Averages and Ratios of Characteristic Polynomials

References

- 1. Keating and Snaith, RMT and $\zeta(\frac{1}{2} + it)$, Comm. Math. Phys. 214 (2000), no. 1, 57–89. Value distribution of ζ mirrors value distribution of characteristic polynomials. Moments computed using Selberg integral.
- 2. Conrey and Snaith, Applications of the L-functions ratios conjectures. Instead of moments, consider ratios. This will have many applications.

 http://arxiv.org/abs/math.NT/0509480
- 3. Conrey, Farmer and Zirnbauer, Howe pairs, supersymmetry, and ratios of random characteristic polynomials for the unitary groups U(N), Computes mean values of ratios for classical ensembles using supersymmetry. http://arxiv.org/abs/math-ph/0511024
- 4. Conrey, Forrester and Snaith, Averages of ratios of characteristic polynomials for the compact classical groups, Int. Math. Res. Not. 2005, no. 7, 397–431.
- 5. Bump and Gamburd, Averages and ratios of characteristic polynomials, Comm. Math. Phys. (to appear) is the basis of this talk.

Papers [4] and [5] reprove results of [3] by different methods. Only [3] has results for N small.

Representation Theory of S_k

Let $\lambda = (\lambda_1, \dots, \lambda_N)$ be a partition of k. Thus $\lambda_i \in \mathbb{Z}$, $\lambda_1 \geqslant \dots \geqslant \lambda_N \geqslant 0$ and $\sum \lambda_i = k$. Let

$$S_{\lambda} = S_{\lambda_1} \times \cdots \times S_{\lambda_N} \subseteq S_k$$
.

If λ is a partition represent it by a **Young diagram**. Transposing the diagram of λ gives the diagram of the **conjugate partition** λ' .

Example. N = 4, $\lambda = (2, 2, 1, 0) = (2, 2, 1) = (2^21)$.

$$\lambda =$$
 $\lambda' =$

Thus λ is a partition of 5 of length 3 or into 3 parts.

Theorem. $\operatorname{Ind}_{S_{\lambda}}^{S_k}(1)$ and $\operatorname{Ind}_{S_{\lambda}}^{S_k}(\operatorname{sgn})$ have a unique irreducible constitutent in common.

Proof. Mackey theory + combinatorics.

- Call this s_{λ} .
- Thus the irreducible representations of S_k are parametrized by partitions of k.

The ring Λ

We define a graded \mathbb{Z} -algebra Λ .

- The homogeneous part Λ_k of degree k is the additive group of generalized characters of S_k .
- The multiplication is **induction**. Thus

$$S_k \times S_l \hookrightarrow S_{k+l}$$

so if χ , ψ are characters of S_k and S_l then $\chi \otimes \psi$ is a character of $S_k \times S_l$ which we induce to S_{k+l} .

- A \mathbb{Z} -basis of Λ_k is $\{s_{\lambda} | \lambda \text{ is a partition of } k\}$.
- Let h_k and e_k be the trivial and sign characters of S_k . Then $\Lambda = \mathbb{Z}[h_1, h_2, \cdots] = \mathbb{Z}[e_1, e_2, \cdots]$.
- We have

$$\mathbf{h}_k = \mathbf{s}_{(k)}$$
 (k) is the partition $(k, 0, \dots, 0)$
 $\mathbf{e}_k = \mathbf{s}_{(1^k)}$ (1^k) is the partition $(1, 1, \dots, 1)$

- Λ has an automorphism ι of degree 2 such that $\iota(\mathbf{h}_i) = \mathbf{e}_i$ and $\iota(\mathbf{e}_i) = \mathbf{h}_i$. This is the **involution**.
- On Λ_k the involution ι amounts to tensoring with the sign character.
- The involution corresponds to conjugation of partitions: $\iota(s_{\lambda}) = \iota(s_{\lambda'})$

The characteristic map

Let

$$s_{\lambda}(X_1, \dots, X_N) = \frac{\text{Alt}(X_1^{\lambda_1 + N - 1} X_2^{\lambda_2 + N - 2} \dots X_N^{\lambda_N})}{\text{Alt}(X_1^{N - 1} X_2^{N - 2} \dots X_N^0)}$$

be the **Schur polynomial**, where

$$Alt = \sum_{\sigma \in S_N} (-1)^{\operatorname{sgn}(\sigma)} \sigma.$$

There is a **ring homomorphism** (due to Frobenius)

$$\operatorname{ch}: \Lambda \longrightarrow \mathbb{Z}[X_1, \cdots, X_N]^{S_N},$$

$$\operatorname{ch}(\boldsymbol{h}_{i}) = h_{i}(X_{1}, \dots, X_{N}) = \sum_{i_{1} \leqslant \dots \leqslant i_{N}} X_{i_{1}} \dots X_{i_{N}},$$

$$\operatorname{ch}(\boldsymbol{e}_{i}) = e_{i}(X_{1}, \dots, X_{N}) = \sum_{i_{1} \leqslant \dots \leqslant i_{N}} X_{i_{1}} \dots X_{i_{N}},$$

$$\operatorname{ch}(\boldsymbol{s}_{\lambda}) = s_{\lambda}(X_{1}, \dots, X_{N}).$$

(Complete, elementary, Schur symmetric polynomials).

- The homomorphism is surjective but not injective. Thus ι does not induce an involution of symmetric polynomials.
- However it is bijective on Λ_k provided $N \geqslant k$.

Frobenius-Schur duality

Let $V = \mathbb{C}^N$ be the standard module of U(N). We have commuting actions of U(N) and S_k on $\otimes^k V = V \otimes \cdots \otimes V$ (k times):

$$\sigma: v_1 \otimes \cdots \otimes v_k \longmapsto v_{\sigma^{-1}(1)} \otimes \cdots \otimes v_{\sigma^{-1}(k)}, \qquad \sigma \in S_k.$$

Thus we can decompose $\otimes^k V$ simultaneously:

$$\otimes^k V = \sum_{\lambda} \pi_{\lambda} \otimes s_{\lambda} \text{ as } U(N) \times S_k\text{-modules.}$$

- The irreducible representations of S_k that appear are the \mathbf{s}_{λ} where $\lambda = (\lambda_1, \dots, \lambda_N)$ is a partition of k of length $\leq N$.
- The irreducible representations of U(N) that appear are those whose matrix coefficients are homogeneous polynomials of degree k.

If $g \in U(N)$ has eigenvalues $\alpha_1, \dots, \alpha_N$ and $\mathbf{f} \in \Lambda$ maps to $f = \operatorname{ch}(\mathbf{f}) \in \mathbb{Z}[X_1, \dots, X_N]^{S_N}$ then

$$\chi_{\lambda}(g) = \boldsymbol{f}(\alpha_1, \dots, \alpha_N), \qquad \chi_{\lambda} = \text{ character of } \pi_{\lambda}.$$

Multiplication in Λ corresponds to tensor production of representations of U(N). Thus

$$oldsymbol{s}_{\lambda}oldsymbol{s}_{\mu}\!=\!\sum_{
u}\,c_{\lambda\mu}^{
u}oldsymbol{s}_{
u},\qquad \pi_{\lambda}\otimes\pi_{\mu}\!=\!\bigoplus_{
u}\,c_{\lambda\mu}^{
u}\pi_{
u}.$$

The $c^{\nu}_{\lambda\mu}$ are Littlewood-Richardson coefficients.

Weights

We consider integer sequences $(\lambda_1, \dots, \lambda_N)$.

- $\lambda = (\lambda_1, \dots, \lambda_N) \in \mathbb{Z}^N$ is called a **weight** of N.
- Weights correspond to rational characters of the diagonal torus of U(N):

$$\lambda: \left(\begin{array}{ccc} t_1 & & \\ & \ddots & \\ & & t_N \end{array}\right) \longmapsto t_1^{\lambda_1} \cdots t_N^{\lambda_N}.$$

- If $\lambda_1 \geqslant \cdots \geqslant \lambda_N$ the weight is called **dominant**.
- The **height** of λ is the inner product $\langle \lambda, \rho \rangle$,

$$\rho = (N - 1, N - 2, \dots, 0).$$

- If λ is a dominant weight λ , there is a unique irreducible π_{λ} of U(N) containing λ , no higher weight. **Highest weight module** (Weyl).
- If $\lambda_N \geqslant 0$ the dominant weight $\lambda = (\lambda_1, \dots, \lambda_N)$ is a **partition** of $k = \sum_i \lambda_i$ into $\leqslant N$ parts.
- So dominant weights parametrize irreducible representations of U(N) ...
- ... and **partitions** of k parametrize irreducible representations of S_k .
- Weights and partitions overlap, hence give a bijection between **some** representations of U(N) and **some** representations of S_k . This is the bijection we constructed using $\bigotimes^k \mathbb{C}^N$.

Generating functions

Remember that

$$h_i(X_1, \dots, X_N) = \sum_{\substack{i_1 \leqslant \dots \leqslant i_N \\ i_1 < \dots < i_N}} X_{i_1} \dots X_{i_N},$$

are the complete and elementary symmetric poly's.

$$\sum_{k=0}^{\infty} t^k h_k(\alpha_1, \dots, \alpha_N) = \prod_{j=1}^{N} (1 - t\alpha_j)^{-1}.$$

$$\sum_{t=0}^{\infty} t^k e_k(\alpha_1, \dots, \alpha_N) = \prod_{j=1}^{N} (1 + t\alpha_j).$$

These may be regarded as generating functions for the symmetric and exterior algebras on \mathbb{C}^N .

• The involution ι of Λ interchanges

$$\sum_{t=0}^{\infty} t^k \boldsymbol{h}_k \longleftrightarrow \sum_{t=0}^{\infty} t^k \boldsymbol{e}_k$$

• There is no corresponding correspondence of symmetric functions (since $e_k = 0$ for k > N) but roughly we can think of the involution as transforming the two types of generating functions into one another.

Correspondences

If G and H are groups, a **correspondence** of representations is a bijection between some of the irreducible representations π_{λ} of G and some of the irreducible representations ρ_{λ} of H. We consider the module

$$\omega = \bigoplus \pi_{\lambda} \otimes \rho_{\lambda} \text{ of } G \times H.$$

- By assumption there are no repetitions among the π_{λ} or ρ_{λ} .
- In important cases, ω has a natural construction.
- If G = U(N) and $H = S_k$ this module is $\otimes^k V$.
- Howe discovered that the Weil representation gives correspondences for reductive dual pairs of subgroups of Sp(2n) or its double cover (the metaplectic group.

$\mathrm{GL}(N,\mathbb{C}) \times \mathrm{GL}(m,\mathbb{C})$ duality

Let $GL(N, \mathbb{C}) \times GL(m, \mathbb{C})$ act on $Mat_{n \times m}(\mathbb{C})$ by left and right multiplication. There is induced an action on the polynomial ring $S(Mat_{n \times m}(\mathbb{C}))$. This is a correspondence. It induces a correspondence of the maximal compact subgroups $U(N) \times U(M)$ since irreducible rep's of U(N) correspond bijectively to analytic reps of $GL(N,\mathbb{C})$. This is a Howe correspondence.

Inner product formulas

Theorem. (Peter-Weyl + Schur orthogonality) Assume G compact. The characters of the irreducible representations span the subspace of $L^2(G)$ consisting of class functions. They are an orthonormal basis.

Thus given a correspondence:

$$G \qquad H$$

$$\pi_{\lambda} \longleftrightarrow \rho_{\lambda} \qquad (\lambda \in \text{indexing set})$$

$$\chi_{\pi_{\lambda}} \in L^{2}(G) \longleftrightarrow \chi_{\rho_{\lambda}} \in L^{2}(H)$$

Let $L^2_{\omega}(G)$ and $L^2_{\omega}(H)$ be the span of the characters $\chi_{\pi_{\lambda}}$ and $\chi_{\rho_{\lambda}}$. The correspondence determines an **isometry**

$$L^2_{\omega}(G) \longrightarrow L^2_{\omega}(H).$$

They may allow us to **transfer an inner product** computation from G to H. Thus if $\phi \in L^2_{\omega}(G)$ is a class function, and $\psi \in L^2_{\omega}(H)$ is the corresponding class function on H we have

$$\int_{G} |\phi(g)|^{2} dg = \int_{H} |\psi(h)|^{2} dh.$$

We will give some examples where the right-hand side is easier to evaluate than the left-hand side, leading to nontrivial results in RMT.

Diaconis and Shashahani

Let G = U(N), $H = S_k$, $\omega =$ Frobenius-Schur duality

Theorem 1. If $N \ge k_1 + 2k_2 + \cdots + rk_r$ then

$$\int_{U(N)} |\operatorname{tr}(g)|^{2k_1} |\operatorname{tr}(g^2)|^{2k_2} \cdots |\operatorname{tr}(g^r)|^{2k_r} dg = \prod_{j=1}^r j^{k_j} k_j!$$

Proof. Let $k = k_1 + 2k_2 + \cdots + rk_r$, and let λ be the partition of k containing k_1 entries equal to 1, k_2 entries equal to 2, and so forth. Let \mathcal{C}_{λ} be the conjugacy class of permutations $\sigma \in S_k$ of type λ (so σ has k_j cycles of length j in its decomposition to disjoint cycles). Let \boldsymbol{p}_{λ} be the *conjugacy class indicator* on S_k ,

$$\boldsymbol{p}_{\lambda}(g) = \begin{cases} z_{\lambda} \\ 0 \text{ otherwise,} \end{cases}$$

where $z_{\lambda} = \prod_{j=1}^{r} j^{k_j} k_j!$. The class function

$$g \mapsto \operatorname{tr}(g)^{k_1} \operatorname{tr}(g^2)^{k_2} \cdots \operatorname{tr}(g^r)^{k_r}$$

in $L^2_{\omega}(G)$ corresponds to the function $p_{\lambda} \in L^2_{\omega}(H)$ and so its norm is the same as the norm of p_{λ} , i.e. z_{λ} . \square

Thus
$$\int_{U(N)} |\operatorname{tr}(g)|^{2k_1} |\operatorname{tr}(g^2)|^{2k_2} \cdots |\operatorname{tr}(g^r)|^{2k_r} dg$$

stabilizes when N is large. Asymptotically the value distribution of $tr(g), tr(g^2), \dots, tr(g^r)$ is of **independent** normal (i.e. Gaussian) random variables.

Cauchy Identity

$$\sum_{\lambda} s_{\lambda}(\alpha_1, \dots, \alpha_n) s_{\lambda}(\beta_1, \dots, \beta_m) = \prod_{i,j} (1 - \alpha_i \beta_j)^{-1}$$

- Sum is over partitions of length $\leq N$.
- Fundamental in what we do next.
- Underlying correspondence: G, H = U(n), U(m)

Take n=m. Consider the action of $U(n)\times U(n)$ on $L^2(G)$:

$$(g,h)f(x) = f(g^{-1}xh)$$

Lemma. If G is any compact group, $G \times G$ acts on $L^2(G)$ and

$$L^2(G) = \bigoplus_{\pi \in \operatorname{Irr}(G)} \pi \otimes \hat{\pi}$$
 $\hat{\pi} = contragredient \ rep 'n.$

(This is again Peter-Weyl theorem). For G = U(n), there is an involution $\iota: G \longrightarrow G$ namely $\iota g = {}^t g^{-1}$ such that $g \longmapsto \pi({}^\iota g)$ is equivalent to $\hat{\pi}$. This is because g^{-1} is conjugate to ιg . So we modify the action:

$$(g,h)f(x) = f({}^tgxh)$$

and in this action:

$$L^2(G) = \bigoplus_{\pi \in \mathrm{Irr}(G)} \pi \otimes \pi$$

Polynomial version

In this decomposition

$$L^2(G) = \bigoplus_{\pi \in Irr(G)} \pi \otimes \pi$$
 (Hilbert space \oplus .)

we may restrict ourselves to the subspace of U(n)-finite vectors, which form the affine ring

$$A = \mathbb{C}[X_{ij}, \det^{-1}], \qquad X_{ij} = \text{coordinate functions.}$$

(G is compact so continuous functions are L^2 .) Then

$$A = \bigoplus_{\pi \in Irr(G)} \pi \otimes \pi \qquad \text{(Algebraic } \oplus .)$$

- π runs through π_{λ} where $\lambda = (\lambda_1, \dots, \lambda_n)$ is a weight, i.e. $\lambda_1 \geqslant \dots \geqslant \lambda_n, \ \lambda_i \in \mathbb{Z}$
- The weights λ with $\lambda_N \geqslant 0$ are partitions.
- Affine ring $\mathbb{C}[X_{ij}]$ of Mat_n is

$$\mathbb{C}[X_{ij}] = \bigoplus_{\text{partitions } \lambda} \pi_{\lambda} \otimes \pi_{\lambda} \qquad (\text{Algebraic } \oplus .)$$

• This is because only the matrix coefficients of π_{λ} where λ is a partition are regular on the determinant locus.

Proof of the Cauchy Identity

We have

$$\mathbb{C}[X_{ij}] = \bigoplus_{\text{partitions } \lambda} \pi_{\lambda} \otimes \pi_{\lambda} \qquad (\text{Algebraic } \oplus) \qquad (1)$$

as $U(n) \times U(n)$ modules, where (g, h) act by

$$(g,h)f(x) = f(^tgxh), \qquad f: \operatorname{Mat}_n(\mathbb{C}) \longrightarrow \mathbb{C}.$$

Let g, h have eigenvalues $\alpha_1, \dots, \alpha_n$ and β_1, \dots, β_n . Taking the trace in this identity gives

$$\sum_{\lambda} s_{\lambda}(\alpha_1, \dots, \alpha_n) s_{\lambda}(\beta_1, \dots, \beta_n) = \prod_{i,j} (1 - \alpha_i \beta_j)^{-1}.$$

- The series is only convergent if $|\alpha_i|, |\beta_j| < 1$. But (1) extends to $GL(n, \mathbb{C}) \times GL(n, \mathbb{C})$ of which $U(n) \times U(n)$ is a maximal compact, and π_{λ} extend to analytic reps of $GL(n, \mathbb{C})$.
- The case n > m can be deduced by specializing

$$b_{m+1}, \dots, \beta_n \longrightarrow 0.$$

• At the heart of the proof is a correspondence with G, H = U(n) and

$$\omega = \bigoplus_{\text{partitions } \lambda} \pi_{\lambda} \otimes \pi_{\lambda} = \text{polynomials on } \operatorname{Mat}_{n}(\mathbb{C}).$$

• This a case of the Howe correspondence.

Dual Cauchy Identity

If λ is a partition represent it by a **Young diagram**. Transposing the diagram of λ gives the diagram of the **conjugate partition** λ' .

Example. N = 4, $\lambda = (2, 2, 1, 0) = (2, 2, 1) = (2^21)$.

$$\lambda =$$
 $\lambda' =$

Thus λ is a partition of 5 of length 3 or into 3 parts.

 λ' is a partition of 5 of length 2 or into 2 parts. The ring Λ has a basis s_{λ} which specialize to characters of irreducible rep's of S_k $(k = \sum \lambda_i)$ or U(N) $N \geqslant \text{length}(\lambda)$. The map $s_{\lambda} \longmapsto s_{\lambda'}$ is an **automorphism** of Λ which we will call the **involution**.

Applying the involution to one set of variables in the Cauchy identity

$$\sum_{\lambda} s_{\lambda}(\alpha_1, \dots, \alpha_n) s_{\lambda}(\beta_1, \dots, \beta_n) = \prod_{i,j} (1 - \alpha_i \beta_j)^{-1}.$$

produces the dual Cauchy identity

$$\sum_{\lambda} s_{\lambda}(\alpha_1, \dots, \alpha_n) s_{\lambda'}(\beta_1, \dots, \beta_n) = \prod_{i,j} (1 + \alpha_i \beta_j).$$

Keating and Snaith

The following theorem was very influential in the application of RMT to ζ .

Theorem. We have

$$\int_{U(N)} |\det(g-I)|^{2k} dg = \prod_{j=0}^{N-1} \frac{j!(j+2k)!}{(j+k)!^2}.$$

The same constants appear in the (conjectural) 2k-th moment of ζ .

- The original proof of Keating and Snaith used the Selberg integral.
- We will give another proof (due to Gamburd) that uses $GL(N) \times GL(2k)$ duality.
- The two proofs have different generalizations. The proof of Keating and Snaith allows interpolation of k to real numbers, while Gamburd's proof allows more general evaluations such as

$$\int_{U(N)} |\det(g-I)|^{2k} \chi_{\lambda}(g) dg$$

where χ_{λ} is the character of π_{λ} .

Proof of Keating-Snaith formula

If $\alpha_1, \dots, \alpha_N$ and β_1, \dots, β_N are complex numbers, we will show

$$\int_{U(N)} \prod_{i=1}^{k} \left\{ \det(I + \alpha_i g) \det(I + \beta_i^{-1} g^{-1}) \right\} dg = s_{(N^k)}(\alpha_1, \dots, \alpha_k, \beta_1, \dots, \beta_k).$$
(2)

The left-hand side equals

$$\prod_{i=1}^{k} \beta_i^{-1} \int_{U(N)} \prod_{i=1}^{k} \left\{ \det(I + \alpha_i g) \det(g \beta_i + I) \right\} \overline{\det(g)^k} dg.$$

By dual Cauchy id, if t_1, \dots, t_N are eigenvalues of g,

$$\prod_{i=1}^{k} \left\{ \det(\cdots) \det(\cdots) \right\} = \sum_{\lambda} s_{\lambda}(\alpha_{1}, \cdots, \alpha_{k}, \beta_{1}, \cdots, \beta_{k}) s_{\lambda'}(t_{1}, \cdots, t_{N}),$$

Since $\det(g)^k = s_{\lambda'}(t_1, \dots, t_N)$, integrating over g picks off just one term, with $\lambda' = (k^N)$ and so $\lambda = (N^k)$ so. This proves (2). Taking $\alpha_i = \beta_i = 1$

$$\int_{U(N)} |\det(g-I)|^{2k} dg = s_{(N^k)}(1, \dots, 1),$$

the dimension of the rep'n $\pi_{(N^k)}$ of U(2k). This dimension is computed using Weyl's dimension formula, proving the theorem of Keating and Snaith.

Analysis of the proof

- Underlying this computation is the (dual) Cauchy identity.
- The Cauchy identity for $GL(N) \times GL(2k)$ amounts to the use of the Howe correspondence for $GL(N) \times GL(2k)$.
- In this correspondence, if λ is a dominant weight, $\pi_{\lambda}^{\mathrm{GL}(N)}$ corresponds to $\pi_{\lambda}^{\mathrm{GL}(2k)}$.
- But in the Cauchy identity $\pi_{\lambda}^{\mathrm{GL}(N)}$ corresponds to $\pi_{\lambda'}^{\mathrm{GL}(2k)}$.
- When $\lambda = (N^k)$, $\lambda' = (k^N)$ and the answer turns out to be the dimension of this $\pi_{\lambda'}^{\mathrm{GL}(2k)}$.
- We used the correspondence to transfer the computation from GL(N) to GL(2k).
- Similarly, moments for classical groups can be expressed in terms of characters of **other groups** parametrized by **rectangular partitions**. Thus a result of Keating and Snaith can be written:

$$\int_{\operatorname{Sp}(2N)} \prod_{j=1}^{k} \det(I - x_{j}g) dg = \\
(x_{1}...x_{k})^{N} \chi_{\langle N^{k} \rangle}^{\operatorname{Sp}(2k)} (x_{1}^{\pm 1}, \dots, x_{k}^{\pm 1}) = \\
\sum_{\varepsilon \in \{\pm 1\}} \prod_{j=1}^{k} x_{j}^{N(1-\varepsilon_{j})} \prod_{i \leqslant j} (1 - x_{i}^{\varepsilon_{i}} x_{j}^{\varepsilon_{j}})^{-1}.$$

Ratios

Let $\Xi_{L,K}$ consist of permutations $\sigma \in S_{K+L}$ such that

$$\sigma(1) < \cdots < \sigma(L), \qquad \sigma(L+1) < \cdots < \sigma(L+K).$$

Theorem. (Conrey, Farmer and Zirnbauer) If $N \geqslant Q, R$ and $|\gamma_q|, |\delta_r| < 1$ we have

$$\int_{U(N)} \frac{\prod_{l=1}^{L} \det (I + \alpha_{l}^{-1} \cdot g^{-1}) \cdot \prod_{k=1}^{K} \det (I + \alpha_{L+k} \cdot g)}{\prod_{q=1}^{Q} \det (I - \gamma_{q} \cdot g) \prod_{r=1}^{R} \det (I - \delta_{r} \cdot g^{-1})} dg = \sum_{\sigma \in \Xi_{L,K}} \prod_{k=1}^{K} (\alpha_{\sigma(L+k)}^{-1} \alpha_{L+k})^{N} \times \frac{\prod_{q=1}^{Q} \prod_{l=1}^{L} (1 + \gamma_{q} \alpha_{\sigma(l)}^{-1}) \prod_{r=1}^{R} \prod_{k=1}^{K} (1 + \delta_{r} \alpha_{\sigma(L+k)})}{\prod_{k=1}^{K} \prod_{l=1}^{L} (1 - \alpha_{\sigma(l)}^{-1} \alpha_{\sigma(K+k)}) \prod_{r=1}^{R} \prod_{q=1}^{Q} (1 - \gamma_{q} \delta_{r})}.$$

- According to CFZ the assumption that N is large can be eliminated.
- Proof will depend on the **generalized Cauchy identity** involving **Littlewood-Schur functions**.
- These were studied by Littlewood and also by Berele and Regev, who apparently rediscovered them.

Generalized Cauchy identity

Define the Littlewood-Schur polynomial

$$LS_{\lambda}(x_1, \dots, x_k; y_1, \dots, y_l) = \sum_{\mu, \nu} c^{\lambda}_{\mu\nu} s_{\mu}(x_1, \dots, x_k) s_{\nu'}(y_1, \dots, y_l).$$

The $c_{\mu\nu}^{\lambda}$ are the Littlewood-Richardson coefficients.

Theorem. (Berele and Regev)

$$\sum_{\lambda} \operatorname{LS}_{\lambda}(\alpha_{1}, \dots, \alpha_{m}; \beta_{1}, \dots, \beta_{n}) \operatorname{LS}_{\lambda}(\gamma_{1}, \dots, \gamma_{s}; \delta_{1}, \dots, \delta_{t}) = \prod_{i,k} (1 - \alpha_{i} \gamma_{k})^{-1} \prod_{i,l} (1 + \alpha_{i} \delta_{l}) \prod_{j,k} (1 + \beta_{j} \gamma_{k}) \prod_{j,l} (1 - \beta_{j} \delta_{l})^{-1}.$$

We will assume it now and discuss the proof later.

Laplace expansion

Let
$$(a_{ij})$$
 be $(L+K)\times(L+K)$. Then $\det(a_{ij})=$

$$\sum_{\sigma \in \Xi_{L,K}} \operatorname{sgn}(\sigma) \begin{vmatrix} a_{1,\sigma(1)} & \cdots & a_{1,\sigma(L)} \\ \vdots & & \vdots \\ a_{L,\sigma(1)} & \cdots & a_{L,\sigma(L)} \end{vmatrix} \times \begin{vmatrix} a_{L+1,\sigma(L+1)} & \cdots & a_{L+K,\sigma(L+K)} \\ \vdots & & \vdots \\ a_{L+K,\sigma(L+1)} & \cdots & a_{L+K,\sigma(L+K)} \end{vmatrix} \cdot Proof easy.$$

Laplace expansion for LS_{λ}

Proposition. Suppose λ of length $\leq K$ such that $\lambda_L \geqslant \lambda_{L+1} + Q$, let $\lambda = \tau \cup \rho$ with

$$\tau = (\lambda_1, ..., \lambda_L), \qquad \rho = (\lambda_{L+1}, ..., \lambda_{L+K}).$$

Then

$$LS_{\lambda}(\alpha_{1}, \dots, \alpha_{L+K}; \gamma_{1}, \dots, \gamma_{Q}) = \sum_{\sigma \in \Xi_{L,K}} \prod_{\substack{1 \leq l \leq L \\ 1 \leq k \leq K}} (\alpha_{\sigma(l)} - \alpha_{\sigma(L+k)})^{-1}$$

$$LS_{\tau + \langle K^{L} \rangle}(\alpha_{\sigma(1)}, \dots, \alpha_{\sigma(L)}; \gamma_{1}, \dots, \gamma_{Q})$$

$$LS_{\rho}(\alpha_{\sigma(L+1)}, \dots, \alpha_{\sigma(L+K)}; \gamma_{1}, \dots, \gamma_{Q})$$

Proof. Induction on Q. If Q = 0, this says

$$s_{\lambda}(\alpha_{1}, \dots, \alpha_{L+K}) = \sum_{\substack{\sigma \in \Xi_{L,K} \\ 1 \leqslant k \leqslant K}} \prod_{\substack{1 \leqslant l \leqslant L \\ 1 \leqslant k \leqslant K}} (\alpha_{\sigma(l)} - \alpha_{\sigma(L+k)})^{-1}$$

$$s_{\tau + \langle K^{L} \rangle}(\alpha_{\sigma(1)}, \dots, \alpha_{\sigma(L)}) s_{\rho}(\alpha_{\sigma(L+1)}, \dots, \alpha_{\sigma(L+K)}).$$

This is proved by applying the Laplace expansion to the

determinant definition of the Schur function. For Q > 0 one adds the γ_i one at a time using Pieri's formula (i.e. the degenerate Littlewood-Richardson rule).

Proof (sketch) of unitary CFZ

By the dual Cauchy identity,

$$\prod_{l=1}^{L} \det (I + \alpha_l^{-1} \cdot g^{-1}) \cdot \prod_{k=1}^{K} \det (I + \alpha_{L+k} \cdot g)$$

$$= \overline{\det (g)^L} \prod_{l=1}^{L} \alpha_l^{-N} \prod_{k=1}^{K+L} \det (I + \alpha_k g)$$

$$= \overline{\det (g)^L} \prod_{l=1}^{L} \alpha_l^{-N} \sum_{\lambda} s_{\lambda}(\alpha_1, \dots, \alpha_{K+L}) \chi_{\lambda'}(g)$$

On the other hand by the Cauchy identity

$$\prod_{q=1}^{Q} \det (I - \gamma_q g)^{-1} = \sum_{\mu} s_{\mu}(\gamma_1, \dots, \gamma_Q) \chi_{\mu}(g)$$

and

$$\prod_{r=1}^{R} \det (I - \delta_r \cdot g^{-1})^{-1} = \sum_{\nu} s_{\nu}(\delta_1, \dots, \delta_R) \, \overline{\chi_{\nu}(g)}.$$

By Schur orthogonality

$$\int_{U(N)} \frac{\prod_{l=1}^{L} \det (I + \alpha_{l}^{-1} \cdot g^{-1}) \cdot \prod_{k=1}^{K} \det (I + \alpha_{L+k} \cdot g)}{\prod_{q=1}^{Q} \det (I - \gamma_{q} \cdot g) \prod_{r=1}^{R} \det (I - \delta_{r} \cdot g^{-1})} dg = \sum_{\lambda, \mu, \nu} \left\langle \chi_{\lambda'} \chi_{\mu}, \det^{L} \otimes \chi_{\nu} \right\rangle$$

$$\prod_{l=1}^{L} \alpha_{l}^{-N} s_{\lambda}(\alpha_{1}, \dots, \alpha_{L+K}) s_{\mu}(\gamma_{1}, \dots, \gamma_{Q}) s_{\nu}(\delta_{1}, \dots, \delta_{R}).$$

We rewrite this as

$$\prod_{l=1}^{L} \alpha_{l}^{-N} \sum_{\lambda,\mu,\nu} c_{\lambda'\mu}^{\tilde{\nu}_{l}} s_{\lambda}(\alpha_{1}, \dots, \alpha_{L+K}) s_{\mu}(\gamma_{1}, \dots, \gamma_{Q}) s_{\nu}(\delta_{1}, \dots, \delta_{R}) =$$

$$\prod_{l=1}^{L} \alpha_{l}^{-N} \sum_{\nu} LS_{\tilde{\nu}}(\gamma_{1}, \dots, \gamma_{Q}; \alpha_{1}, \dots, \alpha_{L+K}) s_{\nu}(\delta_{1}, \dots, \delta_{R}) =$$

$$\prod_{l=1}^{L} \alpha_{l}^{-N} \sum_{\nu} LS_{\hat{\nu}}(\alpha_{1}, \dots, \alpha_{L+K}; \gamma_{1}, \dots, \gamma_{Q}) s_{\nu}(\delta_{1}, \dots, \delta_{R}),$$

where $\tilde{\nu} = \nu + \langle L^N \rangle$ and $\hat{\nu} = \tilde{\nu}' = N^L \cup \nu'$. Using the Laplace expansion for $LS_{\hat{\nu}}$:

$$LS_{\hat{\nu}}(\alpha_{1},...,\alpha_{L+K};\gamma_{1},...,\gamma_{Q}) = \sum_{\sigma \in \Xi_{L,K}} \prod_{\substack{1 \leqslant l \leqslant L \\ 1 \leqslant k \leqslant K}} (\alpha_{\sigma(l)} - \alpha_{\sigma(L+k)})^{-1} \\
\times LS_{\langle (N+K)^{L} \rangle}(\alpha_{\sigma(1)},...,\alpha_{\sigma(L)};\gamma_{1},...,\gamma_{Q}) \\
\times LS_{\nu'}(\alpha_{\sigma(L+1)},...,\alpha_{\sigma(L+K)};\gamma_{1},...,\gamma_{Q}).$$

Substituting this, using generalized Cauchy identity to evaluate the sum over ν , and Littlewood's formula

$$LS_{\langle (l+m)^k \rangle}(x_1, \dots, x_k; y_1, \dots, y_l) = \left(\prod_{i=1}^k x_i\right)^m \prod_{\substack{1 \leqslant i \leqslant k \\ 1 \leqslant j \leqslant l}} (x_i + y_j)$$

gives
$$\sum_{\substack{\sigma \in \Xi_{L,K} \\ K = 1}} \prod_{k=1}^{K} (\alpha_{\sigma(L+k)}^{-1} \alpha_{L+k})^{N} \times \frac{\prod_{q=1}^{Q} \prod_{l=1}^{L} (1 + \gamma_{q} \alpha_{\sigma(l)}^{-1}) \prod_{r=1}^{R} \prod_{k=1}^{K} (1 + \delta_{r} \alpha_{\sigma(L+k)})}{\prod_{k=1}^{K} \prod_{l=1}^{L} (1 - \alpha_{\sigma(l)}^{-1} \alpha_{\sigma(K+k)}) \prod_{r=1}^{R} \prod_{q=1}^{Q} (1 - \gamma_{q} \delta_{r})}.$$

Remarks on the proof

- There may be more than one way to proceed once we have an adequate set of tools.
- The tools, mainly the generalized Cauchy identity, Laplace expansion and Littlewood's identity are themselves of considerable interest.

We will concentrate on ideas around the generalized Cauchy identity and Laplace expansion.

$$U(p+q) \longrightarrow U(p) \times U(q)$$
 branching

As before, $\chi_{\lambda} = \text{character of } \pi_{\lambda}$, λ a dominant weight. We assume λ is a partition, so π_{λ} is a polynomial rep'n.

Theorem. (i) We have

$$\chi_{\nu}^{(p+q)}|_{U(p)\times U(q)}\begin{pmatrix} g_1 \\ g_2 \end{pmatrix} = \sum_{\lambda,\mu} c_{\lambda\mu}^{\nu} \chi_{\lambda}(g_1) \chi_{\mu}(g_2),$$
$$\pi_{\nu}^{(p+q)}\begin{pmatrix} g_1 \\ g_2 \end{pmatrix} = \bigoplus_{\lambda,\mu} c_{\lambda\mu}^{\nu} \pi_{\lambda}(g_1) \otimes \pi_{\mu}(g_2).$$

(ii) Let x_1, \dots, x_p and y_1, \dots, y_q be two sets of variables.

$$s_{\lambda}(x_1, \dots, x_p, y_1, \dots, y_q) = \sum_{\mu, \nu} c^{\lambda}_{\mu\nu} s_{\mu}(x_1, \dots, x_p) s_{\nu}(y_1, \dots, y_q).$$

The two statements are equivalent. (Take x_i , y_i to be eigenvalues of g_1 and g_2 .)

Proof of unitary branching

In the context of the unitary groups the Littlewood-Richardson rules occur in 2 distinct ways:

- Clebsch-Gordan coef: $c_{\mu\nu}^{\lambda}$ is the multiplicity of π_{λ} in $\pi_{\mu} \otimes \pi_{\nu}$ reps of U(N) or $GL(N, \mathbb{C})$.
- Unitary branching rule: $c_{\mu\nu}^{\lambda}$ is the multiplicity of $\pi_{\mu}^{\text{GL}(p)} \otimes \pi_{\nu}^{\text{GL}(q)}$ in the restriction of $\pi_{\lambda}^{\text{GL}(p+q)}$.

The See-Saw:

- Vertical lines are inclusions
- Diagonal lines are correspondences
- Let $\omega = \text{action of } U(p+q), U(n) \text{ on symmetric algebra of } \operatorname{Mat}_{(p+q)n}(\mathbb{C}) \text{ (left, right translation)}$
- $\bullet \quad \omega = \bigoplus_{\lambda} \pi_{\lambda}^{U(p+q)} \otimes \pi_{\lambda}^{U(N)}.$
- Alternatively we have action ω of $U(p) \times U(q)$ and $U(n) \times U(n)$ on same symmetric algebra.

$$\bullet \quad \omega = \bigoplus_{\mu,\nu} (\pi_{\mu}^{U(p)} \otimes \pi_{\nu}^{U(q)}) \otimes (\pi_{\mu}^{U(n)} \otimes \pi_{\nu}^{U(n)})$$

Unitary branching, continued

The representation ω is the action of U((p+q)n) on the symmetric algebra on $\operatorname{Mat}_{(p+q)\times n}(\mathbb{C})$. Both dual pairs can be embedded

The actions are as follows. Let

$$X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \in \operatorname{Mat}_{(p+q)\times n}(\mathbb{C}), \qquad X_1 \in \operatorname{Mat}_{p\times n}(\mathbb{C}),$$

 $X_2 \in \operatorname{Mat}_{q \times n}(\mathbb{C}).$

- Action of U(p+q) is by left multiplication.
- $U(n) \times U(n)$ is by right multiplication on X_1 and X_2 individually.

• The unitary branching rule now follows ...

See-Saw

Let ω be a representation of Ω . Let $G_1 \subseteq \Omega$, and H_2 be its centralizer. Assume

$$\omega|_{G_1 \times H_2} = \bigoplus_{i \in I} \pi_i^{(1)} \otimes \sigma_i^{(2)}$$

where $\pi_i^{(1)}$ and $\sigma_i^{(2)}$ are irreducible rep's of G_1 and H_2 , and $\pi_i^{(1)} \longleftrightarrow \sigma_j^{(2)}$ is the graph of a correspondence.

Let $H_1 \subseteq G_1$. The centralizer G_2 of H_1 contains H_2 .

Assume $\omega|_{H_1\times G_2}$ is also a correspondence.

$$\omega|_{H_1\times G_2} = \bigoplus_{j\in J} \sigma_j^{(1)} \otimes \pi_j^{(2)}.$$

Lemma 2. Assume the branching rules

$$\pi_i^{(1)} = \sum_{j \in J} c_{ij} \sigma_j^{(1)}, \qquad \pi_j^{(2)} = \sum_{i \in I} d_{ji} \sigma_i^{(2)}$$
(3)

Then the $c_{ij} = d_{ij}$.

Proof. Both c_{ij} and $d_{ij} =$ multiplicity of $\sigma_j^{(1)} \times \sigma_i^{(2)}$ in ω as $H_1 \times H_2$ modules.

Proof of generalized Cauchy

Recall that the involution ι "roughly" interchanges the two generating functions:

$$\sum_{k=0}^{\infty} t^k h_k(\alpha_1, \dots, \alpha_N) = \prod_{j=1}^{N} (1 - t\alpha_j)^{-1}.$$

$$\sum_{t=0}^{\infty} t^k e_k(\alpha_1, \dots, \alpha_N) = \prod_{j=1}^{N} (1 + t\alpha_j).$$

Start with Cauchy identity, apply unitary branching:

$$\prod_{i,k} (1 - \alpha_i \gamma_k)^{-1} \prod_{i,l} (1 - \alpha_i \delta_l)^{-1} \prod_{j,k} (1 - \beta_j \gamma_k)^{-1} \prod_{j,l} (1 - \beta_j \delta_l)^{-1} = \sum_{i,k} s_{\lambda}(\alpha_1, \dots, \alpha_m, \beta_1, \dots, \beta_n) s_{\lambda}(\gamma_1, \dots, \gamma_s, \delta_1, \dots, \delta_t) = \sum_{\lambda} \sum_{\mu,\nu} c_{\mu\nu}^{\lambda} s_{\mu}(\alpha_1, \dots, \alpha_m) s_{\nu}(\beta_1, \dots, \beta_n) = \sum_{\lambda} \sum_{\mu,\nu} c_{\sigma\tau}^{\lambda} s_{\sigma}(\gamma_1, \dots, \gamma_s) s_{\tau}(\delta_1, \dots, \delta_t).$$

Now apply ι in variables β and δ :

$$\prod_{i,k} (1 - \alpha_i \gamma_k)^{-1} \prod_{i,l} (1 + \alpha_i \delta_l) \prod_{j,k} (1 + \beta_j \gamma_k) \prod_{j,l} (1 - \beta_j \delta_l)^{-1} = \sum_{\lambda} LS_{\lambda}(\alpha_1, \dots, \alpha_m; \beta_1, \dots, \beta_n) LS_{\lambda}(\gamma_1, \dots, \gamma_s; \delta_1, \dots, \delta_t).$$

Thus we obtain the Generalized Cauchy identity.

Hopf algebra structure for Λ

The Generalized Cauchy identity is equivalent to an important fact. The ring Λ is a graded algebra.

$$\Lambda = \bigoplus_{k} \Lambda_{k}, \qquad \Lambda_{k} = \text{gen. characters of } S_{k}.$$

The multiplication (induction) is a bilinear map $\Lambda \longrightarrow \Lambda$ that induces a homomorphism $\Lambda \otimes \Lambda \longrightarrow \Lambda$. In degree k this is a map

$$\bigoplus_{p+q=k} \Lambda_p \otimes \Lambda_q \longmapsto \Lambda_k.$$

On $\Lambda_p \times \Lambda_q$ this is **induction** of chars $S_p \times S_q \longrightarrow S_{p+q}$. There is a dual operation, namely **restriction** of chars $S_{p+q} \longrightarrow S_p \times S_q$. This gives a homomorphism of graded rings $\Lambda \longrightarrow \Lambda \otimes \Lambda$ called **comultiplication**.

Theorem. (Geissinger) The two operations of multiplication and comultiplication make Λ a Hopf algebra.

This means that comultiplication is a homomorphism of graded algebras, or (equivalently) that multiplication is a homomorphism of graded coalgebras.

- The Hopf algebra structure was popularized by Zelevinsky.
- We will show that the theorem is **equivalent** to the Generalized Cauchy identity!

The Hopf axiom

Geissinger's theorem boils down to the commutativity of the following diagram:

 $m = \text{multiplication}, \qquad m^* = \text{comult.}, \qquad \tau(x \otimes y) = y \otimes x.$

- Start with a character of in $\Lambda_p \otimes \Lambda_q$ and push it forward to $\Lambda_r \otimes \Lambda_s$, where p + q = r + s = k.
- Thus we are inducing a character from $S_p \times S_q$ to S_k , then restricting to $S_r \times S_s$.

Mackey theory

If $G \supset H_1, H_2$ (finite groups) there are two ways we can get from characters χ of H_1 to characters of H_2 . We can

Induce then restrict or restrict then induce

And these are the **same**. More exactly

$$\operatorname{Res}_{H_2}\operatorname{Ind}_{H_1}^G(\chi) = \bigoplus_{\gamma \in H_2 \backslash G/H_1} \operatorname{Ind}_{H^{\gamma}}^{H_2} \operatorname{Res}_{H^{\gamma}}({}^{\gamma}\chi)$$

where $H^{\gamma} = H_2 \cap \gamma H_1 \gamma^{-1}$ and $\gamma \chi(h) = \chi(\gamma^{-1}h\gamma)$. For symmetric groups this gives the **Hopf axiom**.

Hopf Axiom = Generalized Cauchy

The Hopf axiom reduces to the formula

$$\sum_{\lambda} c^{\lambda}_{\mu\nu} c^{\lambda}_{\sigma\tau} = \sum_{\varphi,\eta} c^{\sigma}_{\varphi\eta} c^{\tau}_{\psi\xi} c^{\mu}_{\varphi\xi} c^{\nu}_{\psi\eta}, \tag{4}$$

since if we apply $m^* \circ m$ to $s_{\mu} \otimes s_{\nu}$, the coefficient of $s_{\sigma} \otimes s_{\tau}$ is the left side, $(m \otimes m) \circ (1 \otimes \tau \otimes 1) \circ (m^* \otimes m^*)$ gives the right side.

To deduce (4) from the generalized Cauchy identity we note that (in obvious notation) the right side of

$$\prod_{i,k} (1 - \alpha_i \gamma_k)^{-1} \prod_{i,l} (1 + \alpha_i \delta_l) \prod_{j,k} (1 + \beta_j \gamma_k) \prod_{j,l} (1 - \beta_j \delta_l)^{-1} = \sum_{\lambda} LS_{\lambda}(\alpha_1, \dots, \alpha_m; \beta_1, \dots, \beta_n) LS_{\lambda}(\gamma_1, \dots, \gamma_s; \delta_1, \dots, \delta_t).$$

is

$$\sum_{\lambda} c_{\mu\nu}^{\lambda} s_{\mu}(\alpha) s_{\nu'}(\beta) c_{\sigma\tau}^{\lambda} s_{\sigma}(\gamma) s_{\tau'}(\delta)$$

while the left side is

$$\sum_{\varphi} s_{\varphi}(\alpha) s_{\varphi}(\gamma) s_{\psi'}(\beta) s_{\psi'}(\delta) s_{\xi}(\alpha) s_{\xi'}(\delta) s_{\eta'}(\beta) s_{\eta}(\gamma)$$

$$= \sum_{\varphi} c_{\varphi\eta}^{\sigma} c_{\psi\xi}^{\tau} s_{\varphi}(\alpha) s_{\xi}(\alpha) s_{\psi'}(\beta) s_{\eta'}(\beta) s_{\sigma}(\gamma) s_{\tau'}(\delta)$$

$$= \sum_{\varphi} c_{\varphi\eta}^{\sigma} c_{\psi\xi}^{\tau} c_{\psi\xi}^{\mu} c_{\psi\eta}^{\nu} s_{\mu}(\alpha) s_{\nu'}(\beta) c_{\sigma\tau}^{\lambda} s_{\sigma}(\gamma) s_{\tau'}(\delta).$$

Comparing, we obtain the result.