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Representation Theory of SkLet � = (�1; � ; �N) be a partition of k. Thus �i 2 Z,�1>� >�N > 0 and P �i= k. LetS�=S�1�� �S�N �Sk:If � is a partition represent it by a Young diagram.Transposing the diagram of � gives the diagram of theconjugate partition �0.Example. N =4, �=(2; 2; 1; 0)= (2; 2; 1)= (221).
�= �0=

Thus � is a partition of 5 of length 3 or into 3 parts.Theorem. IndS�Sk(1) and IndS�0Sk (sgn) have a uniqueirreducible constitutent in common.Proof. Mackey theory + combinatorics. �� Call this s�.� Thus the irreducible representations of Skare parametrized by partitions of k.
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The ring �We de�ne a graded Z-algebra �.� The homogeneous part �k of degree k is theadditive group of generalized characters of Sk.� The multiplication is induction. ThusSk�Sl� Sk+lso if �;  are characters of Sk and Sl then � 
  is a character of Sk�Sl which we induce to Sk+l.� A Z-basis of �k is fs�j� is a partition of kg.� Let hk and ek be the trivial and sign charactersof Sk. Then �=Z[h1;h2;� ] =Z[e1; e2;� ].� We havehk = s(k) (k) is the partition (k; 0;� ; 0)ek = s(1k) (1k) is the partition (1; 1;� ; 1)� � has an automorphism � of degree 2 such that�(hi)=ei and �(ei)=hi. This is the involution.� On �k the involution � amounts to tensoring withthe sign character.� The involution corresponds to conjugation of par-titions: �(s�)= �(s�0)
4



The characteristic mapLet s�(X1;� ; XN)= Alt(X1�1+N�1X2�2+N�2�XN�N)Alt(X1N�1X2N�2�XN0 )be the Schur polynomial, whereAlt= X�2SN (� 1)sgn(�)�:
There is a ring homomorphism (due to Frobenius)ch: �� Z[X1;� ; XN]SN,ch(hi) = hi(X1;� ; XN)= Xi16�6iN Xi1�XiN ;ch(ei) = ei(X1;� ; XN)= Xi1<�<iN Xi1�XiN ;ch(s�) = s�(X1;� ; XN):(Complete, elementary, Schur symmetric polynomials).� The homomorphism is surjective but not injec-tive. Thus � does not induce an involution ofsymmetric polynomials.� However it is bijective on �k provided N > k.
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Frobenius-Schur dualityLet V =CN be the standard module of U(N). We havecommuting actions of U(N) and Sk on 
k V = V 
� 
V (k times):�: v1
� 
 vk	 v��1(1)
� 
 v��1(k); � 2Sk:Thus we can decompose 
kV simultaneously:
kV =X� ��
 s� as U(N)�Sk-modules:� The irreducible representations of Sk that appearare the s� where � = (�1; � ; �N) is a partition ofk of length 6N .� The irreducible representations of U(N) thatappear are those whose matrix coe�cients arehomogeneous polynomials of degree k.If g 2 U(N) has eigenvalues �1; � ; �N and f 2 � mapsto f = ch(f)2Z[X1;� ; XN]SN then��(g)= f(�1;� ; �N); ��= character of ��:Multiplication in � corresponds to tensor pro-duction of representations of U(N). Thuss�s�=X� c��� s� ; ��
��=M� c��� ��:The c��� are Littlewood-Richardson coe�cients.6



WeightsWe consider integer sequences (�1;� ; �N).� �=(�1;� ; �N)2ZN is called a weight of N .� Weights correspond to rational characters of thediagonal torus of U(N):
�:0@ t1 � tN

1A	 t1�1� tN�N:� If �1>� >�N the weight is called dominant.� The height of � is the inner product h�; �i,�=(N � 1; N � 2;� ; 0):� If � is a dominant weight �, there is a uniqueirreducible �� of U(N) containing �, no higherweight. Highest weight module (Weyl).� If �N > 0 the dominant weight � = (�1; � ; �N) isa partition of k=P �i into 6N parts.� So dominant weights parametrize irreduciblerepresentations of U(N) ...� ... and partitions of k parametrize irreduciblerepresentations of Sk.� Weights and partitions overlap, hence give abijection between some representations of U(N)and some representations of Sk. This is thebijection we constructed using 
kCN.7



Generating functionsRemember thathi(X1;� ; XN)= Xi16�6iN Xi1�XiN ;ei(X1;� ; XN)= Xi1<�<iN Xi1�XiN ;are the complete and elementary symmetric poly's.Xt=01 tkhk(�1;� ; �N)=Yj=1N (1� t�j)�1:Xt=01 tkek(�1;� ; �N)=Yj=1N (1+ t�j):These may be regarded as generating functions for thesymmetric and exterior algebras on CN.� The involution � of � interchangesXt=01 tkhk� Xt=01 tkek� There is no corresponding correspondence ofsymmetric functions (since ek = 0 for k > N) butroughly we can think of the involution astransforming the two types of generatingfunctions into one another.
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CorrespondencesIf G and H are groups, a correspondence of represen-tations is a bijection between some of the irreduciblerepresentations �� of G and some of the irreducible rep-resentations �� of H. We consider the module!= M ��
 �� of G�H:� By assumption there are no repetitions amongthe �� or ��.� In important cases, ! has a natural construction.� If G=U(N) and H =Sk this module is 
kV .� Howe discovered that the Weil representationgives correspondences for reductive dual pairs ofsubgroups of Sp(2n) or its double cover (themetaplectic group.GL(N;C)�GL(m;C) dualityLet GL(N; C) � GL(m; C) act on Matn�m(C) by leftand right multiplication. There is induced an action onthe polynomial ring S(Matn�m(C)). This is a corre-spondence. It induces a correspondence of the maximalcompact subgroups U(N)�U(M) since irreducible rep'sof U(N) correspond bijectively to analytic reps ofGL(N;C). This is a Howe correspondence.
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Inner product formulasTheorem. (Peter-Weyl + Schur orthogonality)Assume G compact. The characters of the irreduciblerepresentations span the subspace of L2(G) consisting ofclass functions. They are an orthonormal basis.Thus given a correspondence:G H�� � �����2L2(G) � ���2L2(H) (�2 indexing set)
Let L!2 (G) and L!2 (H) be the span of the characters ���and ���. The correspondence determines an isometryL!2 (G)� L!2 (H):They may allow us to transfer an inner productcomputation from G to H . Thus if � 2 L!2 (G) is aclass function, and  2 L!2 (H) is the corresponding classfunction on H we haveZG j�(g)j2dg= ZH j (h)j2dh:We will give some examples where the right-hand side iseasier to evaluate than the left-hand side, leading tonontrivial results in RMT.
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Diaconis and ShashahaniLet G=U(N), H =Sk, !=Frobenius-Schur dualityTheorem 1. If N > k1+2k2+� + rkr thenZU(N) jtr(g)j2k1 jtr(g2)j2k2� jtr(gr)j2krd g=Yj=1r jkjkj! :
Proof. Let k= k1+2k2+� + rkr, and let � be the par-tition of k containing k1 entries equal to 1, k2 entriesequal to 2, and so forth. Let C� be the conjugacy classof permutations � 2 Sk of type � (so � has kj cycles oflength j in its decomposition to disjoint cycles). Let p�be the conjugacy class indicator on Sk,p�(g)=� z�0 otherwise ;where z�=Qj=1r jkjkj! . The class functiong� tr(g)k1 tr(g2)k2� tr(gr)krin L!2 (G) corresponds to the function p�2L!2 (H) and soits norm is the same as the norm of p�, i.e. z�. �Thus ZU(N) jtr(g)j2k1 jtr(g2)j2k2� jtr(gr)j2krd gstabilizes when N is large. Asymptotically the valuedistribution of tr(g); tr(g2); � ; tr(gr) is of independentnormal (i.e. Gaussian) random variables.11



Cauchy IdentityX� s�(�1;� ; �n)s�(�1;� ; �m)=Yi;j (1��i�j)�1� Sum is over partitions of length 6N .� Fundamental in what we do next.� Underlying correspondence: G;H =U(n); U(m)Take n = m. Consider the action of U(n) � U(n) onL2(G): (g; h)f(x)= f(g�1xh)
Lemma. If G is any compact group, G � G acts onL2(G) andL2(G)= M�2Irr(G) �
 �̂ �̂ = contragredient rep'n:
(This is again Peter-Weyl theorem). For G = U(n),there is an involution �: G� G namely �g = tg�1 suchthat g	 �(�g) is equivalent to �̂ . This is becauseg�1 is conjugate to �g. So we modify the action:(g; h)f(x)= f(tg xh)and in this action:L2(G)= M�2Irr(G) �
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Polynomial versionIn this decompositionL2(G)= M�2Irr(G) �
� (Hilbert space � .)we may restrict ourselves to the subspace of U(n)-�nitevectors, which form the a�ne ringA=C[Xij ; det�1�; Xij= coordinate functions.(G is compact so continuous functions are L2.) ThenA= M�2Irr(G) �
� (Algebraic � .)
� � runs through �� where � = (�1; � ; �n) is aweight, i.e. �1>� >�n, �i2Z� The weights � with �N > 0 are partitions.� A�ne ring C[Xij] of Matn isC[Xij] = Mpartitions � ��
�� (Algebraic � .)
� This is because only the matrix coe�cients of ��where � is a partition are regular on the determi-nant locus.
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Proof of the Cauchy IdentityWe haveC[Xij] = Mpartitions � ��
�� (Algebraic � ) (1)as U(n)�U(n) modules, where (g; h) act by(g; h)f(x)= f(tgxh); f :Matn(C)� C:Let g; h have eigenvalues �1; � ; �n and �1; � ; �n.Taking the trace in this identity givesX� s�(�1;� ; �n)s�(�1;� ; �n)=Yi;j (1��i�j)�1:
� The series is only convergent if j�ij ; j�j j< 1. But(1) extends to GL(n; C) � GL(n; C) of whichU(n) � U(n) is a maximal compact, and ��extend to analytic reps of GL(n;C).� The case n>m can be deduced by specializingbm+1;� ; �n� 0:� At the heart of the proof is a correspondencewith G;H =U(n) and!= Mpartitions � ��
��= polynomials on Matn(C):� This a case of the Howe correspondence.
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Dual Cauchy IdentityIf � is a partition represent it by a Young diagram.Transposing the diagram of � gives the diagram of theconjugate partition �0.Example. N =4, �=(2; 2; 1; 0)= (2; 2; 1)= (221).
�= �0=

Thus � is a partition of 5 of length 3 or into 3 parts.�0 is a partition of 5 of length 2 or into 2 parts.The ring � has a basis s� which specialize to charactersof irreducible rep's of Sk (k = P �i) or U(N) N >length(�). The map s�	 s�0 is an automorphism of� which we will call the involution.Applying the involution to one set of variables in theCauchy identityX� s�(�1;� ; �n)s�(�1;� ; �n)=Yi;j (1��i�j)�1:produces the dual Cauchy identityX� s�(�1;� ; �n)s�0(�1;� ; �n)=Yi;j (1+�i�j):
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Keating and SnaithThe following theorem was very in�uential in the appli-cation of RMT to �.Theorem. We haveZU(N) jdet(g� I)j2kdg= Yj=0N�1 j!(j+2k)!(j+ k)!2 :
The same constants appear in the (conjectural) 2k-thmoment of �.� The original proof of Keating and Snaith usedthe Selberg integral.� We will give another proof (due to Gamburd)that uses GL(N)�GL(2k) duality.� The two proofs have di�erent generalizations.The proof of Keating and Snaith allows interpo-lation of k to real numbers, while Gamburd'sproof allows more general evaluations such asZU(N) jdet(g� I)j2k��(g)dgwhere �� is the character of ��.
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Proof of Keating-Snaith formulaIf �1;� ; �N and �1;� ; �N are complex numbers, we willshow ZU(N) Yi=1k ndet(I +�ig)det(I + �i�1g�1)odg=s(Nk)(�1;� ; �k; �1;� ; �k): (2)The left-hand side equalsY �i�1 ZU(N) Yi=1k fdet(I +�ig)det(g�i+ I)gdet(g)kdg:By dual Cauchy id, if t1;� ; tN are eigenvalues of g,Yi=1k fdet(� )det(� )g =X� s�(�1;� ; �k; �1;� ; �k)s�0(t1;� ; tN);Since det(g)k= s�0(t1;� ; tN), integrating over g picks o�just one term, with �0 = (kN) and so � = (Nk) so. Thisproves (2). Taking �i= �i=1ZU(N) jdet(g� I)j2kdg= s(Nk) 2k terms(1;� ; 1);
the dimension of the rep'n �(Nk) of U(2k). This dimen-sion is computed using Weyl's dimension formula,proving the theorem of Keating and Snaith.17



Analysis of the proof� Underlying this computation is the (dual)Cauchy identity.� The Cauchy identity for GL(N) � GL(2k)amounts to the use of the Howe correspondencefor GL(N)�GL(2k).� In this correspondence, if � is a dominant weight,��GL(N) corresponds to ��GL(2k).� But in the Cauchy identity ��GL(N) correspondsto ��0GL(2k).� When � = (Nk), �0 = (kN) and the answer turnsout to be the dimension of this ��0GL(2k).� We used the correspondence to transferthe computation from GL(N) to GL(2k).� Similarly, moments for classical groups can beexpressed in terms of characters of other groupsparametrized by rectangular partitions. Thusa result of Keating and Snaith can be written:ZSp(2N) Yj=1k det(I �xjg) dg =(x1�xk)N�
Nk�Sp(2k)(x1�1;� ; xk�1) =X"2f�1g Yj=1k xjN(1�"j)Yi6j (1�xi"ixj"j)�1:18



RatiosLet �L;K consist of permutations � 2SK+L such that�(1)<� <�(L); �(L+1)<� <�(L+K):Theorem. (Conrey, Farmer and Zirnbauer) IfN >Q;R and j
q j ; j�r j< 1 we haveZU(N) Ql=1L det (I +�l�1 � g�1) �Qk=1K det (I +�L+k � g)Qq=1Q det (I � 
q � g)Qr=1R det (I � �r � g�1) dg=X�2�L;K Yk=1K (��(L+k)�1 �L+k)N �Qq=1Q Ql=1L (1+ 
q��(l)�1 )Qr=1R Qk=1K (1+ �r��(L+k))Qk=1K Ql=1L (1���(l)�1 ��(K+k))Qr=1R Qq=1Q (1� 
q�r) :� According to CFZ the assumption that N is largecan be eliminated.� Proof will depend on the generalized Cauchyidentity involving Littlewood-Schur func-tions.� These were studied by Littlewood and also byBerele and Regev, who apparently rediscoveredthem.
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Generalized Cauchy identityDe�ne the Littlewood-Schur polynomialLS�(x1;� ; xk; y1;� ; yl) =X�;� c��� s�(x1;� ; xk)s� 0(y1;� ; yl):The c��� are the Littlewood-Richardson coe�cients.Theorem. (Berele and Regev)X� LS�(�1;� ; �m; �1;� ; �n)LS�(
1;� ; 
s; �1;� ; �t) =Yi;k (1��i
k)�1Yi;l (1+�i�l)Yj;k (1+ �j
k)Yj;l (1� �j�l)�1:
We will assume it now and discuss the proof later.Laplace expansionLet (aij) be (L+K)� (L+K). Then det(aij)=X�2�L;K sgn(�)������� a1;�(1) � a1;�(L)
 
aL;�(1) � aL;�(L)

������� �������� aL+1;�(L+1) � aL+K;�(L+K)
 
aL+K;�(L+1) � aL+K;�(L+K)
�������: Proofeasy:
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Laplace expansion for LS�Proposition. Suppose � of length 6K such that �L >�L+1+Q, let �= � [ � with� =(�1;� ; �L); �=(�L+1;� ; �L+K):Then LS�(�1;� ; �L+K; 
1;� ; 
Q) =X�2�L;K Y16l6L16k6K (��(l)���(L+k))�1
LS�+
KL�(��(1);� ; ��(L); 
1;� ; 
Q)LS�(��(L+1);� ; ��(L+K); 
1;� ; 
Q)Proof. Induction on Q. If Q=0, this sayss�(�1;� ; �L+K) =X�2�L;K Y16l6L16k6K (��(l)���(L+k))�1

s�+
KL�(��(1);� ; ��(L))s�(��(L+1);� ; ��(L+K)):This is proved by applying the Laplace expansion to thedeterminant de�nition of the Schur function. For Q > 0one adds the 
i one at a time using Pieri's formula(i.e. the degenerate Littlewood-Richardson rule). �
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Proof (sketch) of unitary CFZBy the dual Cauchy identity,Yl=1L det (I +�l�1 � g�1) �Yk=1K det (I +�L+k � g)= det (g)L Yl=1L �l�N Yk=1K+L det (I +�kg)= det (g)L Yl=1L �l�NX� s�(�1;� ; �K+L)��0(g)On the other hand by the Cauchy identityYq=1Q det (I � 
qg)�1=X� s�(
1;� ; 
Q)��(g)and Yr=1R det (I � �r � g�1)�1=X� s�(�1;� ; �R)��(g):By Schur orthogonalityZU(N) Ql=1L det (I +�l�1 � g�1) �Qk=1K det (I +�L+k � g)Qq=1Q det (I � 
q � g)Qr=1R det (I � �r � g�1) dg =X�;�;� D��0��; detL
 ��EYl=1L �l�Ns�(�1;� ; �L+K)s�(
1;� ; 
Q)s�(�1;� ; �R):22



We rewrite this asYl=1L �l�N X�;�;� c�0��~ s�(�1;� ; �L+K)s�(
1;� ; 
Q)s�(�1;� ; �R)=Yl=1L �l�NX� LS�~(
1;� ; 
Q;�1;� ; �L+K)s�(�1;� ; �R)=Yl=1L �l�NX� LS�̂(�1;� ; �L+K; 
1;� ; 
Q)s�(�1;� ; �R);where �~ = � + 
LN� and �̂ = �~ 0 = NL [ � 0. Using theLaplace expansion for LS�̂ :LS�̂(�1;� ; �L+K; 
1;� ; 
Q) =X�2�L;K Y16l6L16k6K (��(l)���(L+k))�1
�LS
(N+K)L�(��(1);� ; ��(L); 
1;� ; 
Q)�LS� 0(��(L+1);� ; ��(L+K); 
1;� ; 
Q):Substituting this, using generalized Cauchy identity toevaluate the sum over �, and Littlewood's formulaLSh(l+m)ki(x1;� ; xk; y1;� ; yl)= Yi=1k xi!m Y16i6k16j6l (xi+ yj)

gives X�2�L;K Yk=1K (��(L+k)�1 �L+k)N �Qq=1Q Ql=1L (1+ 
q��(l)�1 )Qr=1R Qk=1K (1+ �r��(L+k))Qk=1K Ql=1L (1���(l)�1 ��(K+k))Qr=1R Qq=1Q (1� 
q�r) :23



Remarks on the proof� There may be more than one way to proceedonce we have an adequate set of tools.� The tools, mainly the generalized Cauchy iden-tity, Laplace expansion and Littlewood's identityare themselves of considerable interest.We will concentrate on ideas around the generalizedCauchy identity and Laplace expansion.U(p+ q)� U(p)�U(q) branchingAs before, �� = character of ��, � a dominant weight.We assume � is a partition, so �� is a polynomial rep'n.Theorem. (i) We have��(p+q)jU(p)�U(q)� g1 g2 � = X�;� c��� ��(g1)��(g2);��(p+q)� g1 g2 � = M�;� c��� ��(g1)
��(g2):(ii) Let x1;� ; xp and y1;� ; yq be two sets of variables.s�(x1;� ; xp; y1;� ; yq) =X�;� c��� s�(x1;� ; xp)s�(y1;� ; yq):The two statements are equivalent. (Take xi; yi to beeigenvalues of g1 and g2.) 24



Proof of unitary branchingIn the context of the unitary groups the Littlewood-Richardson rules occur in 2 distinct ways:� Clebsch-Gordan coef: c��� is the multiplicity of�� in ��
�� reps of U(N) or GL(N;C).� Unitary branching rule: c��� is the multiplicityof ��GL(p)
��GL(q) in the restriction of ��GL(p+q).The See-Saw:
U(p) × U(q)

U(p + q)

U(n)

U(n) × U(n)

� Vertical lines are inclusions� Diagonal lines are correspondences� Let ! = action of U(p + q), U(n) on symmetricalgebra of Mat(p+q)n(C) (left, right translation)� !=L� ��U(p+q)
��U(N).� Alternatively we have action ! of U(p) � U(q)and U(n)�U(n) on same symmetric algebra.� != L�;� (��U(p)
��U(q))
 (��U(n)
��U(n))
25



Unitary branching, continuedThe representation ! is the action of U((p+ q)n) on thesymmetric algebra on Mat(p+q)�n(C). Both dual pairscan be embeddedU(p+ q)�U(n) & U((p+ q)n)%(U(p)�U(q))�(U(n)�U(n))The actions are as follows. LetX = � X1X2 � 2 Mat(p+q)�n(C); X1 2 Matp�n(C);X22Matq�n(C):� Action of U(p+ q) is by left multiplication.� U(n) � U(n) is by right multiplication on X1and X2 individually.
U(p) × U(q)

U(p + q)

U(n)

U(n) × U(n)

� The unitary branching rule now follows ...
26



See-SawLet ! be a representation of 
. Let G1 � 
, and H2 beits centralizer. Assume! jG1�H2=Mi2I �i(1)
�i(2)where �i(1) and �i(2) are irreducible rep's of G1 and H2,and �i(1)� �j(2) is the graph of a correspondence.Let H1�G1. The centralizer G2 of H1 contains H2.
H1

G1

H2

G2

Assume ! jH1�G2 is also a correspondence.! jH1�G2=Mj2J �j(1)
�j(2):Lemma 2. Assume the branching rules�i(1)=Xj2J cij�j(1); �j(2)=Xi2I dji�i(2) (3)
Then the cij= dij.Proof. Both cij and dij = multiplicity of �j(1)� �i(2) in! as H1�H2 modules. �27



Proof of generalized CauchyRecall that the involution � �roughly� interchanges thetwo generating functions:Xt=01 tkhk(�1;� ; �N)=Yj=1N (1� t�j)�1:Xt=01 tkek(�1;� ; �N)=Yj=1N (1+ t�j):Start with Cauchy identity, apply unitary branching:Yi;k (1��i
k)�1Yi;l (1��i�l)�1Yj;k (1� �j
k)�1Yj;l (1� �j�l)�1 =X� s�(�1;� ; �m; �1;� ; �n)s�(
1;� ; 
s; �1;� ; �t) =X� X�;� c��� s�(�1;� ; �m)s�(�1;� ; �n)X�;� c��� s�(
1;� ; 
s)s�(�1;� ; �t):Now apply � in variables � and �:Yi;k (1��i
k)�1Yi;l (1+�i�l)Yj;k (1+ �j
k)Yj;l (1� �j�l)�1 =X� LS�(�1;� ; �m; �1;� ; �n)LS�(
1;� ; 
s; �1;� ; �t):Thus we obtain the Generalized Cauchy identity.
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Hopf algebra structure for �The Generalized Cauchy identity is equivalent to animportant fact. The ring � is a graded algebra.�=Mk �k; �k= gen. characters of Sk:The multiplication (induction) is a bilinear map ��� that induces a homomorphism � 
 � � �. Indegree k this is a mapMp+q=k �p
�q	 �k:On �p��q this is induction of chars Sp�Sq� Sp+q.There is a dual operation, namely restriction of charsSp+q� Sp�Sq. This gives a homomorphism of gradedrings �� �
� called comultiplication.Theorem. (Geissinger) The two operations of multi-plication and comultiplication make � a Hopf algebra.This means that comultiplication is a homomor-phism of graded algebras, or (equivalently) that multi-plication is a homomorphism of graded coalgebras.� The Hopf algebra structure was popularized byZelevinsky.� We will show that the theorem is equivalent tothe Generalized Cauchy identity!
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The Hopf axiomGeissinger's theorem boils down to the commutativity ofthe following diagram:
Λ ⊗ Λ Λ ⊗ Λ ⊗ Λ ⊗ Λ Λ ⊗ Λ ⊗ Λ ⊗ Λ

Λ Λ ⊗ Λ

m∗
⊗ m∗ 1 ⊗ τ ⊗ 1

m m ⊗ m

m∗m=multiplication; m�= comult:; �(x
 y)= y
 x:� Start with a character of in �p 
 �q and push itforward to �r
�s, where p+ q= r+ s= k .� Thus we are inducing a character from Sp� Sq toSk, then restricting to Sr�Ss.Mackey theoryIf G �H1; H2 (�nite groups) there are two ways we canget from characters � of H1 to characters of H2. WecanInduce then restrict or restrict then induceAnd these are the same. More exactlyResH2IndH1G (�)= M
2H2�G/H1 IndH
H2ResH
(
�)
where H
 = H2 \ 
H1
�1 and 
�(h) = �(
�1h
). Forsymmetric groups this gives the Hopf axiom.30



Hopf Axiom = Generalized CauchyThe Hopf axiom reduces to the formulaX� c��� c��� =X';� c'�� c �� c'�� c �� ; (4)since if we apply m� � m to s� 
 s�, the coe�cient ofs� 
 s� is the left side, (m
m) � (1
 � 
 1) � (m�
m�)gives the right side.To deduce (4) from the generalized Cauchy identitywe note that (in obvious notation) the right side ofYi;k (1��i
k)�1Yi;l (1+�i�l)Yj;k (1+ �j
k)Yj;l (1� �j�l)�1 =X� LS�(�1;� ; �m; �1;� ; �n)LS�(
1;� ; 
s; �1;� ; �t):is X� c��� s�(�)s� 0(�)c��� s�(
)s� 0(�)while the left side isX s'(�)s'(
)s 0(�)s 0(�)s�(�)s� 0(�)s� 0(�)s�(
)= X c'�� c �� s'(�)s�(�)s 0(�)s� 0(�)s�(
)s� 0(�)= X c'�� c �� c'�� c �� s�(�)s� 0(�)c��� s�(
)s� 0(�):Comparing, we obtain the result.
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