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Representation Theory of S,

/N

= (A1, =--, An) be a partition of k. Thus \; € Z,
)\122)\]\[20 and Z )\Z:k Let

S)\:S>\1 X e X SAN gSk

If X is a partition represent it by a Young diagram.
Transposing the diagram of A\ gives the diagram of the
conjugate partition \’.

Example. N =4, \=(2,2,1,0)=(2,2,1) = (2°1).

Thus A is a partition of 5 of length 3 or into 3 parts.

Theorem. Indg’;(l) and Indgi,(sgn) have a unique
wrreductble constitutent in common.

Proof. Mackey theory 4+ combinatorics. ]

e (Call this s).

e Thus the irreducible representations of Sy
are parametrized by partitions of k.



The ring A
We define a graded Z-algebra A.

The homogeneous part A of degree k is the
additive group of generalized characters of Sp.

The multiplication is induction. Thus
Sk X Sp — Skt

so if x, v are characters of S and S; then y ®
is a character of Sy X S; which we induce to Sg4;.

A Z-basis of A is {sx|\ is a partition of k}.

Let hy and e, be the trivial and sign characters
of Sk Then A = Z[hl, hQ, ] = Z[el, €9, ]

We have
hi = swu) (k) is the partition (k,0,---,0)
er = S(1¥) (1%) is the partition (1,1,---, 1)

A has an automorphism ¢ of degree 2 such that
t(h;) =e; and ((e;) = h;. This is the involution.

On Ay the involution ¢+ amounts to tensoring with
the sign character.

The involution corresponds to conjugation of par-
titions: ¢t(s)) =t(sA/)



The characteristic map

Let

Alg(X PPN L x et N =2 X )
AL (XN 1X 2. X%)

sax (X1, -, XN) =

be the Schur polynomial, where

Alt= 3 (= 1)),

oc€ESN

There is a ring homomorphism (due to Frobenius)
ch: A —s Z[X1, -, X x5,

ch(h;) = hi(Xy,-, X Z X Xin,
<IN

ch(ei) = ei(Xl, Z le XZN,
1< <in

Ch(S)\) = S)\(Xl, ---,XN).

(Complete, elementary, Schur symmetric polynomials).

e 'The homomorphism is surjective but not injec-
tive. Thus ¢ does not induce an involution of
symmetric polynomials.

e However it is bijective on Ay provided N > k.



Frobenius-Schur duality

Let V = C¥ be the standard module of U(NN). We have
commuting actions of U(N) and Sy on @*V =V ® - ®
V' (k times):

O:V] R QUK Up—1(1) @ = Q Uy —1(p), o€ Sk.
Thus we can decompose ®*V simultaneously:

REV = Z T\ ® 8y as U(N) x Sg-modules.
A

e The irreducible representations of Sj that appear
are the sy where A = (A1, -, \y) is a partition of
k of length < V.

e The irreducible representations of U(N) that
appear are those whose matrix coefficients are
homogeneous polynomials of degree k.

If g € U(N) has eigenvalues ag, -+, any and f € A maps
to f=ch(f)eZ| Xy, -, XN]SN then
xalg) = flag, -, an), Y= character of ).

Multiplication in A corresponds to tensor pro-
duction of representations of U(IN). Thus

E 14

174 174

The cf,, are Littlewood-Richardson coefficients.



Weights

We consider integer sequences (A, -+, An).
o A=Ay, -, An)€ZY is called a weight of N.

e Weights correspond to rational characters of the
diagonal torus of U(N):

t
A: s E N
N
o If \;>---> Ay the weight is called dominant.
e The height of ) is the inner product (), p),

p=(N—-1,N—2,--,0).

e If )\ is a dominant weight X, there is a unique
irreducible m, of U(N) containing A, no higher
weight. Highest weight module (Weyl).

e If Ay >0 the dominant weight A = (A, -+, An) is
a partition of k=) \; into <N parts.
e So dominant weights parametrize irreducible

representations of U(N) ...

e ... and partitions of k& parametrize irreducible
representations of Sy.

e Weights and partitions overlap, hence give a
bijection between some representations of U (V)
and some representations of Si. This is the
bijection we constructed using Rk CN,
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Generating functions

Remember that

hi(Xy, - XN) = Z Xip - Xins
1< SIN
ei(Xla”'aXN): Z X’i1'”X’iN7
1< <in
are the complete and elementary symmetric poly’s.

00 N
Z t*hy(aq, -, an) = H (1—ta;)~ L
t=0 j=1

N
ther(ay, -+, an) = H (1+tay).
t=0 j=1
These may be regarded as generating functions for the
symmetric and exterior algebras on C".

e The involution ¢ of A interchanges

©. @)

> thhy «— ) the
t=0 t=0
e There is no corresponding correspondence of
symmetric functions (since ey = 0 for k£ > N) but
roughly we can think of the involution as
transforming the two types of generating
functions into one another.



Correspondences

If G and H are groups, a correspondence of represen-
tations is a bijection between some of the irreducible
representations m of G and some of the irreducible rep-
resentations py of H. We consider the module

w:@ﬂ'A@pAOfGXH.

e DBy assumption there are no repetitions among
the m) or p..

e In important cases, w has a natural construction.
e If G=U(N) and H = S}, this module is @* V.

e Howe discovered that the Weil representation
gives correspondences for reductive dual pairs of
subgroups of Sp(2n) or its double cover (the
metaplectic group.

GL(N,C) x GL(m, C) duality

Let GL(N, C) x GL(m, C) act on Maty, «.,n,(C) by left
and right multiplication. There is induced an action on
the polynomial ring S(Mat, «.,,(C)). This is a corre-
spondence. It induces a correspondence of the maximal
compact subgroups U(N) x U (M) since irreducible rep’s

of U(N) correspond bijectively to analytic reps of
GL(N,C). This is a Howe correspondence.



Inner product formulas

Theorem. (Peter-Weyl + Schur orthogonality)
Assume G compact. The characters of the irreducible
representations span the subspace of L*(G) consisting of
class functions. They are an orthonormal basis.

Thus given a correspondence:

G H
T > P (A € indexing set)
Xrs € L*(G) <— x,, € L*(H)

Let L2(G) and LZ(H) be the span of the characters i,
and x,,. The correspondence determines an isometry

Li(G) — LE(H).

They may allow us to transfer an inner product
computation from G to H. Thus if ¢ € Li(G) is a
class function, and 1 € L2 (H) is the corresponding class
function on H we have

[ 1sPdg= [ 1umpan

We will give some examples where the right-hand side is
easier to evaluate than the left-hand side, leading to
nontrivial results in RMT.
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Diaconis and Shashahani
Let G=U(N), H =S}, w=Frobenius-Schur duality

Theorem 1. If N > ki + 2ko+ ---+ 1k, then

r

/( ) tr(g)|2F tr(g?)[2R2--[tr(g7)[*Fd g = | | 7" k5!
U(N

j=1

Proof. Let k=k1+ 2ko+ ---+rk,, and let A\ be the par-
tition of k£ containing k; entries equal to 1, ko entries
equal to 2, and so forth. Let Cy be the conjugacy class
of permutations o € Sj, of type A (so o has k; cycles of
length j in its decomposition to disjoint cycles). Let py
be the conjugacy class indicator on Sy,

pA(9) :{ g/\

otherwise ,
where z) = H§:1 7%ik;! . The class function

grtr(g)™tr(g?)h2 - tr(gm)*r

in L2(G) corresponds to the function py € L2(H) and so
its norm is the same as the norm of p,, ie. z,. U

Thus / tr(g)[*1 [tr(g?)|2F2-[tr(g7)[* 7 d g
U(N)

stabilizes when N is large. Asymptotically the value
distribution of tr(g), tr(g?), ---, tr(g") is of independent
normal (i.e. Gaussian) random variables.
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Cauchy Identity
ZS,\(Oq," n)SA(B1,+, Bm) H —a;35)”

A 1,9

e Sum is over partitions of length < V.
e Fundamental in what we do next.
e Underlying correspondence: G, H =U(n),U(m)

Take n = m. Consider the action of U(n) x U(n) on
L*(G):

(g,h)f(z)=f(g 'zh)

Lemma. If G is any compact group, G x G acts on

L*(G) and

L*(G) = @ TR 7 = contragredient rep’n.
welrr(G)

(This is again Peter-Weyl theorem). For G = U(n),
there is an involution ¢: G — G namely ‘g = ‘g~ ! such

that g — m(*g) is equivalent to 7. This is because

g~ ! is conjugate to ‘g. So we modify the action:

(g,h)f(xz)=f("gzh)

and in this action:

12



Polynomial version

In this decomposition

L*(G) = @ ey (Hilbert space @ .)
melrr(G)

we may restrict ourselves to the subspace of U(n)-finite
vectors, which form the affine ring

A=C|X;j,det™ 1] : X, ; =coordinate functions.
(G is compact so continuous functions are L2.) Then

A= @ TR (Algebraic & .)
melrr(G)

e 7 runs through 7y where A\ = (Aq, =+, A\,) is a
weight, 1.e. Ay > --- >\, \; €Z

e The weights A with Ay >0 are partitions.
e Affine ring C[X;,| of Mat,, is

C|X;j] = @ Ty QT (Algebraic & .)

partitions A

e This is because only the matrix coefficients of )
where A is a partition are regular on the determi-
nant locus.

13



Proof of the Cauchy Identity
We have

C|X;j]= @ Ty @ T (Algebraic &) (1)

partitions A

as U(n) x U(n) modules, where (g, h) act by
(g,h)f(z)= f(*gzh), f:Mat,,(C) — C.

Let g, h have eigenvalues ai, ---, a, and [y, ---, On.
Taking the trace in this identity gives

> salan, - an)sa(Br - Ba) = [ (- aify) "
A 2y

e The series is only convergent if |o;l,|8;| < 1. But
(1) extends to GL(n, C) x GL(n, C) of which
U(n) x U(n) is a maximal compact, and )
extend to analytic reps of GL(n, C).

e 'The case n>m can be deduced by specializing

bin+1, 5 Bn — 0.

e At the heart of the proof is a correspondence
with G, H=U(n) and

w= @ 7\ ® m\ = polynomials on Mat,,(C).

partitions A

e This a case of the Howe correspondence.

14



Dual Cauchy Identity

If X\ is a partition represent it by a Young diagram.
Transposing the diagram of A\ gives the diagram of the
conjugate partition )\’

Example. N =4, \=(2,2,1,0)=(2,2,1) = (2°1).

Thus A is a partition of 5 of length 3 or into 3 parts.
A’ is a partition of 5 of length 2 or into 2 parts.

The ring A has a basis s) which specialize to characters
of irreducible rep’s of S (k = >  \;) or U(N) N >
length(A). The map s) — s/ is an automorphism of
A which we will call the involution.

Applying the involution to one set of variables in the
Cauchy identity

Z sx(o, -, an)sa(Br, -+, Bn) = H (1—a;8;)" "

A 1,7

produces the dual Cauchy identity

Z SA(O‘h T O‘TL) SA’(Bla I Bn) — H (1 + O"Lﬂj)'

A 1,7

15



Keating and Snaith

The following theorem was very influential in the appli-
cation of RMT to (.

Theorem. We have

N-1
1 + 2k)!

det(g — I)|**dg = || L :
/U(N)| ( ) b (7 + k)2

The same constants appear in the (conjectural) 2k-th
moment of (.

e The original proof of Keating and Snaith used
the Selberg integral.

e We will give another proof (due to Gamburd)
that uses GL(NN) x GL(2k) duality.

e The two proofs have different generalizations.
The proof of Keating and Snaith allows interpo-
lation of k£ to real numbers, while Gamburd’s
proof allows more general evaluations such as

/ det(g — )2 xx(g)dg
U(N)

where Y is the character of ).

16



Proof of Keating-Snaith formula

If ay,---,an and (4, -, By are complex numbers, we will
show

/ f[ {det I+ oig)det(I+ B; 19—1)}dg_

(Nk’)(alv y Ok, 617”'76k)° (2)
The left-hand side equals

k
11 Bi_l/U(N) H {det(I 4 a;g)det(gB;+ I)}det(g)*dg
i=1

By dual Cauchy id, if 4, --,t are eigenvalues of g,

H {det(---)det(---)} =
Z S)\(Oél, ey Ok, 617 ’ 76k)8>\’(t17 7tN)7

A

Since det(g)¥ =s,/(t1, -, tn), integrating over g picks off
just one term, with A’ = (k%) and so A = (IN*) so. This
proves (2). Taking a; = ;=1

2k terms

[ detlg = DIFdg = sgve) (1, 1),
U(N)

the dimension of the repn my# of U(2k). This dimen-
sion is computed using Weyl’s dimension formula,
proving the theorem of Keating and Snaith.

17



Analysis of the proof

Underlying this computation is the (dual)
Cauchy identity.

The Cauchy identity for GL(N) x GL(2k)
amounts to the use of the Howe correspondence

for GL(NN) x GL(2k).

In this correspondence, if A is a dominant weight,

GL(N GL(2k
U\ () corresponds to 7y (2k),

But in the Cauchy identity WSL(N)

to my R,

When \ = (N*), A’ = (k%) and the answer turns

out to be the dimension of this WS,L(%).

corresponds

We used the correspondence to transfer
the computation from GL(/V) to GL(2k).

Similarly, moments for classical groups can be
expressed in terms of characters of other groups
parametrized by rectangular partitions. Thus
a result of Keating and Snaith can be written:

/ Hdet —xjg9)dg =
Sp(2N)

)Nxz%%;“)(wﬂ L)

k
H T H (1 —aiial)

ee{x1} j=1 i<

(z1...7

18



Ratios

Let =1,k consist of permutations o € Sk, such that

o(1) < <a(L), o(L+1)<-<o(lL+K).

Theorem. (Conrey, Farmer and Zirnbauer) If
N2> Q,R and |v4|, 6] <1 we have

/ [/, det(IT+a; " -g~1)- Hf L det (I+apyk-9g)
U(N) HQ det (I —vq-g) [1,2, det (I —d,-g~")

N
S T eotones)™ >

O'E_.LK]C 1

H? 1 Hl 1 (1+7qaa(l)) Hr 1 Hk; 1 <1+5TO‘J(L—|—I<:))
[Tiey Tliey (T—ag ek +r) TTE.; TIE.; (1—746r)

dg=

e According to CFZ the assumption that N is large
can be eliminated.

e Proof will depend on the generalized Cauchy
identity involving Littlewood-Schur func-
tions.

e These were studied by Littlewood and also by
Berele and Regev, who apparently rediscovered
them.

19



Generalized Cauchy identity
Define the Littlewood-Schur polynomial

LS)\(ﬂﬁl, Lk Y1, 000, yl) —
A

C,uljslu(ajl7 e xk)sy,(ylj e yl)
v

The ci‘w are the Littlewood-Richardson coeflicients.
Theorem. (Berele and Regev)

Z LS)\(ala "y Qs /Bla ) Bn) LS)\(’Yla " Vs 51) ) 5t) —
A

[T —am) ' I] 0 +a)

We will assume it now and discuss the proof later.

Laplace expansion
Let (a;;) be (L+ K) x (L+ K). Then det(a;;) =

ai,0(1) *°° Q1,0(L)
Z sgn (o) : : X
CEEL K aAL,o(1) " AL,o(L)
ArL+1,0(L+1) ' AL+K,o(L+K) Proof

easy.

Ar+K,o(L+1) " OL+K,o(L+K)

20



Laplace expansion for LS,

Proposition. Suppose \ of length < K such that A\f, >
Ar11+Q, let A\=1U p with

T:()\l,...,)\L)a P:()\L—H;’”:)\L—FK)'
Then

LSx(0a, - QL4 K5 V15 o0y VQ) =

Z H (o) — Qo(L+k) "

c€ZL, k 1<ILL
1<k<K

LS: 4 (ke (Qo(1), s Qo(L); V15 -5 VQ)
Lsp(ag(L-{-l), Tty aa(L—l—K); S2TEREY 7@)

Proof. Induction on (). If ) =0, this says

sa(ar, LK) =

Z H (o) — Qo(L+k) "

c€ZL, Kk 1<I<L
1<k<K

Sr (KLY Qo (1), Qo(L)) Sp(Qa(L41): 5 Qo (L1 K) ).
This is proved by applying the Laplace expansion to the
determinant definition of the Schur function. For ¢) > 0

one adds the ~; one at a time using Pieri’s formula
(i.e. the degenerate Littlewood-Richardson rule). ]

21



Proof (sketch) of unitary CFZ

By the dual Cauchy identity,

K
Hdet T+a; ' _1)-H det (I +arik-9)
=1 k=1
L K+L
= det (g)- H - H det (I + axg)
=1
L

= det (g H _NZ sx(at, - ax+n)xa(9)

[=1

On the other hand by the Cauchy identity

Q
[T det (I —v49) 7" = su(1,7Q) xul9)

g=1 i}
and

H det (I—5r-g_1)_1zz $u(01,,0R) Xu(9)-

r=1 v

By Schur orthogonality

/ [, det(I+a; " -9~ Y I, det(1+aL+k-g)d B
U(N) HqQ:1 det (I — 4" 9) Hﬁ:1 det (I —6,-g~1)

g
Z <X>\’X,LL7 det” & Xz/>

Y%

L
H CVZ_NS)\(CVM T OzL—l—K)SN(/yl? T ’YQ)SI/((Sla T 5R)
=1
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We rewrite this as
L

al_N Z Ci/ 8)\(0517' aL—I—K) (717"'77@)51/(517"'75R):
A, U,V

H Ozl_NZ LSs(v1y -0y YQ; A1y oy L+ K)Sy(01, -+, OR) =

[=1

L
] o™ LSolar,.sanski, - 1Q)su(01, -+, 0r),
=1 v

where 7 = v + (L") and v = v’/ = N* U v'. Using the
Laplace expansion for LSy:

LSp(at, o ant k3715 7Q) =

Z H (Ao = Qo(L+k))

c€ZL, k 1<ILL

1<k<K
X LS< N4+ K L>(a0' 1)s """ Qo (L) V1 7/}/@)
x LS, (Ozg (L+1)s" a(L+K)571,---a’YQ)-

Substituting this, using generalized Cauchy identity to
evaluate the sum over v, and Littlewood’s formula

k m
LS<<z+m)k>($1,---,wk;y1,---,yz)=< 11 -rz) [ @i+wy)

i=1 1<i<k
1<5<!

gives E H L+k arp k)N x

oc€E=L Kk k=1

H? 1 Hl 1 (1+7qao—(l)) H’r‘ 1 Hk ) (1+6ra6(L4k))
Hk:l Hl:1 ( a(l)aa(K—I—k)) Hr 1 H (1_'7115 )
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Remarks on the proof

e There may be more than one way to proceed
once we have an adequate set of tools.

e The tools, mainly the generalized Cauchy iden-
tity, Laplace expansion and Littlewood’s identity
are themselves of considerable interest.

We will concentrate on ideas around the generalized
Cauchy identity and Laplace expansion.

U(p+ q) — U(p) X U(q) branching

As before, x) = character of m), A\ a dominant weight.
We assume A is a partition, so ) is a polynomial rep’n.

Theorem. (i) We have

Xz(/p+Q)|U(p)><U((J)( - gz) - Z CKMXA(gl)Xu(92>a

A, p
+ v
7Tz(/p Q)( o g2> = @ AuTA(91) ®Tu(g2).
A,
(1i) Let x1,---,x, and y1,---, Yy, be two sets of variables.

S,\(Cl?lr“,il?p,yla'“ayq) —

Ci\wsﬁb(xlv T xp)s,,(yl, B yQ)°
v

The two statements are equivalent. (Take x;, y; to be
eigenvalues of g; and go.)
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Proof of unitary branching

In the context of the unitary groups the Littlewood-
Richardson rules occur in 2 distinct ways:

Clebsch-Gordan coef: ci‘w is the multiplicity of

7y in 7, @ m, reps of U(N) or GL(N, C).

Unitary branching rule: ci‘w is the multiplicity

GL(p) GL(p+q)

of 7, & WSL(Q) in the restriction of m, .

The See-Saw:

Up+q) U(n) x U(n)

U(p) x U(q) U(n)
Vertical lines are inclusions

Diagonal lines are correspondences

Let w = action of U(p + ¢q), U(n) on symmetric
algebra of Mat(,44)n(C) (left, right translation)

W=, 7T>\U(p+Q) ®7T>\U(N)_

Alternatively we have action w of U(p) x U(q)
and U(n) x U(n) on same symmetric algebra.

25



Unitary branching, continued

The representation w is the action of U((p+ g)n) on the
symmetric algebra on Mat(,4)x»(C). Both dual pairs
can be embedded

U(p+q) xU(n)

(U(p) x U(q))
X

(U(n) xU(n))

The actions are as follows. Let

X
X = < X; ) S Mat(p_|_q)><n((]j), X1 € Matpxn((lj),

e Action of U(p+ q) is by left multiplication.

e U(n) x U(n) is by right multiplication on X;
and Xo individually.

Ulp+q) U(n) x U(n)

<

Ulp) x U(q) U(n)

e 'The unitary branching rule now follows ...
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See-Saw

Let w be a representation of €. Let G; C (), and Hy be
its centralizer. Assume

w|G1XH2:@ 7‘-1(1) ®0-i(2)

i€l
where ng) and 052) are irreducible rep’s of G; and Ho,
and 7T,§1) > 05-2) is the graph of a correspondence.

Let H{ C G1. The centralizer G5 of H; contains Ho.
G Go

H, Hs
Assume w |, x g, is also a correspondence.

w|Hle2:@ 0§1)®7r§-2).
jEJ

Lemma 2. Assume the branching rules
W,L(l)zz cijagl), W§2):Z djiO',L(Q) (3)
jEJ icl
Then the Cij — d’LJ

(1) o (2)

Proof. Both ¢;; and d;; = multiplicity of o; o;”’ in

w as H; x Hy modules. []
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Proof of generalized Cauchy

Recall that the involution ¢ “roughly” interchanges the
two generating functions:

o0 N
Z t*hy(aq, -, an) = H (1—ta;)~ L
t=0 j=1

—

(1 —|—tij).

oo
Z tkek(&l, Y OZN) —
t=0

Start with Cauchy identity, apply unitary branching:
IT a—em 1H (T—a; ) ] Q=870 ] O —8,6)"1 =
ik gk gl

Z Sk(ala "ty Qo 517 ) 671)8)\(717 Vs 517 T 5t) —

A
Z Z Ci\WSN(Oq? T O"m)sl/(ﬁla "y Bn)

Aou,v

Z CJTSU Y1, - 778)87'(517"'750‘

=1

Now apply ¢ in variables £ and 9:

H 1 — aye) 1H (1 + aidy) H L+ Bve) [ (1 =860 =
7,1l
Z LS al?"'a m7Bla"'aﬂn)LS)\<71a"'a7375la"'a5t)'

Thus we obtain the Generalized Cauchy identity.

28



Hopf algebra structure for A

The Generalized Cauchy identity is equivalent to an
important fact. The ring A is a graded algebra.

A= @ A, A = gen. characters of Sk.
k

The multiplication (induction) is a bilinear map A —
A that induces a homomorphism A ® A — A. In
degree k this is a map

P A@A— A
p+q=k

On A, X A, this is induction of chars S, X S, — S,4,.
There is a dual operation, namely restriction of chars
Sptq—>Sp X Sg. This gives a homomorphism of graded
rings A — A ® A called comultiplication.

Theorem. (Geissinger) The two operations of multi-
plication and comultiplication make A a Hopf algebra.

This means that comultiplication is a homomor-
phism of graded algebras, or (equivalently) that multi-
plication is a homomorphism of graded coalgebras.

e The Hopf algebra structure was popularized by
Zelevinsky.

e We will show that the theorem is equivalent to
the Generalized Cauchy identity!
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The Hopf axiom

Geissinger’s theorem boils down to the commutativity of
the following diagram:

ApA—OM ) o ng Ao At2T8 L oaoAeA

m m@m
A m - A®A
m — multiplication, m™* = comult., T(rRy)=y Q.

e Start with a character of in A, ® A, and push it
forward to A, ® Ag, where p+qg=r+s==% .

e Thus we are inducing a character from S, x .S, to
Sk, then restricting to S, x S,.

Mackey theory

If G D Hi, Hy (finite groups) there are two ways we can
get from characters xy of H; to characters of H,. We
can

Induce then restrict or restrict then induce

And these are the same. More exactly

Resp,Ind?,(x)= €&  IndiEResu-("x)
yEH>\G/H

where HY = Hy N vH1y~ ! and "x(h) = x(y 'hy). For
symmetric groups this gives the Hopf axiom.
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Hopf Axiom = Generalized Cauchy

The Hopf axiom reduces to the formula
AN o T MU v
Z CurCor = Z ConCopeCpeCymns (4)
A ©,m

since if we apply m* o m to s, ® s,, the coeflicient of
Sy ® s, is the left side, (m@m)o(1®7® 1) o (m*®m*)
gives the right side.

To deduce (4) from the generalized Cauchy identity
we note that (in obvious notation) the right side of

[T (=) [T 0+t [T 0+ B [T (1= 8500 " =

i,k i,l ik gl

Z LS)\(aD Uy Qg /817 ) /Bn)LS)\(’Yla Vs 517 Tt 575)
A

1S

R ()50 B)hrsa(7)57/(0)
A

while the left side is

> sel@)se(V)syr(B)syr(8)se(a)se(8)sy(8)sn(v)
= Y huclese(@)se(@)si(B)sy(8)50(7)s-(5)
— Z Lpncwgc@gcwnsu(a)SVI(B)CUTSG(V s+1(0).

Comparing, we obtain the result.

31



