between 2 and 3. This is not intended to be a rigorous statement, and indeed is a
misuse of the concept of dimension. However it seems plausible that on a large scale
the graph has some interesting topology that we have not yet been able to discover,
and this may be an interesting direction for future work.

Since there are exactly 18 vertices at maximal distance, we wondered if they all
were close to each other (which would support the idea that the graph could be
thought of as a sphere). We call these 18 vertices the antipodes . They are

A1 = RU ′RU ′RU ′R2UR′URU ′R′UR2 A2 = R′UR′UR′UR2UR′U ′RUR′UR2

A3 = U ′RU ′R2U ′RU ′RU ′RU ′R2UR2 A4 = U ′R′URU ′RUR′URU ′RU ′RUR2

A5 = URU ′RU ′RU ′RU ′R′UR′U ′RUR2 A6 = UR′UR2UR′UR′UR′UR2U ′R2

A7 = R′U2RU2RU ′RU ′RU ′RU2R2 A8 = RUR2U ′R2UR′UR′U2R′UR2

A9 = U2RU ′R2U ′RU ′RU ′RUR′UR2 A10 = UR′U ′RUR′UR′UR′URU ′RUR2

A11 = U2RU ′RU ′RU ′RUR′U2RUR2 A12 = U ′R′UR′U ′RU ′RU ′RU ′R′URU ′R2

A13 = UR′U2RUR′UR′UR′UR2UR2 A14 = U2RU ′RUR′UR′UR′U2R′UR2

A15 = U ′RU ′RU ′RU ′R2UR′UR2UR2 A16 = R2U ′RU ′R2UR2U ′RU ′RUR2

A17 = R′URU ′RUR′URU ′RU2R′UR2 A18 = UR′UR2UR′UR′UR′U ′R2UR2.

The subgraph of the antipodes can be grouped into 4 clusters. The first two
clusters have 4 elements each:

A12 A1 A2 A16 A10 A17 A8 A14

Here vertices connected with a horizontal line have distance 6 from each other,
and those pairs of vertices that have no lines between them all have distance 8 from
each other.

The next two subgraphs are of the form:
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Here vertices connected with a horizontal line have distance 6 from each other, and
vertices connected with a slanted slash have distance 8 from each other. Moreover,
the pairs {A11, A13} and {A15, A9} have respective distance 10. The pairs {A6, A4},
{A6, A13}, {A11, A4} and {A5, A3}, {A5, A9}, {A15, A3} all have respective distance
12. The smallest distance between any two clusters is 10.

4 The Markov process

The adjacency matrix of the Cayley graph of G = {g1, · · · , gN} (where N = |G| =
29,160) is the matrix whose rows and columns correspond to the elements of g, with
a value 1 in the i, j-th position if gi and gj are adjacent in the graph, and otherwise
0. Dividing this matrix by 4 gives a matrix we will denote by M . It is clear that
M is a symmetric doubly stochastic matrix. As we will explain, it is the transition
matrix of a Markov process. Its eigenvalues will prove important, so we first discuss
how to compute them.

If ξ is a function on the group, then we may think of ξ as a vector whose entries
are indexed by the group elements, and the i-th entry has value ξ(gi). Then we may
compute the vector Mξ, and interpret that as a function on G. Alternatively, we
may think of ξ as the entry

∑
ξ(g) · g of the group algebra C[G], and the element of

the group algebra corresponding in this way is 1
4
(R+R′+U +U ′)

∑
ξ(g)·g. Hence we

may identify vectors with elements of the group algebra, and then application of the
matrix M corresponds to left multiplication by the special element 1

4
(R+R′+U +U ′)

of C[G]. By abuse of notation, we will sometimes write M = 1
4
(R + R′ + U + U ′)

with this understanding.

Lemma 2. The eigenvalues of M are real. If λ is an eigenvalue of M , so is −λ.
The largest eigenvalue is 1.

Proof. Since it is symmetric, the eigenvalues are real. If Mξ = λξ, we can multiply
the entries in the vector ξ by ±1 to obtain another vector with eigenvalue −λ as
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follows. The rows of ξ are indexed by the elements of G multiply the g-th entry
by χ(g), where χ is the character of Lemma 1. By the Perron-Frobenius theorem
(Horn and Johnson [2]), the top eigenvalue of M is 1, and it occurs with multiplicity
one.

The eigenvalues of M can be computed using group representation theory. Let
π1, π2, · · · , π48 be the irreducible representations of G, let χ1, · · · , χ48 be their charac-
ters, and let di = χi(1) be their degrees. Then the regular representation decomposes
as

C[G] ∼=
48⊕
i=1

diπi.

Thus we may find the eigenvalues of M in C[G] by finding the eigenvalues of M
in each of the irreducible representations πi, then counting each eigenvalue with
multiplicity di.

Since G is a semi-direct product with abelian kernel K, a theorem of Mackey
constructs all irreducible representations by induction from characters of certain
subgroups of G. See Mackey [4] Theorem 14.1 and Lang [3], Exercise 7 on page 724.
However there is no need to compute these eigenvalues by this method since the
computer program GAP [1] is capable of producing the characteristic polynomials
of the linear transformations induced by M on each irreducible G-module. The
following short program will suffice to produce these after a few hours.

G:=Group((1,12,8,6)(3,11,9,5)(2,10,7,4),(10,13,17,8)(7,11,14,18)(15,16,9,12));
r:=(1,12,8,6)(3,11,9,5)(2,10,7,4);
rp:=Inverse(r);
u:= (10,13,17,8)(7,11,14,18)(15,16,9,12);
up:=Inverse(u);
A:=IrreducibleRepresentations(G);
Q:=List([1..48],

i -> CharacteristicPolynomial((rˆA[i]+rpˆA[i]+uˆA[i]+upˆA[i])*1/4);

The characteristic polynomials thus produced may then be evaluated using Math-
ematica. The nonnegative eigenvalues are listed with multiplicity in Table 2. For
each λ > 0 in this table, −λ also occurs with the same multiplicity, but these are
not listed.

Let ξ1, · · · , ξN (N = |G| =29,160) be an orthonormal basis of L2(G) consisting of
eigenvectors for M in with respect to the L2 norm. Let λ1, · · · , λN be the eigenvalues,
so Mξi = λiξi. Such an orthonormal set of eigenvalues exists since the matrix M is
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symmetric. By Lemma 2, both 1 and −1 are eigenvalues of M , and both occur with
multiplicity one. We order the eigenvalues so that λ1 = 1 and λ2 = −1. We have

ξ1(g) = 1, ξ2(g) = χ(g).

The next eigenvalue λ3 = 0.964905 has multiplicity 20 as does −λ3, so we can
further order the basis such that λ3 = λ4 = . . . = λ22 and λ23 = . . . = λ42 = −λ3,
and |λi| < λ3 when i > 42.

Consider the Markov process corresponding to the random walk on the Cayley
graph. Specifically, let us start with a probability distribution p on G, that is, a
function p : G → R+ such that

∑
g∈G p(g) = 1. After we apply a random element

of the generating set, we obtain another probability distribution. We may associate
with the probability distribution p : G → R+ the element

∑
p(g) · g of the group

algebra C[G], and after applying a random twist, this element is multiplied by M =
1
4
(R + R′ + U + U ′).

Let p0 be the probability distribution corresponding to the solved cube, so that
p0(1) = 1, while p0(g) = 0 for g 6= 1. Iterating the Markov process by randomly
twisting the cube k times gives the distribution pk = Mkp0. After k operations, the
cube will necessarily be at an even or odd distance from the identity, depending on
whether k is even or odd. Except for this constraint, pk should be approximately
random if k is large. More precisely, if k is large, we expect pk − Lk to be small,
where

Lk(g) =

{ 2
|G| if χ(g) = (−1)k,

0 otherwise.

To quantify this expectation, there are various measures of closeness. We will use
the L1 and L2 norms on G with the total volume normalized to 1. Thus

||f‖p =

(
1

|G|
∑
g∈G

|f(g)|p
)1/p

.

In the literature on random walks on a finite group G, it is customary to measure the
distance between two probability distributions p and q by the total variation distance
(see Diaconis [1] and Saloff-Coste [5]). This is defined by:

‖p− q‖tv = max
A⊂G

F (A), F (A) =

∣∣∣∣∣∑
g∈A

p(g)− q(g)

∣∣∣∣∣ .
Proposition 5. If p and q are probability distributions, we have

‖p− q‖tv =
|G|
2
||p− q||1. (1)
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Proof. Let A1 = {g ∈ G|p(g) > q(g)} and A2 = {g ∈ G|p(g) < q(g)}. Then since
p and q are real, it is easy to see that F (A) is maximal when A = A1 or A2, and
since p and q are probability distributions, it is easy to see that F (A1) = F (A2).
Moreover on A1 or A2 we have |

∑
(p(g)− q(g))| =

∑
|p(g) − q(g)| since all terms

have the same sign, so

F (A1) + F (A2) =
∑
g∈G

|p(g)− q(g)| = |G| × ||p− q‖1.

Proposition 6. We have

‖pk − Lk‖tv 6
|G|
23/2
||pk − Lk||2.

Proof. In view of Proposition 5, we must show that

||pk − Lk||1 6
1√
2
||pk − Lk||2.

This is basically the Cauchy-Schwartz inequality, taking into account that the sup-
port of pk − Lk is contained {g|χ(g) = (−1)k}, a set of order |G|/2. To be precise,
let fk(g) = |pk(g)− Lk(g)|. Then

||pk − Lk||1 =

〈
fk,
|G|
2

Lk

〉
6 ‖fk‖2 · ‖(|G|/2)Lk‖2 =

1√
2
‖fk‖2. (2)

Proposition 7. We have

||pk − Lk||2 6
λk

3√
|G|

,

Proof. We can write the initial distribution

p0 =
N∑

i=1

ciξi. (3)

The first two eigenfunctions are ξ1(g) = 1 and ξ2(g) = χ(g). Since p0 is a probability
distribution,

1 =
∑
g∈G

p0(g) = |G| 〈p0, ξ1〉 = |G|c1, (4)

13



so c1 = 1
|G| and c1ξ1 is the uniform distribution where every state has equal proba-

bility. Similarly c2 = 1
|G| since (4) would remain true if we replace ξ1 by ξ2, which

equals ξ1 at the origin (which is the only place where p0 6= 0).
We can choose our orthonormal basis so that ξ3 is a constant times the projection

of p0 on the λ3-eigenspace. This means that c4 = . . . = c22 = 0. We can take
ξ20+i = χξi when i = 3, 4, · · · , 22. Then, since p0 = χp0, we have c23 = c3 and
c24 = . . . = c42 = 0. Thus

p0 = c1ξ1 + c2ξ2 + c3ξ3 + c23ξ23 +
∑
i>43

ciξi =
1

|G|
(ξ1 + ξ2) + c3(ξ3 + ξ23) + . . . ,

and since Lk = 1
|G|(ξ1 + (−1)kξ2)

pk − Lk = c3λ
k
3(ξ3 + (−1)kξ23) +

∑
i>43

ciλ
k
i ξi. (5)

Thus

||pk − Lk||2 = ||
∑
i>2

ciξi‖2 =

√∑
i>2

|λi|2k|ci|2 6 λk
3

√√√√ |G|∑
i=1

|ci|2, (6)

since λ3 is the largest of the eigenvalues that occur. But by the Plancherel formula√∑
i

|ci|2 = ‖p0‖2 =

√
1

|G|
∑
g∈G

p0(g)2 =
1√
|G|

.

Theorem 1. There exist constants Codd
1 , Ceven

1 and C2 > 0 such that as k −→∞

‖pk − Lk‖tv ∼
{

Ceven
tv λk

3 if k is even,
Codd

tv λk
3 if k is odd,

‖pk − Lk‖2 ∼ C2λ
k
3. (7)

At the end we will give evidence that Ceven
tv = Codd

tv , and conjecture a value for
this. This is an interesting empirical observation for which we have no explanation.

Proof. First let k run through the set of all even positive integers, or through all odd
positive integers. We will prove the existence of constants Codd

i and Ceven
i (i = 1, 2)

such that (7) is true for k thus restricted. At the end, we will show Codd
2 = Ceven

2 .

14



It is clear from (5) that pk − Lk equals c3λ
k
3(ξ3 + (−1)kξ23) plus terms that are

more rapidly decreasing as k −→∞. Thus if i = 1, 2

‖pk − Lk‖i ∼
{

Ceven
i λk

3 if k is even,
Codd

i λk
3 if k is odd,

Ceven
i = c3‖ξ3 + ξ23‖i ,

Codd
i = c3‖ξ3 − ξ23‖i .

In view of (1), the statement follows for the total variation distance. We have Codd
2 =

Ceven
2 since ξ3 and ξ23 are orthogonal, so both equal c3

√
‖ξ3‖22 + ‖ξ23‖22.

By Propositions 6 and 7 we have

Codd
tv , Ceven

tv 6

√
|G|

23/2
∼= 60.37 · · · , C2 6

1√
|G|

= .005856 · · · . (8)

How sharp are these bounds? To answer this, we tabulated ‖pk − Lk‖tv and
‖pk − Lk‖2 in Table 3, simply by iterating the Markov process and computing the
values directly. We found that ||pk − Lk||tv λ−k

3 and ||pk − Lk||2 λ−k
3 tend to limits

that are close to square roots of rational numbers that we can identify, and so we
conjecture that the actual values are Codd

tv = Ceven
tv =

√
3 = 1.73205 · · · and C2 =√

40
|G| = 0.000216891 · · · . Thus the a priori bounds (8) are not sharp. Still, they are
the best that we know how to obtain by purely theoretical methods.
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1.000000 1 0.964905 20 0.936084 30 0.909367 30 0.908049 30
0.907849 40 0.907045 60 0.906972 60 0.904508 12 0.888077 120
0.886611 30 0.871275 30 0.855006 20 0.847422 20 0.837335 30
0.835757 60 0.835030 60 0.832707 60 0.832706 60 0.832269 30
0.831096 60 0.830034 60 0.829343 48 0.829218 60 0.829145 60
0.827309 60 0.826586 48 0.824754 60 0.820615 60 0.819993 60
0.819279 20 0.819154 30 0.809017 84 0.806201 60 0.806200 60
0.804298 30 0.802612 30 0.800488 20 0.800106 60 0.798320 40
0.795839 60 0.791877 40 0.790766 60 0.790764 60 0.788831 30
0.786276 12 0.785399 30 0.782159 40 0.778619 20 0.775149 20
0.770755 20 0.766137 60 0.766118 40 0.765693 40 0.763270 40
0.758168 40 0.756365 30 0.754269 20 0.752256 60 0.752252 60
0.750000 51 0.736625 60 0.736556 60 0.725562 60 0.721957 30
0.720600 40 0.720196 60 0.720192 60 0.717310 30 0.711052 30
0.710455 60 0.710296 60 0.698521 48 0.688847 60 0.688712 60
0.683013 10 0.673817 60 0.668016 20 0.668013 20 0.667821 20
0.667817 20 0.660964 48 0.660754 60 0.660738 60 0.659446 40
0.658431 30 0.654514 30 0.652425 60 0.641324 60 0.641287 60
0.640388 5 0.635712 30 0.629204 60 0.629181 60 0.624378 60
0.624062 60 0.623212 30 0.619106 60 0.610474 40 0.607727 60
0.606594 60 0.604352 30 0.602651 60 0.601785 60 0.596907 40
0.591803 30 0.591660 30 0.575695 15 0.575694 119 0.575693 30
0.574576 30 0.572932 48 0.567158 60 0.567155 60 0.561738 60
0.552810 30 0.544301 60 0.544279 60 0.542606 60 0.542604 60
0.539565 20 0.537475 60 0.536339 30 0.532916 20 0.520404 20
0.518901 40 0.512703 30 0.511862 60 0.511852 60 0.500000 54
0.492263 120 0.490689 60 0.488542 40 0.487392 60 0.487390 60
0.478352 30 0.457161 30 0.455708 60 0.444737 30 0.444065 60
0.444028 30 0.443226 48 0.438052 120 0.432685 40 0.427291 120
0.427234 40 0.424228 20 0.420769 20 0.420616 30 0.417270 12
0.416355 30 0.415291 30 0.408431 30 0.401645 30 0.400033 60
0.400032 60 0.397816 60 0.397815 60 0.396107 60 0.393558 60
0.393554 60 0.393444 30 0.393070 30 0.392473 60 0.392469 60
0.390388 5 0.381148 60 0.380994 12 0.373564 20 0.368842 60
0.368314 30 0.362423 120 0.361707 40 0.360534 40 0.357762 20
0.356082 30 0.346821 40 0.345492 12 0.344989 20 0.344096 120
0.331079 120 0.325694 164 0.324601 40 0.319624 120 0.319198 30
0.316075 48 0.314854 20 0.309017 84 0.306798 30 0.303628 48
0.301470 20 0.301067 30 0.300165 60 0.297155 120 0.294180 120
0.284554 40 0.283465 40 0.282041 30 0.280577 60 0.276563 40
0.275524 60 0.274968 40 0.268420 30 0.266718 120 0.266447 120
0.266103 120 0.264351 120 0.259595 30 0.250001 10 0.250000 86
0.211505 40 0.198295 30 0.197840 30 0.195990 40 0.192838 120
0.190111 48 0.186409 40 0.183013 10 0.176079 120 0.170410 20
0.169539 30 0.167326 40 0.166980 60 0.157835 120 0.145004 30
0.118314 30 0.117065 48 0.106347 60 0.106303 120 0.104916 30
0.093062 30 0.091040 120 0.089895 120 0.085426 120 0.081867 60
0.076615 30 0.070351 30 0.068591 40 0.060219 30 0.055113 40
0.051983 20 0.044628 60 0.037735 20 0.007424 120 0.000000 4944

Table 2: Nonnegative eigenvalues of M , with multiplicities.
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k ||pk − Lk||tv ||pk − Lk||2 ||pk − Lk||tv λ−k
3 ||pk − Lk||2 λ−k

3

5 0.989163 0.00105344 1.18262 0.00125947
10 0.896468 0.00048854 1.28141 0.000698321
15 0.790351 0.000278645 1.35068 0.000476193
20 0.691236 0.000180163 1.41233 0.000368108
25 0.598712 0.0001264 1.46253 0.000308768
30 0.514137 0.0000938488 1.50156 0.000274089
40 0.372838 0.0000575967 1.55646 0.000240445
50 0.267605 0.0000381118 1.59686 0.000227422
60 0.191116 0.0000260214 1.63014 0.000221951
70 0.135807 0.0000179994 1.65578 0.000219452
80 0.0960715 0.0000125222 1.67429 0.00021823
90 0.067769 8.73526× 10−6 1.68819 0.000217604
95 0.0568745 7.29994× 10−6 1.69389 0.000217414
100 0.047711 6.10191× 10−6 1.69888 0.000217275
150 0.00811339 1.02085× 10−6 1.72393 0.00021691
175 0.00332912 4.17877× 10−7 1.72795 0.000216896
200 0.00136435 1.71063× 10−7 1.72987 0.000216892
300 0.0000383523 4.80408× 10−9 1.73151 0.000216892
500 3.02499× 10−8 3.78898× 10−12 1.73159 0.000216892

Table 3: The convergence of the random walk to the uniform distribution.
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