Chapter 1: Commutators and 3-Cycles

Our aim in these notes is to use Rubik’s magic cube to give insight into concepts from
group theory. We do not assume any knowledge of group theory. We hope that what we
have to say will be of interest to readers either with or without a group theory background,
and to readers who are novices or experienced cubists alike.

In this chapter we introduce two classes of useful operations, the corner and edge
3-cycles. These are sufficient to solve the cube, though in this chapter we will not give
an algorithm for solving the cube. Rather we will examine one example each of these two
classes, with a particular question in mind. Each of these two particular operations is
surprising because it only affects 3 pieces, in one case 3 corners, and in the other case 3
edges. Such a process is useful because, as one solves the cube one arrives at positions
where most but not all of the pieces are in the right position. To finish the puzzle, one
needs moves that only affect a few pieces, so that one may manipulate the few that are
misplaced without disturbing the ones which are already correctly positioned.

But why is it that these particular operations work? Why does each of them move 3
pieces and none others? It is a minor miracle that this can be accomplished with eight or
ten turns of the cube. We will give an explanation for this phenomenon by showing that
the two moves in question are commutators.

Figure 1. Top and Bottom views of the solved cube.

One thing Rubik has always insisted on from the manufacturers is a coloring scheme
is followed to this day. Red is opposite orange, blue opposite green and yellow opposite
white. Your cube should look like Figure 1, though it might be a mirror image.

Figure 1 shows the whole cube in two views. The cube is viewed from the top in the
left figure, and from the bottom in the right figure.
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It is also useful to give a single “sterographic” image of the cube showing most of the
cube in a single view (Figure 2). Everything except the bottom (green) face is visible.

Figure 2. Stereographic map of the solved cube.

Following cube pioneer David Singmaster we label the six sides of the cube “up,”
“down,” “left,” “right,” “front,” “back,” and “down,” with the corresponding abbrievi-
ations U (blue in Figure 1), D (green), L (orange), R (red), F' (white) and B (yellow).
The terms “up” and “down” are used instead of “top” and “bottom” since the letter B is
already taken.

Singmaster’s notion extends to operations on the cube. If X is one of the faces of the
cube, then X denotes the operation of rotating the X face through an angle of 5 = 90° in
the clockwise direction, while X! denotes the operation of rotating the X face through
an angle of /2 in the counterclockwise direction. Thus, starting with the solved cube in
Figure 1, after R~! the cube looks as in Figure 3. If g is any operation of the cube we’ll
denote by g™ the operation g done n times, and 1 will denote the operation which doesn’t
change anything, so if X is the rotation of a face, X* =1 and X3 = X 1.

Figure 3. After R~! is applied to a solved cube.
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We can concatenate operations of the cube. Thus if g and h are operations of the
cube, then gh is the operation consisting of first doing g, then doing h. We think of this
as a sort of multiplication, making the set of operations of the cube into a mathematical
object, known as a group. Note the order in which we do the operations: we proceed from
left to right.

If g is an operation of the cube, then ¢g~! denotes the operation which undoes what-
ever g does. This is standard mathematical notation. The alternative notation ¢~! was
introduced by Singmaster for brevity. It is often used in discussing the cube, but in other
applications of group theory, it is not a standard notation. We will also denote by 1 the

group element which does nothing. The inverse g~—! is therefore characterized by the rule
(1) 99 =g"'g=1
The following fact is basic:

(2) (gh)"' =h7'g™!

To see that this is true, multiply gh by h~1g~l. We get ghh~'g~! = gg~! = 1. This
means that A~1¢g~! undoes what gh does, and so it is the inverse of gh.

If g and h are given then ghg~! is called the conjugate of h by g. Conjugation, the
process which takes h into ghg~! is a magical operation which we’ll see a lot of. We note
a couple of its important properties. We have:

(3) (ghg™") ™" =gh™h™"
because using (2), (ghg™!)"! = (¢71)"th~lg~t and (g71)~! = g. Also
(4) g(hih2)g™" = (gh1g™")(ghag™)

because on the right side, the g~'g cancel.
Try the operation FRF~'LFR~'F~1L~!. Starting from the solved cube in Figure 1,
the configuration in Figure 4 results.

Figure 4. The corner 3-cycle FRF-LFR='F~'L~1.

3



Notice that only three pieces are out of place, namely the three corner pieces in the
upper back left, upper front right and the upper front left positions. These are permuted
cyclicly. This operation is therefore called a corner 3-cycle.

Let us try to understand why FRF-'LFR~'F~1L~1! has such a simple effect. Why
does it only affect three pieces? After all, if you apply eight random rotations, they will
probably leave the cube looking very scrambled. What’s so special about this particular
sequence? It turns out this question has a nice answer.

If g and h are two operations of the cube, denote [g,h] = ghg='h~!. This is called
the commutator of g and h. The reason for this term is that

(5) [g,h] =1 if and only if gh = hg.

To prove this, assume [g,h] = 1. Multiplying this equation on the right by hg we get
ghg~*h~'hg = hg, and ghg~*h~*hg = ghg~'g = gh so gh = hg. You can check that this
reasoning is reversible.

We say g and h commute if gh = hg. So (5) says that the commutator of g and h is
trivial if and only if g and h commute with each other.

If g is an operation on the cube, let the support of g, denoted supp(g), be the set
of pieces which are changed by g. We note that if two operations g and h have disjoint
support—that is, if supp(g) N supp(h) is the empty set—then g and h commute. (This is
obvious!) For example L and R have disjoint supports, namely, the support of L consists
of the pieces on the left side of the cube, and the support of R consists of the pieces on
the right, and there is no overlap between these two sets. Therefore LR = RL and so
[L,R] = 1.

Now if g and h are two operations whose supports have only a small amount of overlap,
then g and h will almost commute. This means that [g, h] will be an operation which affects
only a few pieces. Yet it will not be the identity. Consider g = FRF~!, h = L. The effect
of g is shown in Figure 5.

Figure 5. The effect of FRF~!.
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Of course h = L only affects the nine pieces on the left, and of these, Figure 5 shows
that ¢ = FRF~! only affects a single piece, the upper front left corner. Since there is little
overlap between the supports of g and h these operations almost commute, and so their
commutator is almost trivial, that is, [g,h] = FRF'LFR™'F~1L™! should only affect a
small number of pieces. In fact, it only affects three, as the following result shows.

Proposition 1. Suppose that supp(g) Nsupp(h) consists of a single piece. Then [g, h] is
a 3-cycle.

We won’t give a formal proof of this until the next chapter. For the time being the
heuristic arguments we’ve given will suffice.

Let X,, denote the middle layer move that rotates just the middle layer between the
X and Y faces clockwise (looking at X face) in an angle of 5 = 90°. (See Figure 6.)

T

Figure 6. Left: initial state. Right: after the middle layer move Uy,

In addition to the corner 3-cycles, edge 3-cycles are also in the cubist’s repertoire. For
example, consider LF1L=1F-1LFL~1F,,. Figure 7 shows the result of this edge 3-cycle.
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Figure 7. The edge 3-cycle LF 'L 'F_ LFL 'F,,.

This is the commutator [LF~'L~ F_']. Here LF~'L™! has the effect shown in
Figure 8.

Figure 8. The effect of LF~1L™1,
The support of F.;! consists of the middle slice between the front and back rows, and

of these, only the piece in the upper left edge is affected by LF~'L~!, so Proposition 1
again implies that only three elements are affected by [LF~1L~1 F_1].

Not every edge 3-cycle can be so easily neatly as this one. Try
RBLFUF'L7'B7'R™U!

(Figure 9).



Figure 9. The effect of RBLFUF L !B 1R7U~!

This pleasant and easily remembered operation is a commutator, [RBLF,T]. The
fact that it is an edge 3-cycle does not follow simply from Proposition 1. Still the ideas
of this section are definitely relevant to understanding how this operation works. (Think
carefully about the effect of RBLF on the top face.)

We note that when the cube is manipulated using only the motions U, D, L, R, F
and B, the center pieces rotate but do not otherwise move. If you apply one of these
motions the center pieces turn but don’t go anywhere. So even after applying these many
times, although the cube looks very scrambled the centers are in their standard locations
(Figure 10).

Figure 10. When the cube is scrambled, the center pieces do not move!

This fact, that the center pieces never move, is the key to the mechanism of the cube,
and you will see what I mean if you take one apart. (To disassemble the cube, rotate
one face by 7 = 45°, then pry out one of the four middle pieces. The cube will then
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come apart. It can be reassembled by reversing the process.) Of course you don’t actually
need to know anything about the actual mechanism to see that the center pieces never
move—this is a consequence of the fact that the rotation of any face doesn’t move any
center piece, except to turn it.

Because of this property we may consider two different realizations of the group of the
cube. In the smaller realization, which we denote as &, we always insist that the center

pieces have the same spatial orientation. The elements of the group consist of the motions
of the cube generated by U, D, L, R, F and B.

The extended group € of the cube consists of all motions of the cube, including rota-
tions which move the center pieces. In addition to &, contains the group R of rotations of
the entire cube. Elements of R do not affect the pattern of the cube, only its orientation.
The reason these motions don’t essentially affect anything is that everything in the cube
moves together. For example, if X is a face, let X. € R denote the rotation of the entire
cube by an angle of T = 90° clockwise around the X face (Figure 11).

Returning to the extended group €, if g is in €, then there is a rotation r € R which

restores the locations of the locations of the faces to their original positions. Then gr € &.
For example if g = X,,, we should take r = X 1.

T

Figure 11. Left: initial state. Right: after the rotation U,

We see that if g € €, we may apply an element r of R, which, being a rotation of the
whole cube does not essentially affect the condition of the cube, and transform g into an
element rg of . As an example, if g = F,, we can take r = F ! and we find (Figure 12)
that

(6) FoF ' =F'B, Fu=F 'BF.=F., F'B,

so gr = F~1B € &. Because of this fact, there is nothing we can do in the extended group
¢ that we cannot do in & itself.



F, F1
7~ N\ 7~ N\
\ /

F~'B

Figure 12. Showing that F,,F, ! = F~1B

For this reason it might seem that there is no real advantage to considering the
extended group. Nevertheless sometimes it is better to work in the extended group, and
as evidence of this claim, we will now return to the edge 3-cycle LF*L='F_'LFL'F,,

in Figure 7. First we consider how to write this without making use of the extended group
element Fy,.

F! LFL! F,
7~ N\ 7~ N\ 7~ N\
UFU-1

Figure 13. Applying F, !, then LFL~! and F, gives the same result as UFU 1.
Using (6) we have
LF'L'FALFL 'Fy = LF 'L 'FB'F'LFL~'F.F'B.
Now (Figure 13)

(7) FYLFL YF,=UFU "
Using this, our edge 3-cycle becomes
(8) LF 'L 'FB 'UFU'BF!
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The last expression involves only operations in the group &.

Although (8) rewrites the edge three cycle in a form only involving elements of the
group &, avoiding the element F},, of the extended group, we prefer the original expres-
sion (Figure 7) because it exhibits the element as a commutator, and Theorem 1 is not
applicable.

Moreover, (Figure 7) is a more ergonomic form of the operation. By this we mean that
from the point of view of someone who is trying to solve the cube in practice, (Figure 7)
is easier both to remember and to perform in practice.

Finally, our mathematical universe will be richer if we work in the extended group €.
Later we will see that the group € is a semidirect product of the subgroups ® and R, and
this will give us our first example of this important construction.

Exercise. Invent a few more corner and edge 3-cycles. Make a table of the processes you
discover.
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Chapter 2: The Symmetric Group

In Chapter 1 we made use of group theory concepts without actually defining the term
group. A group is a set G with a multiplication law sending any pair of elements to their
product = - y = xy. The group law must be associative:

(zy)z = z(yz)

and there must be a distinguished unit element 1 € G such that

If the group G satisfies the commutative law ab = ba, it is called commutative or
abelian. For abelian groups, we sometimes use additive notation, writing + for the group
law and 0 for the identity element. Thus for example Z is a group with addition as the
group law.

If N is the number of elements in a group, we call N the order of the group. (It may
be infinite.)

If G and H are groups, a group homomorphism is a map ¢ : G — H such that
¢(z122) = $(21)9(22), 1, T2 € G.

A subgroup of a group G is a subset K C G containing 1 which is closed under
multiplication and inverses. It inherits a group structure from G. If G is a group it has
two obvious subgroups, namely G itself and {1}. (We will sometimes denote the latter
subgroup as just 1.)

If $ : G — H is a homomorphism, let K = {g € G|¢(g) = 1}. It is automatically a
subgroup, as you may easily check. It is called the kernel of ¢, denoted ker(¢).

Proposition 2. Let ¢ : G — H be a homomorphism. Then ¢ is injective if and only if
the kernel K of ¢ is trivial, that is, if K = 1.

Proof. If x € K and = # 1 then ¢(z) = ¢(1) so ¢ is not injective. On the other hand
suppose that K = {1} and ¢(x) = ¢(y). Then ¢(zy~!) = ¢(z)p(y)"! = 1s0 2y~ ! € K,
so zy~' =1, so £ = y. Therefore ¢ is injective. M

Homomorphisms are abundant. Recognizing and using them is important. Let us give
an example. If g € G is a fixed element of a group G, define ¢ : G — G by ¢(x) = grg~'.
Then (4) implies that ¢ is a homomorphism.

As another example, let & be the group of the Rubik’s cube as in Chapter 1, and let
®- be the group of the smaller 2 x 2 cube. The operations U, D, R, L, F and B all make
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sense for the 2 x 2 cube. We may map & — &, by copying each motion of the 3 x 3 cube
with the corresponding motion of the 2 x 2 cube. This map is a homomorphism.

If X and Y are sets, then a map f : X — Y is called injective if for all ;1,29 € X,
if f(z1) = f(z2) then 1 = x5 (21,22 € X). It is called surjective if every element in y is
f(x) for some z € X. If f is both injective and surjective, it is called bijective. Then for
each y € Y there is a unique x € X such that f(x) = y and we denote f~1(y) = z. This
is the inverse map f~':Y — X.

If f: X —>Yandg:Y — Z are maps, then go f : X — Z denotes the composition
map, (g o f)(z) = g(f(z)). The composition is also denoted as simply gf. If f and g are
bijections then so is g o f and

(gof)~t=f"tog

The identity map Ix : X — X is the map 1x(z) =z. If f: X — Y is a bijection then
the defining property of f=! : Y — X may be expressed by the identities f=' o f = 1,
f o f_l = 1y.

An important group for us is the symmetric group S,. Let N = {1,2,--- ,n}. (Ac-
tually N can be any set with n elements.) The set S,, consists of all bijective mappings
N — N. Elements of S,, are called permutations. The group law is composition of map-
pings. Thusif o, 7 € S, let o7 : N — N is the composition cor. Since (o7)(n) = o (7(n)),
7 is applied first, so multiplication of permutations, unlike the multiplication in the group
& of the Rubik’s cube, proceeds from right to left.

Proposition 3. S, is a group with n! elements.

Proof. We may count these bijections as follows. There are n choices for o(1). Once o (1)
is chosen, since o is supposed to be bijective, o(2) cannot be o (1), so there are only n — 1
choices for o(2). Then there are n — 2 choices for ¢(3), and so on.

We introduce two notations for elements of the symmetric group. Let us consider
o € Sg defined by
o()=4  o2)=5  B3)=6

s4) =3 o(65)=2  o6) =1

One notation writes this by placing o(2) below 7, as follows:

123456
(%) J_(456321>'
The other notation, called cycle notation, writes this as
(10) o = (1436)(25).

Here (s1 82 -« - s) denotes the permutation which sends s; — s;11 and s — s1. Such a
permutation is called a k-cycle. A 2-cycle is also called a transposition. We could also
write (10) as (52)(3614).

Notice that the two cycles in the second representation (10), namely (1436) and (25)
affect disjoint sets of letters. We call the support supp(o) the set of letters which are
moved. The support of (1437) is {1, 3,4, 7}, and the support of (25) is {2,5}. These sets
are disjoint, so we say the cycles (1436) and (25) are disjoint. Clearly this implies that
they commute.
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Proposition 4. Any permutation can be written as a product of disjoint cycles.

Proof. This proposition is really obvious if one understands what it means. See what
was done with the permutation (9) above. It is clear that this can be done for any
permutation. Il

As an example, let us compute the product (1562)(2673). By “compute,” we mean we
wish to express this product as a product of disjoint cycles. (We will see that it is a single
5-cycle.) The cycles (1562) and (2673) are not disjoint because their supports have 2 and
6 in common. Remembering that we multiply from right to left, 2 — 6 — 2 is unchanged
by (1562)(2673), while1 -1 —5,,5—-5—-6,6 >7—>7,7—>3—>3and 3 -2 — 1.
Thus

(11) (1562)(2673) = (15673)(2) = (15673).

(There is no need to include the 1-cycle (2) since it doesn’t do anything; it is just another
notation for the identity element.)

The cube has 26 pieces, of which 6 are the centers, and do not move. So actually there
are 20 pieces which get permuted when the cube is worked, 8 corners and 12 edges. We
label these {1,2,3,---,20} in some way. After an operation M of the cube a permutation
o of the 20 pieces results. We define a map ¢cupe : & — Sog by

(12) GPeube(M) = 0.

Similarly, using just the corners, we get a homomorphism ¢corper : & — Sg, or using just
the edges we get a homomorphism ¢egge : & — S12.

At first it may seem surprising that this works, since in & multiplication proceeds
from left to right while in S,, multiplication proceeds from right to left. Specifically, to
show that ¢cupe 18 & homomorphism, we need to show that

(13) (bcube(Ml MZ) = ¢cube(M1) chube(MZ)-

Now on the left side M; My means performing first M7, then M,, while on the right side,
Geube (M1) Peube(M2) means first performing deyve(Mz), then deube(M7). This reversal is
at first vexing.

We will postpone the proof that (13) always works, but accept it for the time being.
But let us carefully work out an example. We will work with ¢¢orner for simplicity, and
show that ¢corner (RF) - ¢corner (R)¢corner(F)-

We begin by computing ¢corner (F). Label the corners as in Figure 14 (left diagram).
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8 8
5 5
7 3
LA, LA,
3 2
2 0

Figure 14. Left: initial configuration of the corners. Right: after F'

The left diagram gives a standard labelling of the corners. After rotating the front
face (spanning 2, 3, 7 and 6) clockwise, the labelling on the right of Figure 14 results. The
permutation @eorner (F) of the corners consists of the 4-cycle (2673). For 2 gets replaced by
6, 6 by 7, 7 by 3 and 3 by 2, while 1, 4, 5 and 8 are untouched. Thus ¢corner(F') = (2673).

8 8
5 6
7 7
\ 1 \ 5
3 3
2 1

Figure 15. Left: initial configuration of the corners. Right: after R.

Similarly we compute @eorner(R) = (1562). This computation is shown in Figure 15.
The initial configuration is on the left, and after R we get the configuration on the right.
1 has been replaced by 5, 5 by 6, 6 by 2 and 2 by 1.
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2 2

Figure 16. Left: Initial. Middle: After R. Right: After R then F'.

Now let us confirm that

Qscorner (RF) = ¢c0rner(R) ¢corner (F)

We've already found that ¢corner(F) = (2673) and ¢corner(R) = (1562). In Figure 16, we
compute the effect of RF'. The initial configuration is at left. After R, the middle diagram
results. Then after F', the final diagram results. Comparing this result to the first diagram,
we see that

(bcorner(RF) = (15673)

On the other hand

beorner (F) Peorner (R) = (1562)(2673).

Now (1562)(2673) = (15673) by (11). This confirms (13) for this example.

The permutation ¢cube(M) does not capture exactly what a cube operation M does.
This is because the pieces of the cube are not only changed in their position but also in
their orientation. For example, try

RUT'R'W_ 'RUR 'UR*L'ULU2L'U'LU2R>.
The position in Figure 17 results, in which all pieces are in their original positions, but

two edge pieces are flipped.
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Figure 17. RUT'R'U 'RUR™'U,R?L™'ULU L~ 'U"'LU2 R?.

It is interesting to note that there is no move which flips a single edge piece. In other
words, the position in the left diagram in Figure 21 cannot be achieved.

A proof of this will be given in the next Chapter. But let us consider briefly how
useful this fact is to someone who is trying to solve the cube. Suppose that one has solved
the cube except for three edge pieces. An edge 3-cycle will then finish the puzzle.

But which precise operation? Suppose that g is an edge 3-cycle such that ¢edge(9)
is the right permutation. Then applying g will restore the edges to the correct locations,
but will they have the right orientations? One choice of g will make this true. Luckily in
selecting g we only have to worry about the orientations of two of the three edges, since if
two are correctly positions, the third must be also. The reason for this is the fact, which
we will prove in Chapter 3, that no operation in & leaves all the pieces in position but flips
a single edge (Figure 21, left).

Now try RURTIURU?R='L='U~-'LU~'L~1U?L. Two corner pieces twist (in oppo-
site directions). See Figure 18. A variation is shown in Figure 19.
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Figure 18. RURUWRU?*R'L-U-LUL71UZL.

These examples show are cube operations which do not move any pieces, only change
their orientation. If M is such an operation, then ¢eupe(M) = 1.

Figure 19. BRUR'URU?R LU 'LU 'L 'U%’LB~.
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Chapter 3: The Alternating Group

The symmetric group S, has an important subgroup known as the alternating group

A,. If n > 1, then A,, contains half the permutations in S,,, that is, % - n! of them. These

2
permutations are called even, the others are called odd.

To prove that A,, exists, we construct a homomorphisme : S, — {£1}. Let 21,--- ,z,
be indeterminates. If o € S, and if p(x1,--- ,z,) is a polynomial, define
(14) (op)(w1, -+ %0) = P(To(1)s " s To(2))-

For example, if o = (12), applying o to z? + zox3 gives 23 + x173.

Proposition 5. If 0,7 € S, and p(z1,---,x,) is a polynomial, we have o(Tp) = (o7)p.

Proof. It is easy to make a mistake and “prove” incorrectly that o(7p) = (7o)p. We can
avoid this by carefully introducing some auxiliary variables y; = z,(;)- By (14),

O-(Tp)(xla T 7xn) = (Tp)(xa(l)a T 7'7:0'n) = (Tp)(yla T 7yn) =
p(y7(1)7 T 7y'r(n)) = p(xa'r(l)7 Tt 7‘TJT(n))'

This completes the proof.
Apply o to

Az, ,zy) = H(:Ez —z;).

i<j
We note that o turns each z; —z; into another z; —x;, or its negative. Therefore cA = £A.
We define ¢(o) to be this sign, that is, €(o) is defined by the equation

oA = ¢e(o)A.
For example, if n = 3 then applying (12) to
A= (.’171 — 5172)(5171 — $3)(.’132 - $3)

gives
(1132 — .’13‘1)(.’E2 — .’173)(.’171 — .’173) = —A.

Thus €((12)) = —1. On the other hand, applying (123) to A gives
(372 — 2133)(2132 —_ .73'1)(33'3 — .731) = A
since there are two sign changes. Therefore €((123)) = 1.
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Proposition 6. The map € : S, — {£1} is a homomorphism.

Proof. Applying 7 € S, to A gives ¢(7)A. Now applying o gives e(o)e(7)A. On the
other hand we could get the same result by applying o7 in a single step, that is,

e(o)e(T)A =€e(oT) A.
Therefore
e(o)e(t) = €(oT),
so €: S, — {£1} is a homomorphism.
Now let A, = {o € Sple(o) = 1}.
Proposition 7. A,, is a subgroup of S, of order %n!.

Proof. As the kernel of a homomorphism, A,, is a subgroup. We fix an element 7 such
that e(7) = —1. For example, we may take 7 = (12). Then if o € S,,,

e(to) = €(1) (o) = —€(0).

So o € A, if and only if (o) = 1, if and only if ¢(70) = —1, if and only if o7 ¢ A,,. Thus
the map
o= TO

is a bijection from A,, to its complement in S,,. It follows that A,, comprises exactly half

the elements of S,,, that is, %n!. |

Proposition 8. If1 < p < g < n then the 2-cycle (pq) is odd.

Proof. Apply (pg) to A. We may identify the monomials z; — =; which get their signs
change. These are x, —z; with p <i < g, ; — x4 with p < ¢ < ¢, and x, — z4. There are
2(j—1)—1 of these. Since this is odd, A gets multiplied by —1. Therefore e((pq)) =—1. =

Proposition 9. A k-cycle (iyis - - -ix) is odd if and only if k is even.
Proof. We can factor
(192 -+ -ig) = (1192)(4203) - - (fp—10k)-
Applying € and using Proposition 8,
e((iria - ix)) = (-1)* .

So this is an odd permutation if and only if k¥ is even. 1

We may now identify the elements in A,,.
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Theorem 10. Ifo € S,,, then o is even if and only if there are an even number of cycles
of even length in its decomposition into a product of disjoint cycles.

Proof. Indeed write o = H§:1 0;, where the o; are disjoint cycles. (Actually the disjoint-
ness of the cycles is not really relevant.) Then e€(o) = [[€(o;). The o; for which €(o;) is
—1 are just those of even length, so for o to be an even permutation, there must be an
even number of these. 1

For example, when n = 3,
As = {1,(123), (132)}.
If n =4,
Ag = {1,(123),(132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23) }.
We may now prove that some cube arrangements are not possible.

Theorem 11. If M € & then ¢eupe(M) € Asg.

Proof. It is sufficient to check this for M = U, D, L, R, F, B since any M may be
written as a product of these. If M is one of these, then ¢¢ype(M) is a product of two
four-cycles, namely, an edge 4-cycle and a corner 4-cycle. Hence it is an even permutation
by Theorem 10. 1

We now see why the permutations constructed in Chapter 1 were 3-cycles and not
2-cycles. We started with 3-cycles because they are the simplest constructible operations.
We’d have started with 2-cycles (transpositions) if they were possible, but they are not.

Indeed ¢cube (M) cannot be a 2-cycle by Theorem 11. Of the cube arrangements in
Figure 20, the one on the left is impossible, since it corresponds to an odd permutation (a
corner transpositions). The one on the right corresponds to two transpositions, an even
permutation. This does not prove that it can be constructed, but as a matter of fact it
can be.

Figure 20. Left: an impossible configuration. Right: a possible one.
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Here are two more impossible configurations. In Figure 17 we saw an operation that
flips two edge pieces simultaneously. But it is not possible to flip a single edge piece as
in the left diagram in Figure 21. Also, in Figure 18, we saw an operation that twists two
corners simultaneously. But it is not possible to twist a single corner indepenedently as in
the second diagram in Figure 21.

Figure 21. Impossible configurations. Left: one edge flipped. Right: one corner twisted.

Proposition 15. The configuration in the left diagram in Figure 21 cannot be achieved.

Proof. We can’t use ¢egge : & — Si2, because the 12 edge pieces are not moved in
this diagram. However we may create a modified homomorphism geggetacelet : & — Saa
which does the job. Specifically, each edge piece can be thought of as a pair of edge
facelets, and the 24 edge facelets are permuted by the motions of the cube. If M € &
then dedgefacelet (M) C Agsq. Indeed, it is sufficient to check this when M = U, D, L,
R, F, B, and indeed, in which case dedgefacelet (M) consists of a pair of 4-cycles, an even
permutation. On the other hand the edge facelet permutation in the diagram in question
consists of a single transposition, an odd permutation, and this permutation is therefore
not ¢edgefacelet (M) for any Medé m

The impossibility of the configuration in the right diagram of Figure 21 must be proved
by a different method. We will do this in the next Chapter.
Finally, we return to the point raised in the first Chapter, in the theorem Proposition 1.
We prove now a related result for the symmetric group. If o € S,, define the support supp(o)
of o tobe z € X = {1,2,3,---,n} such that o(x) # x. Applying o~ ! to this inequality
shows that z # o~ 1(x) so
supp(c) = supp(o ).

Proposition 13. Let o, 7 € S,,. Then [o,7] € A,,.

Proof. Since €: S, — {£1} is a homomorphism,

€([o; 7]) = [e(0), e(7)].

On the right side, the commutator is computed in the abelian group {+1}, so €([o,7]) =1
and therefore [o,7] =1. W
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Proposition 14. Let o, T € S,,. Suppose that

supp (o) N supp(r) = {z}

consists of a single element. Then [o,T] is a 3-cycle.

Proof. First let us show that the support of [0, 7] is contained in the 3-element set
{z,0(z),7(x)}. Indeed, if z ¢ {z,0(z), 7(x)} let us show that z is fixed by [0, 7]. There
are three cases.

First suppose that z ¢ supp(o) and z ¢ supp(7). Neither o nor 7 (nor their inverses)
affects z so [0, 7](2) = 2.

Next suppose that z € supp(c) but z ¢ supp(7). Then 07 1(2) € supp(c) but 071(2) #
z. Since {z} = supp(c) Nsupp(7), this means that o=1(z) ¢ supp(7). Therefore

[0,7](2) = oto 17 (2) = 07107 (2) =007 (2) = 2.

The last case is that z ¢ supp(o) but z € supp(7). This is similar to the case just
done so we leave this case to the reader.

Now we know that at most 3 elements of X = {1,2,---n} are affected by [0, 7]. At
least one of them is, since it is easy to check that x € supp[o,7]. Now [0, 7] is in the
alternating group by Proposition 13. And any permutation which affects at most three
elements of X is either a 2-cycle or a 3-cycle. And [0, 7] can’t be a 2-cycle because it’s in
A,. So it’s a 3-cycle. W

This result partially explains the fact discussed in Section 1 to the effect that if the
support of two cube operations overlaps in exactly one piece, then their commutator is a
3-cycle.
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Chapter 4: Modular Arithmetic

A group, as we have seen, is an algebraic structure involving only one composition
law, which may be thought of as an addition, or sometimes a multiplication. A ring is an
algebraic structure involving both an addition and a multiplication. Suppose R is a set
with 4+ and x defined. As usual, z X y is often denoted just z -y or zy. Then R is a ring
if certain axioms are satisfied. With respect to addition, R must be an abelian group, so
it has a distinguished element 0. It has another distinguished element called 1 such that
l-z=z-1=x for all z € R, and the associative law (zy)z = z(yz) must be satisfied. We
also assume that 0-z = x -0 = 0 for all z, and the distributive laws z(y + 2) = zy + zz
and (z +y)z = vz + yz.

If the multiplication of R is commutative, that is, zy = yx for all z € R, then R is
called a commutative ring.

Note that R is not a group under multiplication, because inverses may not exist. In
fact, 0 does not have an inverse unless 1 = 0 and R consists of a single element. But if
the nonzero elements of R form a group under multiplication then R is called a division
ring. The most commonly encountered division rings are commutative, and a commutative
division ring is called a field.

The integers Z are a ring which is not a field. The rational numbers Q and complex
numbers C and the real numbers R are all fields. All of these rings are commutative. But
the n x n matrices over a ring R form a ring Mat,, (R) which is not commutative if n > 1.
The quaternions H are an example of a division ring which is not a field.

Let N be a fixed positive integer. The integers modulo N can be defined as follows.
As a set, Zny = {0,1,2,---N — 1}. We define the addition and multiplication in Zy as
follows. If a, b € Zx then a + b is the remainder on division by N of their usual sum in Z,
and ab is the remainder on division by N of their usual product in Z.

For example, in Z3 = {0, 1,2} the addition and multiplication are as in the following
table:

+H 0 1 2 x 01 2
0] 0 1 2 0l 0 0 O
11 1 2 0 11 0 1 2
21 2 0 1 210 2 1

This ring has all the usual properties of arithmetic, such as the additive and multi-
plicative associative laws, the distributive law a(b + ¢) = ab + ac and so forth. Similarly
there is a ring Z,, of integers modulo n for any n. Actually we will only need the additive
structure of Zs. But later we’ll use the integers modulo 5 in a similar proof, and we’ll use
both the additive and multiplicative structures.

The ring Z,, is a field if n is prime, but not otherwise.

Proposition 15. The configuration in the right diagram in Figure 21 cannot be achieved.
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Proof. Label the 24 corner facelets of the cube with numbers from Zs3 as follows. Each
of the 8 corner facelets of the up and down faces is labelled 0. The remaining 16 facelets
are labelled by the requirement that as one proceeds clockwise around the three facelets
in any corner piece, the numbers 0, 1 and 2 appear in sequence (Figure 23).

N N—
2 2 1 1
1] 0 0|2 I
1 2
1 2
/ \
3/ 1

Figure 23. Mod 3 labelling of the corner facelets. Hidden facelets labelled 0.

We note that in the initial configuration (Figure 23), the sum of the eight values on
any two opposite faces is zero (mod 3). We will show that as the cube is worked, that
property remains true. Let us look at a single face. For simplicity, we look at the top face
but the same reasoning would apply to any other.

\ /
\ /

C4 €1
\\b4 a4 ax bl//
//b3 as a9 bZ\\

C3 Ca

/ \

/ \

Figure 23. Facelets around a single face.

The crucial thing to observe is that

4 4 4
E bz = E a; = E C;.
=1 =1 =1

Indeed, modulo 3,

(15) by = a1+ 2, by =as +1, b3 = a3z + 2, by =a4+1,
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and since 1+ 2+ 2+ 1 = 0 modulo 3, we get 221:1 a; = Z?zl b;; the other equality is
proved the same way.

Now rotate the top face. The sum of the values of the facelets on the top and bottom
faces of course does not change. For the sum of the values of the facelets on the left and
right faces, the b facelets are replaced by the c facelets, so the sum of the values of the
facelets on the left and right faces is unchanged by (15). Similarly the sum of the values
on the front and back faces is unchanged.

Now the right diagram in Figure 21 cannot be achieved, because the sum of the values
on the top and bottom faces is 1, not 0. Il

Exercise. Give a proof of the impossibility of the left diagram in Figure 21 (Proposition 15)
different from the proof given in Chapter 3, based on ideas similar to those in the proof of
Proposition 15, but using arithmetic modulo 2.
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Chapter 5: Conjugation

The operation of conjugation is fundamental in group theory. We can get some in-
tuition about its nature by contemplating conjugacy in the symmetric groups and in the
group & of the Rubik’s cube.

To begin with, let g = RURT'URU?R-'L='U-'LU'L-'U?L. As we saw in Fig-
ure 18, this operation twists the upper top left front and back corners. Knowing this, if
h is any element of &, then hgh~! will twist some pair of corners. Which particular pair
depends of course on h. To see how this works, consider the example h = B. Then the
effect of hgh™! = BgB~! is shown in Figure 19. The top front left and top back right
corners are twisted.

'2EL.

Figure 24. How conjugation works.

Figure 24 shows the mechanism by which this is accomplished. The operation g will
twist two particular corners. Since instead of twisting the top back left corner we want
to twist the top back right corner, we preceed the operation g by the operation B, which
moves the corner we want to twist into the position where it will be twisted. And following
the operation g by B~! moves that piece back into its original position.

Now let us consider conjugation from a more abstract point of view. Let X be a set.
Let ~ be a relation on X, that is, for every x and y € X, the symbol z ~ y is either true
or false. Then ~ is an equivalence relation if it satisfies three axioms:

Reflexive. For all x € X, we have z ~ .

Symmetric. For all z,y € X, x ~ y if and only if y ~ z.

Transitive. For all z,y,z € X, if z ~y and y ~ z then x ~ z.

Proposition 16. Suppose that ~ is an equivalence relation on X. For x € X, define
c(xz) to be {y € Xy ~ z}. If z,y € X then either c(x) Nc(y) = {} (the empty set) or
c(z) = c(y).

The set c(z) is called the equivalence class of xz. Thus X is partitioned into disjoint
equivalence classes.
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Proof. If ¢(z) Nec(y) is nonempty, say z € c(z) Ne(y), then z ~ z and z ~ y, so  ~ y and
this implies ¢(z) = ¢(y). M

Let G be a group and z, y € G. We say that x and y are conjugate in G, and write

x ~ y if there exists a g € G such that gzg=! = 4.

Proposition 17. Conjugacy is an equivalence relation.

Proof. Reflexive: gzg~! = z if g = 1 so  ~ x. Symmetric: if z ~ y then y = gzg~?! for

some g, so x = g~ 'zg. Transitive: if z ~ y and y ~ z then y = gzg~' for some g and
z = hyh™'. Thus z = hgrg~'h™! = (hg)z(hg) "t so z ~z. M

If x € G then the equivalence class of x under the operation of conjugacy is called the
conjugacy class of x. We can describe the conjugacy classes in S,, very explicitly.
First let us work out an example, in S5. Let us conjugate x = (12)(34) by g = (12345).

gzg~t = (12345)(12)(34)(15432) = (23)(45).

This permutation has the same shape or cycle structure as the original permutation
(12)(34). By this we mean that the two permutations (12)(34) and (23)(45), in their
representations as products of disjoint cycles, have the same number of cycles of each
length—in this case, two cycles of length two, and no cycles of any other length.

If we consider more generally

c(12)(34)0™t, o €S,

first 071 sends o(1) and o(2) to 1 and 2, then (12)(34) interchanges them, then o sends
them back to o(2) and o(1). Similarly this permutation interchanges o(3) and o(4). So if
o(l)=a,0(2) =b, 0(3) =cand o(4) = d, then

(16) o(12)(34)0! = (ab)(cd).

We see that the cycles conjugate to (12)(34) are precisely the ones with the same cycle
structure, and this phenomenon is completely general.

Theorem 18. Two elements of S, are conjugate if and only if they have the same cycle
structure.

Proof. If you understood the proof of (16), this is obvious. Indeed, if g and h have the

same cycle structure, we can find a permutation o which takes the elements of each cycle

in g to a corresponding cycle of h, and in the same order. Then just as in (16) we have
-1

cgo—-.

We caution the reader that this fact fails in A,,. For example in S35, (123) and (132)
are conjugate, indeed (12)(123)(12)~! = (132). But Aj is commutative, so (123) and (132)
are not conjugate in Az, even though they are both even permutations.

As examples, here are the conjugacy classes in Ss:

{1}, {(12),(13),(23)},  {(123),(132)}.
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Here are the conjugacy classes in Sy:

{1}, {(123), (132), (124), (142), (134), (143), (234), (243)},

{(12)(34), (13)(23), (14)(23)}

{(1234), (1243), (1324), (1342), (1423), (1432)},

{(12), (13), (14), (23), (24), (34)}.

Now this same phenomenon should apply to the Rubik’s cube. If we conjugate a
corner three cycle, we should get another corner three cycle, and if we conjugate a corner
edge cycle, we should get another corner edge cycle. This is a fact of great practical utility
since it allows us to construct new operations from old ones. We consider an example.

Figure 25. An edge 3-cycle RUT'RU_RUR™'U,,.

As the reader of Chapter 1 will understand, three particular edge 3-cycles are
RU'RU_'RUR™ Uy, RUT'RU2RU?*R™ Uy, RU'RULRUR™'U !,

These are commutators [RU 1R~ UE] for various powers of k, and they work because
Um and RUR~! only affect one vertex in common.

For example the first of these operations is shown in Figure 25.

Now let’s use the conjugation principle to construct another different cube operation
which affects exactly the same three edges. We start with the operation in Figure 26.
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Figure 26. Another edge 3-cycle L 'ULUZL 'U1LU2.

Remember that we are looking for an edge 3-cycle affecting the front left, right and
top edges, like the one in Figure 25. The operation in Figure 26 has the right cycle type,
and it affects two out of three of the right edge pieces. If we conjugate it by R?, which
interchanges the right back edge for the right front edge, then we will get an edge three
cycle with exactly affecting the three desired pieces. This is just like (16). Indeed, this
operation is R2(L 'ULUZL 'U-1LU2)R? (since (R?)~! = R?), which has the effect in
Figure 27.

Figure 27. The conjugated edge 3-cycle R?(L"'ULU2L-'U-'LU2)R?.

Now, let g = RUT'RU'RUR™'U,, and h = R*(L"*ULU2L *U'LU2)R? be the
two 3-cycles in Figure 25 and Figure 27. We constructed these so that they would affect the
same three pieces, and as permutations they are inverses of each other. That is, ¢cube(9g)
and ¢cube(h) are inverses. However, as cube operations they are not inverses, and in fact
gh returns the three pieces to their original position, but with two faces flipped! Indeed,
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this is exactly the operation in Figure 17.

Let us give one more application of conjugation. One approach to solving the cube
is to first restore the bottom, then the middle layer, and finally the top. During the final
stage, one obviously wants operations which only affect the nine pieces of a single face.
We begin by considering the commutator [R,U] = RUR™1U~!. This has the effect shown
in Figure 28.

Figure 28. The commutator [R,U] = RUR™'U~L.

Note that only seven pieces are effect, all but two being in the top face. The two
affected pieces not in the top row are the front left edge and front left bottom corner.

Now we can move two pieces from the top row into those positions with F', so conju-
gating by F' should give an operation affecting only the top row! See Figure 29.

Figure 29. The conjugated commutator F[R,U|F~! = FRUR™'U-'F~1.

The effect of this operation is somewhat complicated, so let us consider how it might
be applied. First of all, let us consider exactly what it does. The top front corners
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are switched, and so are the top back corners. So the cycle type of ¢comer(F[R, UJF™1!)
is (12)(34). On the other hand the effect on the edge pieces is that of a 3-cycle, the
top left edge not moving, and the other top three edges being permuted cyclicly. So
Pedge (F|R, U)JF~1) has the cycle type (123).

For some purposes, ¢corner OF Pedge might be irrelevant. Suppose, for example, that
we have solved the bottom and middle layers of the cube and the task that confronts us is
to do the top layer. We have a choice of either doing the corners first, or the edges first.
If we decide to do the corners first, then we do not care whether our operations affect the
top edges or not. So if ¢corner does what we want, the effect of geqge is irrelevant.

Let us consider what happens when we raise the operation F|[R,U]F~! to a power.
As a special case of (4),

(hgh™")™ = hg™h™ ™.

This means that squaring or cubing F[R,U]F~1! gives
F(RURT'U™YF!'! o FRUR'W Y F

Such an operation is easy to do quickly. But is it useful? Yes, potentially.

Since Georner ([, U]) is a pair of 2-cycles, F[R,U]2F~! will leave the corners in their
original positions. As it turns out, they get twisted (Figure 30, left). This could be a
useful effect. Cubing on the other hand puts the edge pieces aright but leaves the corners
switched.

Figure 30. Left: F[R,UJ?F~!. Right: F[R,U]?F~1

31



Chapter 6: Group Actions

If G is a group and X is a set, a group action of G on X is a rule that associates, for
every g € G and z € X an element g -x € X. The action must satisfy the associative law
(9192) -z = g1-(92-x), and 1 -z = z. As an example, the symmetric group S, acts on
the set N = {1,2,3,---,n}, indeed if g € S,, then g is a mapping N — N and we define

9-z=g(z).
As another example, let G be any group, let X = GG and define

(17) g-x=grg!

It may easily be checked that this is a group action.
Again, let G = Sy acting on N = {1,2,3,4}. Let X be the set of three pairs of subsets

of N,
a={{1,2},{3,4}},
b={{1,3},{2,4}},
¢ = {{1,4},{2,3}}.

Then G acts on {a,b,c}. For example (12) applied to a does not change it, but (12)
interchanges b and ¢, so

(12) - a = a, (12) - b=, (12) -c=b.

Given a group action of G on a finite set X with k£ elements amounts to a homomor-
phism ¢ : G — Sk, where we regard the symmetric group Sk as the group of permutations
of X. Indeed, given such a group action, we may identify X with {1,2,--- &}, then define

(18) p(9): X =X, ¢g)(z) =g =

In the last example, we are regarding S3 as the group of permutations of {a, b, c}, and we
get a homomorphism ¢ : Sy — S3 with ¢(12) = (bc). This example is interesting because
homomorphisms from large symmetric groups to smaller ones are fairly rare.

Exercise. The kernel of this homomorphism is a subgroup V of S4. Find its elements.

Conversely, if we are given a homomorphism from ¢ : G — Si, where Sk acts on a set
X with k elements, then we have an action of G on X defined by

(19) g-7=¢(g)z.
Exercise. Prove that (19) defines a group action.
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So group actions (at least on finite sets) and homomorphisms into symmetric groups
are closely related concepts.

Again, let G be a group and H a subgroup. Then H acts on G by h-z = hx (z € G,
h € H). This action is called left translation. We could define a different action, called
right translation by h -z = xh~!. (The inverse is necessary to make the associative law
true.)

If G acts on X (that is, if a group action of G on X is specified) then define 1 ~ x5
for x1,29 € X if x1 = g - x5 for some g € G. It is easy to see that ~ is an equivalence
relation. The equivalence classes are called the orbits of G on X. Thus in the action of G
on itself by conjugation, the orbits are conjugacy classes.

Proposition 19. Let G act on X. Then X is the disjoint union of the orbits of G on X.
Proof. Since z1 ~ x5 is an equivalence relation, this follows from Proposition 16. 1

Let H be a subgroup of G, and let x € G. The set Hx = {hx|h € H} is called a right
coset of H. As you can see, it is an orbit of H in the action of H on G by left translation.

Proposition 20. Let H be a subgroup of G. Then G is the disjoint union of the right
cosets Hx.

Proof. This is a special case of Proposition 19. 1

The order of a group G is its cardinality, that is, the number of elements in G. (It
may be infinite though we’ll encounter mainly finite groups due to our subject matter.)
We denote the order of G by |G|. More generally we denot the number of elements of a
(usually finite) set X by |X|.

If z € G then the group generated by z is (z) = {2"|n € Z}. (More generally if G is
a group and S a subset, the subgroup (S) generated by S is the smallest subgroup of G
containing S. For example group & is generated by {U, D, L, R, F, B}. A group is called
cyclic if it is generated by a single element. We denote the cyclic group generated by g € G
as (g), and its order by |g|.

Proposition 21. Let G be a finite group and H a finite subgroup. Then |H| divides |G]|.

Proof. Each coset Hz has the same number |H| of elements as H itself. Indeed h — hz
is a bijection H — Hzx. Since by Proposition 20, GG is the disjoint union of its right cosets,
and these have the same size |H]|, it follows that |[H| must divide G. 1

If H is a subgroup of G, then we denote the number of right cosets Hz by [G : H].
It is called the index of H in G. It follows from Proposition 21 that if G and H are finite
then [G : H| = |G|/|H|. However the notion of index makes sense, and may be finite, even
of G and H are infinite. For example if G is the group Z of integers (group law addition)
and H is the subgroup of even integers, then G and H are both infinite but [G : H] is
just 2.
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Exercise. (i) Let G be a group and H a subgroup. Prove that
He — 2z 'H

18 a bijection between the right cosets of H and the left cosets.

(i1) Explain why we used x~*H and not xH.

We let G/H be the set of left cosets zH of H in G.

If G acts on a set X and =g € X, the isotropy subgroup or stabilizer of xy is the
subgroup

H,, = {9 € Glgzo = zo}.

Exercise. Suppose that G acts on X and let xg,yo € X. If ¢ and yo are in the same
orbit, prove that the isotropy groups Hy, and Hy, are conjugate, that is, gH, g~ = Hy,
for some g € G.

Hint: Find g such that g - zo = yo.

If G acts on a set X, the action is transitive if G has only one orbit. This means that
if z,y € X then y = g - x for some g € G.

Proposition 22. Let G be a group acting transitively on X. Let xy € X be some fixed
element, and let H = H,, be its isotropy subgroup. Then X is in bijection with G/H.

Proof. Because the group action is transitive, every element of X can be written as g - xg
for some g € G. Thus it is enough to show that g - zog = h - yo if and only if the cosets
xH and yH are the same. Indeed, g-zg = h -z if and only if zo = g~ 'hxzy, if and only if
g 'h € H, if and only if g7'hH = H, if and only if hkH = gH.

As a consequence, we have

(20) [ X|=[G: H]=|G|/[H]

Let us apply these ideas to the group of the icosahedron. The icosahedron is the
regular Platonic solid illustrated in Figure 31. We consider the group Gicosa Of rotations
mapping it into itself.
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Figure 31. The Icosahedron.

We can use 20 to determine the order of Gicosa. In fact, we can do this in at least
three different ways. First consider the action of Gjcosa on the set X of vertices of the
icosahedron. There are 12 such vertices, and the isotropy group H of the top vertex
consists of the five rotations around the axis labelled ’a’ in Figure 31. By 20 we have
|G| =|X|-|H|=12-5=60.

Alternatively, we can take X to be the set of 20 faces of the icosahedron. The isotropy
group H of the top right front face consists of the three rotations around the axis labelled
'b’, so |G| =20-3 =60. Or, we can use the edges to make the same computation.

Two groups A and B are considered to have the same structure if there is a homo-
morphism ¢ : A — B which is bijective. We say A and B are isomorphic. In this case, the
inverse map ¢! : B — A is also a homomorphism. The relationship of being isomorphic is
an equivalence relation. It means, essentially, that A and B have the same multiplication
table.

Since |Gicosa] = 60 = As one might wonder if they are the same group.

Figure 32. Three mutually perpendicular Golden Rectangles in the icosahedron.
Proposition 23. The groups Gicosa and As are isomorphic.
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Proof. We first exhibit a homomorphism Gjcosa — S5 using 18 by exhibiting a set X of
order 5 on which G acts. Consider the six edges consisting of the three marked ones in the
left diagram in Figure 32 together with their three (hidden) opposites.

Each edge, together with its opposite form a rectangle, and the three such rectangles
intersect perpendicularly in the figure in the right diagram in Figure 32. Although it is not
relevant to the proof, it is interesting to note that these rectangles are so-called “Golden

Rectangles,” whose sides have lengths in the ratio 1+T‘/5 =1.618---.

There are actually 5 such figures, each consisting of three mutually perpendicular
Golden Rectangles whose vertices coincide with those of the icosahedron. The the group
of the icosahedron acts on this set of 5 figures. Thus 18 gives a homomorphism Gicosa — Ss.

The reader may check that if g around an axis through a vertex (e.g. ‘a’ in Figure 31)
then the cycle type of ¢(g) is (12345); if g is a rotation through a face (e.g. ‘b’ in Figure 31)
then the cycle type (123); and if of ¢(g) is (12345); if g is a rotation through a edge (e.g. ‘¢’
in Figure 31) then the cycle type of ¢(g) is (12)(34). In every case, ¢(g) is nontrivial
and is in As, so the kernel of ¢ is trivial (hence by Proposition 2, ¢ is injective) and

¢ : Gicosa — As. Since both groups have the same order, ¢ must be an isomorphism.

Exercise. Use similar considerations to show that that the group of rotations of the
tetrahedron has order 12 and is isomorphic to A4, and that the group of rotations of the
cube has order 24 and is isomorphic to Sy. How about the octahedron and dodecahedron?

If G is a group and g € G the set
Cal(g) = {h € Glhg = gh}

of elements which commute with g is clearly closed under multiplication and inverses, hence
is a subgroup of G.

As a final example of the ideas in this Chapter, we let G' act on itself by conjugation,
that is, (17). The orbits are just the conjugacy classes. Thus we obtain:

Proposition 24. Let G be a finite group, and let g € G. Then the number of elements of
the conjugacy class of g divides |G|, and equals the index of Cg(g).

Proof. The group G acts on the single conjugacy class X of G, and by definition of a
conjugacy class, this action is transitive. The isotropy subgroup of g consists of {h|hgh™! =
g}, which is clearly the same as Cg(g). W

Exercise. List the conjugacy classes of S5 and compute their orders. Describe the cen-
tralizer of each element and confirm Proposition 24. There should be 7 cases.

Exercise. (a) Let G be a group acting on a set X. Let xo € X and let H be the stabilizer
of xg. Let S be a subset of G. Suppose that the group generated by S contains the H, and
1s transitive on X. Prove that S generates G.

(b) Let S be the set consisting of the rotations around the axes a and b in Figure 31. Show
that these generate Gicosa-
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Chapter 7: Normal Subgroups

If G is a group and N is a subgroup, and if g € G, we naturally denote by gNg~! the
set of all gng™! such that n € G. The subgroup N is called normal if gNg=! = N for all
g € G. We can express this by saying that NV is invariant under conjugation.

Lemma 25. If gNg=' C N for all g € G then N is normal.

Proof. We must show that N C gNg~!. Since we are assuming that gNg—! C N for all
g € G, this remains true when g is replaced by ¢g~!. Thus ¢g"'Ng C N, and multiplying
this relation on the left by g and on the right by g=! gives N C gNg~!. m

For example, if G = S3, the subgroup N = ((123)) = {1, (123),(132)} is normal,
since it is a union of two conjugacy classes, 1 and {(123), (132)}. So it is invariant under
conjugation.

On the other hand, if again G = Ss, the subgroup H = ((12)) is not normal, because
if g = (123) then gHg~! = ((23)) # H.

Proposition 26. Let ¢ : G — H be a homomorphism of groups. Then the kernel K of ¢
s normal.

Proof. We must show for every g € G that gK¢g~! C K. In other words, if k¥ € K we
must show that gkg~! € K. Since k € K we have ¢(k) = 1. Now

d(gkg™) = d(9) p(k) p(g9) ' = d(9) - 1-d(9)~" = 1.

This shows that gK¢g~! C K so K is normal in G. 1

The alternating group A,, is a normal subgroup of S,,. Indeed, it is the kernel of the
homomorphism € : S,, — {£1} constructed in Chapter 3.

We constructed a homomorphism S4 — S3 in Chapter 6 whose kernel is therefore a
normal subgroup V of order 4. But it can be proved that the only case where S,, (for any
n) has a normal subgroup other than {1}, S,, itself, and A,,.

A group G is called simple if its only normal subgroups are {1} and G itself. Simple
groups are important because in a sense (which we will not explain) they are the basic
building blocks of groups. The finite simple groups have been classified, around 1980 (work
of many).

Proposition 27. The group As is simple.
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Proof. Suppose that H is a normal subgroup of As. Then the order |H| divides 60.
Moreover if H contains an element of one conjugacy class of As, it contains the whole
conjugacy class, because H is normal.

We compute easily the conjugacy classes in As. They are the conjugacy classes of 1,
(12345), (13524), (123) and (12)(34), having orders 1,12,12,20 and 15 respectively. This
|H| is a divisor of 60, whose order is a sum of some of {1,12,12,20,15}. And at least
one of the conjugacy classes contained in H is {1}, so we can say more precisely that |H|
equals 1 plus some of {12,12,10,15}. It can be checked quickly that the only divisors of 60
which can be expressed as a sum of 1 and some of {12,12,20,15} are 1 and 60. So either
H:{]_}OI'H:A5. |

On the other hand A4 is not simple, because it contains the normal subgroup V. But
Ay is the only alternating group which is not simple. (We will not prove this.)

The abelian simple groups are easy to construct. Any subgroup of an abelian group
is automatically normal, so an abelian simple group is a group G' with no subgroups at all
except 1 and G. It is easy to see that such a group is a cyclic group of prime order.

On the other hand As is the smallest nonabelian simple group. (Ajs is simple but
abelian.) It can be shown that A, is simple for any n # 4. This gives an infinite family of
nonabelian simple groups.

We’ve seen that the kernel of a homomorphism is a normal subgroup. Conversely, we
will next show that any normal subgroup is the kernel of a homomorphism.

Let N be a normal subgroup of G. If g € G then gNg~! = N, and multiplying on
the right by g gives gN = Ng. So the left and right cosets of G are the same. Let G/N
be the set of cosets.

If X,Y are subsets of G, we naturally denote by XY the set of all products zy with
xz € X and y € Y, and we will use similar such notations for products of sets and elements
of g. Thus for example if gN and hN € G/N, then gNhN denotes the set of all gnhn’
such that n,n’ € N. We note that (using the normality of N)

(21) gN hN = gh(h™*Nh)N = ghN - N = ghN.
Thus the product of two cosets is a coset.

Proposition 28. If N is normal in G, then G/N is a group and 7 : G — G /N defined
by w(g) = gN is a homomorphism. It’s kernel is N.

Proof. It follows from (21) that the multiplication of cosets is a well defined associative
composition law and that N = 1N acts as an identity element. Moreover, taking h = g~*!
in (21) shows that g7 1N is an inverse of gN. Moreover (21) shows 7 is a homomorphism.
Since gN = N if and only if g € N the kernel is N. 1

We now see that the normal subgroups are exactly the ones that can be kernels of
homomorphisms.

If G is any group, the center Z(G) consists of all ¢ € G which commute with all
elements of G, that is, gr = xg for all x € G. It is normal. If G = &, the group of the
Rubik’s cube, then the center has order two. The nonidentity element, which we might call
the central involution of & consists of the operation which flips all edges (see Figure 33).
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Figure 33. The effect of the central involution.

Figure 34. A possible and impossible configuration for the two generator group

L

Figure 35. The possible orientations of the top right corner
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Chapter 8: The two-generator group

Suppose that you scramble the cube using only two operations, R and U, then are
asked to restore the cube using exactly the same two operations. This is a problem com-
parable in interest to the more familiar problem of restoring a scrambled cube using all
operations. We will denote by ¥ the group (R, U) generated by these two operations.

One might think that the two generator problem would be harder, since in restoring
the cube one is allowed only limited operations. However the universe of configurations
which can be obtained using ¥ is very much limited.

The first constraint on the possible configurations is an obvious one: there are 11
pieces that never move. Thus any achievable configuration does not move these
pieces.

However, this is not the whole story as we will explain. In Figure 34 there are two
configurations which satisfy this first constraint of not moving the 11 pieces along the
bottom left. Both configurations are achievable in & but only the left one is achievable in
€. Yet both look equally scrambled.

In addition to this obvious constraint, that an operation cannot move the 11 pieces
along the bottom left, there there are two other constraints on the configurations which
are achievable in ¥. First, with the seven edge pieces which are moved by R and U, any
permutation of their locations can be achieved, but edge flips are not possible.

This is easy to see. If we consider the edge piece in the top left, it can be moved to
7 locations in all, but only one configuration is possible in each of these locations. The 7
possible configurations for this piece are shown in Figure 35. It is clear that from one of
these configurations R and U can only move the piece into another one of the same, and
so any element of the group must keep the piece in one of these configurations. It follows
from this that edge flips are not possible.

There is one more, deeper constraint. We refer to the difference between the left and
right configurations in Figure 34. These differ by a corner three cycle. In fact, corner three
cycles are possible in & but not ¥. This is a special instance of a remarkable fact about
the two generator group, which is important enough for us to state it as a theorem. Let
P be the set of six corners which are moved by ¥, namely the four on the right and the
two top left ones.

Theorem 29. Let g be an element of T, and let Georner(g) be the corresponding corner
permutation. If ¢corer(g) fixes three elements of P then it fizes all siz.

Note that this is an assertion about the locations of the six pieces, not their orien-
tations. For example, the operation RURTURU?R~'U? € ¥ has the effect in the left
diagram in Figure 36. All the corner pieces are in their correct position though three
are not in their correct orientation. Three edge pieces also are permuted in a 3-cycle.
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This useful element of T has order 3. (The operation in Figure 18 was built up from two
operations of this type, this one and its mirror image.)

Figure 36. Left: RURT'URU?R~'U?. Right: RURT'URU?R™'U-'R-'U-'RU-'R-'U%RU.

The implications of this Theorem for the two edge problem are important. It is simple
to maneuver the two bottom corners into their correct positions and orientations. Then
applying a power of U will put one more corner into its correct position, after which the
Theorem asserts that all six corners are in their right places. Some of the top corners may
be twisted, but applying conjugates of the operation in Figure 36 will put them right. At
this point, the cube is largely solved, for only edge pieces are out of place.

In fact, one needs only edge three cycles to finish the cube. Combining the operation
RUR'URU?R~'U? in the left diagram Figure 36 with a conjugate of its mirror image
gives an edge three cycle. This is the operation in the right diagram of Figure 36. Together
with its mirror images and conjugates, this operation is sufficient to finish the cube. Also
sometimes useful is RZU2R?U2R?U? (try it!) and its conjugates.
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Chapter 9: Projective Geometry

Projective geometry was invented by Desargues (1591-1661), inspired by the theory
of perspective, developed by artists and architects. Felix Klein (1849-1925) emphasized
that groups play an important role in geometry, and projective geometry is a good place
to see why he was right about this point.

The historical starting point of projective geometry is plane geometry. In classical
Euclidean or affine geometry, the plane is R?> and the objects of study are geometric
figures such as lines, circles or ellipses, etc. There is no real reason why geometry is only
carried out over the real numbers and we can more generally consider the affine plane F'?
where F' is any field, or affine n-space A" (F) = F™.

In the affine plane it is almost true that any two lines intersect in a unique point.
The exception, according to Euclid, is that parallel lines do not intersect. But Desargues,
motivated by the artistic theory of perspective, adjoined to the affine plane a line at
infinity. Parallel lines in the affine plane can be extended to the projective plane, and once
extended they intersect on the line at infinity. Thus in projective geometry any two lines
intersect in a unique point, with no exceptions. In other ways which we won’t go into, the
geometry of the projective plane is more perfect than affine geometry.

More generally, projective n-dimensional space consists of affine n-space with an n—1-
dimensional projective space adjoined:

P"(F) = A™(F) UP" }(F)

so particularly P!(F) consists of the affine line with a single point at infinity, which we
denote oc: P1(F) = F U {oo}.

Klein’s viewpoint was that a geometry consists of a topological space X together
with a group of transformation. In Euclidean or affine geometry the space X = A" (R).
There is a distinction between Euclidean and affine geometry. In Euclidean geometry
the group consists of all rigid motions of A™(R), which preserve distances and angles. In
affine geometry the group is larger, adjoining transformations which preserve lines but may
distort distances and angles. For example in A?(R) the transformation

(z,y) = (z+y,9)

is an affine transformation but not a Euclidean one, since it turns lines into lines but
distorts rectangles into parallelograms.

Klein’s viewpoint marked an important transition to a group-theoretic point of view
in geometry, and helped clear up the 19-th century controversy over the foundations of
non-Euclidean geometry.
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For our purposes we will only need the projective line and its group. The group
GL(2, F) is the multiplicative group of 2 x 2 invertible matrices with coefficients in F'. The
group multiplication is matrix multiplication.

We have a group action of GL(2, F) on P}(F) by

a b az+b

22 Lo o

(22) ( c d) T td
Such a map is called a linear fractional transformation or a Mobius transformation. There

are some special cases in which this definition needs interpretation. First, if z = oo, then

we interpret ‘c‘;’;’_tg to mean just %. Second, if z # oc but cz + d = 0, then we interpret
az+b

coid to mean oo.

Proposition 30. If F is a field then (22) is an action of GL(2,F) on P}(F).

Proof. Remembering that
a b A B\ _ [(aA+bC aB+0bD
c d C D) \cA+dC cB+dD
we need to show that

a b - A B - ___(aA+4+bC aB+bD .
¢ d c D) %) " \cA+dC ¢B+dD ) *

a(825) +
c (é;ig) +d.

Multiplying numerator and denominator by Cz + D gives

The left side is

a(Az+ B)+b(Cz+ D) (aA+bC)z+ (aB+bD)
c(Az+ B)+d(Cz+ D) (cA+dC)z+ (cB+dD)

as required.
This assumes that z # 0o, Cz + D # 0 and (aA + bC)z # 0. Otherwise there are
various cases to consider but in each case the identity can be checked. 1

Some elements of GL(2, F) act trivially on P'(F). Thus if g = (7) then g -z = z for
all z € P'(F). We call a matrix of this form a scalar matriz. The scalar matrices comprise
the center of GL(2, F).

Proposition 31. If 21, 22, 23 € PL(F) are all distinct then there exists g € GL(2, F) such
that g- 21 = 00,g-20 =0 and g-z3 = 1.
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Proof. First note that there is g1 € GL(2, F') such that g; - 21 = co. Indeed, if z; = oo
we may take g1 = ((1) [1)), and if z; # oo we may take g; = (_Olil).

Next we claim that there exists go € GL(2, F') such that g2 - 00 = oo and ga2¢; - 20 = 0.
Indeed, since z1 # 23, g1 - 22 # g1 - 21 = o and so we may take

(1 —g120
92—<0 1 )

Next we claim that there exists g3 € GL(2, F) such that g3 - oo = 00, g3 -0 = 0 and
939291 - 23 = 1. Indeed, we have g2g1 - 21 = 00 and g29;7 - z2 = 0. Since 21, 2o and z3 are all
distinct, g2g1 - 23 # 0, 00. We may then take

(1 0
93 0 g2g1-23)"

Now letting g = g3g291 we have g- 21 =00,g-22=0and g-23=1. W

If a group G acts on a set X, a fized point of g € G is an element x € X such that
g-xr =1

Proposition 32. If g € GL(2,F) has three fized points then g is a scalar matriz and g
acts trivially.

Proof. Let z1, z2 and z3 be distinct fixed points of g. Let h € GL(2, F) satisfy h(z1) = oo,
h(zs) = 0 and h(z3) = 1. Then hgh™! fixes oo, 0 and 1, for example hgh™!-co0 = hg- 21 =
h -2z = 0.

Let hgh™! = (Zs) Since

g
I
A~
S
QL
—
g
I
I

we have ¢ = 0. Now since

we have b = 0. Finally, since

a 0
= (2 %)
we have a = d. Thus hgh™! = (27) is a scalar matrix. Now g = A~1(Z2)h and since the
scalar matrices are in the center of GL(2, F') we have g = (8 2), as required.
We now prove Theorem 29. We take F' = Zs to be the field with five elements. Thus
GL(2,F) acts on the set P*(F) = {0,1,2,3,4,00} with six elements. We label the six
corners of the cube which are moved by R and U by these six elements as in Figure 37.
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00 00
Figure 37. Labelling the corners and the icosahedron by P!(Zs).

Proposition 33. With the sixz vertices labelled as in Figure 37, every operation of the
group ¥ is given by a linear fractional transformation.

Proof. Since a composition of linear fractional transformations is a linear fractional trans-
formation, it is sufficient to check this for the generators R and U. First R is the 4-cycle
(10002), and one checks directly that this coincides with the linear fractional tranformation
represented by the matrix (:1,) 3). On the other hand the operation U IS the 4-cycle (1243),
which coincides with the linear fractional transformation represented by the matrix (g (1))
The theorem follows.

Now Theorem 29 follows from Proposition 32, since if a linear fractional fixes three
points it must fix everything.
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