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Summary. This introductory article aims to provide a roadmap to many of the
interrelated papers in this volume and to a portion of the field of multiple Dirichlet
series, particularly emerging new ideas. It is both a survey of the recent literature,
and an introduction to the combinatorial aspects of Weyl group multiple Dirichlet
series, a class of multiple Dirichlet series that are not Euler products, but which may
nevertheless be reconstructed from their p-parts. These p-parts are combinatorially
interesting, and may often be identified with p-adic Whittaker functions.

This survey article is intended to help orient the reader to certain topics in
multiple Dirichlet series. There are several other expository articles that the
reader might also want to consult, though we do not assume any familiarity
with them. The article [20] which appeared in 1996 contained many of the
ideas in an early, undeveloped form. The articles [9] and [26], which appeared
in 2006, also survey the field from different points of view, and it is hoped that
these papers will be complementary to this one. Further expository material
may be found in some of the chapters of [14].

Since approximately 2003 there has been an intensive development of the
subject into areas related to combinatorics, representation theory, statistical
mechanics and other areas. These are scarcely touched on in [20], [9] and [26],
and indeed are topics that have largely developed during the last few years.
However these combinatorial developments are discussed in [14] as well as this
introductory paper and other papers in this volume.

Preparation of this paper was supported in part by NSF grant DMS-
1001079. We would like to thank Ben Brubaker, Solomon Friedberg and Kohji
Matsumoto for helpful comments.

1 Moments of L-functions

The subject of multiple Dirichlet series originated in analytic number theory.
If {an} is a sequence of real or complex numbers, then a typical Tauberian
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theorem draws conclusions about the an from the behavior of the Dirichlet
series

∑
n an n

−s. If the an are themselves L-functions or other Dirichlet series,
this is then a multiple Dirichlet series.

One may try to study moments of L-functions this way. For example Gold-
feld and Hoffstein [37] considered a pair of Dirichlet series whose coefficients
are

Z±(w, s) =
∑

±d>0

Ad(s)|d|
1
2
−2w, (1)

where the coefficients Ad(s) are essentially quadratic L-functions. More pre-
cisely, if d is squarefree

Ad(s) =
L2(2s−

1
2 , χd)

ζ2(4s− 1)
,

and
Adk2(s)

Ad(s)
=

∑

d1d2d3 = k
d2, d3 odd

χd(d3)µ(d3)d
−4s+3/2
2 d

−2s+1/2
3

where µ is the Möbius function and χd is the quadratic character χd(c) =
(
d
c

)

in terms of the Kronecker symbol. The subscript 2 applied to the L-function
and zeta function ζ means that the 2-parts have been removed.

Goldfeld and Hoffstein applied the theory of Eisenstein series of half-
integral weight to obtain the meromorphic continuation and functional equa-
tions of Z±. They showed that there are poles at w = 3

4 and 5
4 − s, then used

a Tauberian argument to obtain estimates for the mean values of L-functions.
For example, they showed

∑

1 < ±d < x
d squarefree

L

(
1

2
, χd

)
= c1x log(x) + c2x+O

(
x

19
32

+ε
)

with known constants c1 and c2.
Note that Z± is a double Dirichlet series (in s, w) since if we substitute

the expression for the L-function L(w, χc) we have “essentially”

Z± (s, w) =
∑

d

L

(
2s−

1

2
, χd

)
|d|

1
2
−2w =

∑

c,d

(
d

c

)
|c|

1
2
−2s|d|

1
2
−2w. (2)

Equation (2) gives two heuristic expressions representing the multiple Dirich-
let series with the intention of explaining as simply as possible what we expect
to be true, and what form the generalizations must be. Such a heuristic form
ignores a number of details, such as the fact that the coefficients are only
described correctly if d is squarefree (both expressions) and that c and d
are coprime (second expression). Later we will first generalize the heuristic
form by attaching a multiple Dirichlet series to an arbitrary root system. The
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heuristic version will have predictive value, but will still ignore important
details, so we will then have to consider how to make a rigorous definition.

To give an immediate heuristic generalization of (2), let us consider, with
complex parameters s1, · · · , sk and w a multiple Dirichlet series

∑

c

L

(
2s1 −

1

2
, χd

)
· · ·L

(
2sk −

1

2
, χd

)
|d|

1
2
−2w (3)

for k = 0, 1, 2, 3, · · · . If one could prove meromorphic continuation of this
Dirichlet series to all s with wi =

1
2 , the Lindelöf hypothesis in the quadratic

aspect would follow from Tauberian arguments. A similar approach to the
Lindelöf hypothesis in the t aspect would consider instead

∫ ∞

1

ζ (σ1 ± it) · · · ζ (σk ± it) t
−2w dt (4)

where for each zeta function we choose a sign ±; if k is even, we may choose
half of them positive and the other half negative. This is equivalent to the
usual moments ∫ T

0

ζ (σ1 ± it) · · · ζ (σk ± it) dt

which have been studied since the work in the 1920’s of Hardy and Littlewood,
Ingham, Titchmarsh and others. It is possible regard (4) as a multiple Dirichlet
series, and indeed both (3) and (4) are treated together in Diaconu, Goldfeld
and Hoffstein [32]. See [31] in this volume for a discussion of the sixth integral
moment and its connection with the spectral theory of Eisenstein series on
GL3.

Returning to (3), there are two problems: to make a correct definition
of the multiple Dirichlet series, and to determine its analytic properties. If
k = 1, 2 or 3, these can both be solved, and the multiple Dirichlet series has
global analytic continuation. In these cases, the multiple Dirichlet series was
initially constructed by applying a Rankin-Selberg construction to Eisenstein
series (“of half-integral weight”) on the metaplectic double covers of the groups
Sp(2k) for k = 1, 2, 3. No corresponding constructions could be found for
k > 3, but since Rankin-Selberg constructions are often tricky, that did not
constitute a proof that such constructions may not exist undiscovered.

In [20] a different approach was taken. If k > 3, then it may be possible
to write down a correct definition of the multiple Dirichlet series, and indeed
this has essentially been done in the very interesting special case k = 4.
See Bucur and Diaconu [19]. Nevertheless, the approach taken in [20], which
we will next explain, shows that the multiple Dirichlet series cannot have
meromorphic continuation to all si and w if k > 3.

The analog for (3) of the second expression in (2) would have the form

∑

d,c1,··· ,ck

(
d

c1

)
· · ·

(
d

ck

)
|c1|

1
2
−2s1 · · · |ck|

1
2
−2sk |d|

1
2
−2w. (5)
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It will be helpful to associate with this Dirichlet series a graph whose vertices
are the variables d, c1, · · · , ck. We connect two vertices if a quadratic sym-
bol is attached to them. Our point of view (which is justified when rigorous
foundations are supplied) is that due to the quadratic reciprocity law we do
not have to distinguish between

(
d
c

)
and

(
c
d

)
, Thus for heuristic purposes, the

graph determines the Dirichlet series. If k = 1, 2 or 3, the graph looks like
this:

d c1 d c2c1 dc1

c2

c3

(6)

We could clearly associate a multiple Dirichlet series with a more general
graph, at least in this imprecise heuristic form. The interesting cases will be
when the diagram is a Dynkin diagram.

Here we will only consider cases where the diagram is a “simply-laced”
Dynkin diagram, that is, the diagram of a root system of Cartan type A,
D or E. A simply-laced root system is one in which all roots have the same
length, and these are their Cartan types. More general Dynkin diagrams are
also associated with multiple Dirichlet series, and we will come to these below.

We recall that a Coxeter group is a group with generators σ1, · · · , σr , each
of order two, such that the relations

σ2
i = 1, (σiσj)

n(i,j) = 1

give a presentation of the group, where n(i, j) is the order of σiσj . We may
associate with the Coxeter group a graph, which consists of one node for each
generator σi, with the following conditions. If n(i, j) = 2, so that σi and σj
commute, there is no edge connecting i and j. Otherwise, there is an edge.
If n(i, j) = 3, it is not necessary to label the edge, but if n(i, j) > 3 it is
labeled with n(i, j). (In Dynkin diagrams it is usual to interpret these labels
as double or triple bonds.) We will consider only the case where n(i, j) = 2 or
3. In these cases, the Coxeter group is finite if and only if the diagram is the
finite union of the Dynkin diagrams of finite Weyl groups of types Ar, Dr or
Er.

As we will now explain, the group of functional equations of a multiple
Dirichlet series such as (5) is expected to be the Coxeter group of its Dynkin
diagram. For example, consider (5) when k = 3. We collect the coefficients
of c1:

∑

d,c1,c2,c3

(
d

c1

)(
d

c2

)(
d

c3

)
|c1|

1
2
−2s1 |c2|

1
2
−2s3 |c3|

1
2
−2s3 |d|

1
2
−2w =

∑

d,c2,c3

(
d

c2

)(
d

c3

)
|c2|

1
2
−2s2 |c3|

1
2
−2s3 |d|

1
2
−2w

[
∑

c1

(
d

c1

)
|c1|

1
2
−2s1

]
.
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This equals

∑

d,c2,c3

(
d

c2

)(
d

c3

)
|c2|

1
2
−2s2 |c3|

1
2
−2s3 |d|

1
2
−2wL

(
2s1 −

1

2
, χd

)
.

The functional equation for the Dirichlet L-function has the form

L

(
2s1 −

1

2
, χd

)
= (∗) |d|1−2s1L

(
2(1− s1)−

1

2
, χd

)

where (∗) is a ratio of Gamma functions and powers of π. This factor is
independent of d, so we see that the functional equation has the effect

(s1, s2, s3, w) 7→ (1− s1, s2, s3, w + s1 − 1
2
) .

In the general case, let the variables be s1, · · · , sr. Thus if we are considering
(5) then r = k+1 and sr = w, but we now have in mind a general graph such
as a Dynkin diagram, and r is the number of nodes. We have a functional
equation which sends si to 1− si. If j 6= i, then

sj 7−→

{
sj if i, j are not connected by an edge;
si + sj −

1
2 if i, j are connected by an edge.

(7)

These functional equations generate the Coxeter group associated with the
diagram, and its group of functional equations is the geometric realization of
that group as a group generated by reflections.

We may now see why the Dirichlet series (3) is expected to have meromor-
phic continuation to all si and w when k 6 3 but not in general. These are
the cases where the graph is the diagram of a finite Weyl group, of types A2,

A3 or D4. If k = 4, the graph is the diagram of the affine Weyl group D
(1)
4 ,

and the corresponding Coxeter group is infinite. The meromorphic continua-
tion in (s1, s2, s3, s4, w) cannot be to all of C5 since the known set of polar
hyperplanes will have accumulation points.

We have now given heuristically a large family of multiple Dirichlet series,
one for each simply-laced Dynkin diagram. (The simply-laced assumption may
be eliminated, as we will explain later.) Only three of them, for Cartan types
A2, A3 and D4, are related to moments of L-functions. The case k = 3, related
to D4, was applied in [32] to the third moment after the combinatorics needed
to precisely define the Dirichlet series were established in [21].

Although only these three examples are related to quadratic moments of L-
functions, others in this family have applications to analytic number theory.
Chinta gave a remarkable example in [25], where the A5 multiple Dirichlet
series is used to study the distribution of central values of biquadratic L-
functions. The distribution of n-th order twists of an L-function were studied
by Friedberg, Hoffstein and Lieman [36], and it was shown in Brubaker and
Bump [7] that these could be related to n-th order Weyl group multiple Dirich-
let series of order n. (In this survey, the Dirichlet series we have considered in
this section correspond to n = 2 but we will come to general n below.)
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One may also consider the Dirichlet series that are (heuristically) of the
form L(w, π, χd) |d|

−w where π is an automorphic representation of GLk. If
k = 2, then there is considerable literature of the case where n = 2; see
for example [6] and the references therein. If k = 2 and n = 3, there is
a remarkable theory in [17]; there is a finite group of functional equations,
transform the Dirichlet series into various different ones. If k = 3 and n = 2,
then there is also a finite group of functional equations; see [21]. The papers
cited in this paragraph predate the recent development of the combinatorial
theory, but the combinatorics of multiple Dirichlet series involving GLk cusp
forms is under investigation by Brubaker and Friedberg.

A double Dirichlet similar to that in [36] was considered by Reznikov [53].
This is the Dirichlet series

∑
L(s, χn)|n|−w, where χ is a Hecke character of

infinite order for Q(i). Using a method of Bernstein, he proved the meromor-
phic continuation of this multiple Dirichlet series and determined the poles.
Despite the similarity of this multiple Dirichlet series to that of [36], this se-
ries does not fit the same way in the theory of Weyl group multiple Dirichlet
series.

While the origins of our subject are in analytic number theory, our em-
phasis in this paper will not be such applications, but rather on emerging
connections with areas of combinatorics, including quantum groups and math-
ematical physics, and the theory of Whittaker functions. As we will see, the
problem of giving precise definitions of the multiple Dirichlet series, even when
the general nature of the Dirichlet series is known, is a daunting combinatorial
one. Early investigations, such as [25] and [21] took an ad hoc approach sub-
stituting computer algebra or brute force computation for real insight. This
is sufficient for applications on a case-by-case basis but also unsatisfactory. In
recent years, the combinatorial theory has been examined more closely, and
its study may turn out to be as interesting as the original problem.

2 A method of analytic continuation

Let us consider a double Dirichlet series which might be written

Z∗
Ψ (s1, s2) = (∗)ZΨ (s1, s2), ZΨ (s1, s2) =

∑

n,m

AΨ (n,m)n−s1m−s2 .

Here (∗) denotes some Gamma functions and powers of π. The Dirichlet se-
ries is allowed to depend on a parameter Ψ drawn from a finite-dimensional
vector space Ω. It is assumed convergent in some region C such as the one
in the following figure, which shows the region for (2). We have graphed the
projection onto R2 obtained by taking the real parts of s1 and s2.



Multiple Dirichlet Series 7

( 12 ,
1
2 )

( 34 ,
3
4 )

C

s1 = 1
2

s2 = 1
2

Collecting the coefficients ofm−s2 for eachm gives a collection of Dirichlet
series in one variable s1 which have functional equations. These may be with
respect to some transformation such as the following, which is a functional
equation of (2).

σ1 : (s1, s2) 7−→

(
1− s1, s1 + s2 −

1

2

)
.

More precisely, there may be an action of σ1 on Ω, or more properly onM⊗Ω,
where M is the field of meromorphic functions in s1 and s2, such that the
functional equation has the form

Z∗
σ1Ψ

(
1− s1, s1 + s2 −

1

2

)
= Z∗

Ψ (s1, s2).

Thus Ψ 7−→ σ1Ψ is a linear transformation of the vector space Ω which, when
written out as a matrix, could involve meromorphic functions of s1 and s2.
This is the scattering matrix . In some cases these meromorphic functions are
holomorphic, or even just Dirichlet polynomials in a finite number of integers.
For the example (2) we would take polynomials in 2−s1 and 2−s2 .

This gives the meromorphic continuation to the convex hull of C ∪ σ1C.
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( 12 ,
1
2 )

( 34 ,
3
4 )

hull(C ∪ σ1C)

Similarly (we assume) that collecting the coefficients of the other variable
gives another functional equation, which in the example (2) is

σ2 : (s1, s2) 7−→

(
s1 + s2 −

1

2
, 1− s2

)
.

The functional equations may be iterated, so we get analytic continuation to
the the union of hull(C ∪ σ1C) with hull(C ∪ σ2C) and σ1 hull(C ∪ σ2C).

( 34 ,
3
4 )

( 14 , 1)

(0, 34 )

(1, 14 )

(8)

At this point, there are two ways of proceeding, one better than the other.
We could continue to iterate the functional equations until we obtained mero-
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morphic continuation to a region such as this:

There are two problems with this. One is that we have not obtained the
meromorphic continuation in the area near the origin. The other is that
we have obtained two different meromorphic continuations to the region
σ1σ2σ1C = σ2σ1σ2C that is darkly shaded. We do not know that these two
meromorphic continuations agree. This agreement, the braid relation, should
be true in a suitable sense but in fact since there is a scattering matrix in-
volved we must be careful in formulating it. We want an action of W on Ψ
extending the one already mentioned for σ1 such that Z∗

Ψ (s1, s2) satisfies

Z∗
w(Ψ)(w(s1, s2)) = Z∗

Ψ (s1, s2), (9)

and the braid relation means that σ1σ2σ1(Ψ) = σ2σ1σ2(Ψ).
A better procedure is to use a theorem in complex variables, Bochner’s

convexity theorem [5] to assert meromorphic continuation once one has ob-
tained meromorphic continuation to a region such as (8) whose convex hull
is C2. Bochner’s theorem is as follows: let U be an open subset of Cr where
r > 2 that is the preimage of an open subset of Rr under the projection
map; such a set is called a tube domain. Then any holomorphic function on
a tube domain has analytic continuation to its convex hull. In our case, we
have a meromorphic function, but the polar divisor is a set of hyperplanes,
and the theorem is easily extended to this case. Hence once we have meromor-
phic continuation to (8) we obtain meromorphicity on C2. The braid relation
σ1σ2σ1(Ψ) = σ2σ1σ2(Ψ) is then a consequence. See [9] and [11] for further
details.

Now we come to the fundamental combinatorial question. Once one has
decided roughly what the Dirichlet series is to look like, the exact coefficients



10 Daniel Bump

are still not precisely defined. How can the coefficients be determined in such
a way that the functional equations (9) are true for both σ1 and σ2? For the
Dirichlet series (3), this is not too hard when k = 1, but when k = 3, the
combinatorics are rather daunting. They were treated in [21] using difficult
manipulations that were the only way before the combinatorial properties of
Weyl group multiple Dirichlet series began to be established. Similarly in the
example of Chinta [25], the method of solving the combinatorial problem was
to use a computer program to find a Dirichlet series with very special com-
binatorial properties. There has been a great deal of progress in the basic
combinatorial problem since these early papers, and this progress has impli-
cations beyond the original practical problem of giving a proper definition of
a multiple Dirichlet series with a group of functional equations.

3 Kubota Dirichlet series

Let n be a positive integer: we will define some Dirichlet series related to the
n-th power reciprocity law, so n = 2 in Section 1. Let F be a number field
containing the group µn of n-th roots of unity. We will further assume that
F contains the group µ2n of 2n-th roots of unity, that is, that −1 is an n-th
power in F . The assumption that µn ⊂ F is essential; the assumption that
µ2n ⊂ F is only a matter of convenience. We will make use of the n-th power
reciprocity law.

We will define a family of Dirichlet series with analytic continuation and
functional equations, called Kubota Dirichlet series . If n = 2, these are the
quadratic L-functions L(2s− 1

2 , χd). If n = 1, these Dirichlet series are divisor
sums, actually finite Dirichlet polynomials. For general n, they are generating
functions of n-th order Gauss sums.

Let S be a finite set of places of F containing all places dividing n and
all archimedean ones. If v is a place of F , let Fv be the completion at v.
If v is nonarchimedean, let ov be the ring of integers in Fv. Let oS be the
ring of S-integers in F , that is, those elements x ∈ F such that x ∈ ov for all
v /∈ S. Let FS =

∏
v∈S Fv. We may embed oS in FS diagonally. It is a discrete,

cocompact subgroup. We may choose S so large that oS is a principal ideal
domain. If a ∈ FS let |a| denote

∏
v∈S |a|v. It is the Jacobian of the map

x 7−→ ax. If a ∈ oS then |a| is a nonnegative rational integer.
We recall the n-th order reciprocity law and n-th order Gauss sums. See

Neukirch [51] for proofs. Properties of the reciprocity symbol and Gauss sums
are more systematically summarized in [11].

The n-th order Hilbert symbol ( , )v is a skew-symmetric pairing of F×
v ×

F×
v into µn. Define a pairing ( , ) on F×

S by

( x, y ) =
∏

v∈S

(xv, yv)v, x, y ∈ F×
S .
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Then the n-th power residues symbol
(
d
c

)
, defined for nonzero elements c, d ∈

o, satisfies the n-th power reciprocity law

( c
d

)
= (d, c)

(
d

c

)
. (10)

Let ψ be an additive character of FS that is trivial on oS but no larger
fractional ideal. Let

g(m, d) =
∑

c mod d

( c
d

)
ψ
(mc
d

)
.

The sum is well defined since both factors only depend on c modulo d. It has
the twisted multiplicativity properties:

g(m, dd′) =

(
d

d′

)(
d′

d

)
g(m, d) g(m, d′) if gcd(d, d′) = 1,

g(cm, d) =
( c
d

)−1

g(m, d) if c, d are coprime.

and the absolute value, for p prime in oS:

|g(m, p)| =
√
|p| if gcd(m, p) = 1. (11)

Let Ψ be a function on F×
S such that Ψ(εc) = (ε, c)Ψ(c) when ε ∈ o×S (F

×
S )n.

The vector space of such functions is nonzero but finite-dimensional. Let

DΨ (s;m) =
∑

c

Ψ(c)g(m, c) |c|−2s.

This has a functional equation under s 7−→ 1− s. To state it, let

Gn(s) = (2π)−(n−1)(2s−1)Γ (n(2s− 1))

Γ (2s− 1)
.

Define
D∗

Ψ (s,m) = G(s)N ζF (2ns− n+ 1) DΨ (s,m)

where N is the number of archimedean places (all complex) and ζF is the
Dedekind zeta function of F . Then Kubota [46] proved a functional equation
for this, as a consequence of the functional equations of Eisenstein series on
the n-fold metaplectic covers of SL2, which he developed for this purpose.
In the form we need it, this is proved by the same method in Brubaker and
Bump [18], and a similar result is in Patterson and Eckhardt [34].

To state these functional equations, there exists a family of Dirichlet poly-
nomials Pη indexed by η in F×

S /(F
×
S )n such that

D∗
Ψ (s,m) =

∑

η∈F×

S
/(F×

S
)n

|m|1−2sPmη(s) D
∗
Ψ̃η
(1− s,m), (12)
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where
Ψ̃η(c) = (η, c)Ψ(c−1η−1).

The polynomial Pη is actually a polynomial in q−s
v where v runs through the

finite places in S, and qv is the cardinality of the residue field. It is important
for applications that Pη is independent of m.

4 A more general heuristic form

If n = 2, and m and c are coprime then g(m, c) equals
(
m
c

)−1√
|c| times a

factor which may be combined with Ψ and ignored for heuristic purposes. Thus
DΨ (s;m) is essentially L(2s− 1

2 , χm). We may now give the following heuristic
generalization of the Dynkin diagram multiple Dirichlet series described in
Section 1. Let us start with a Dynkin diagram, which we will at first assume
is simply-laced (Type A, D or E). As in Section 1, for purely heuristic purposes
it is not necessary to distinguish between

(
c
d

)
and

(
d
c

)
since by the reciprocity

law they differ by a factor (d, c) which may also be combined with Ψ , and may
be ignored for heuristic purposes. Ultimately such factors must eventually be
kept track of, but at the moment they are unimportant.

The nodes i = 1, · · · , r of the Dynkin diagram are in bijection with the
simple roots of some root system Φ. We choose one complex parameter si for
each i, and one “twisting parameter” mi, which is a nonzero integer in oS .
The multiple Dirichlet series then has the heuristic form

∑

d1,··· ,dr


 ∏

i, j adjacent

(
di
dj

)−1

 g(mi, di)|di|

−2si .

The form of the coefficient is only correct if di are squarefree and coprime,
and even then there is a caveat, but this heuristic form is sufficient for ex-
trapolating the expected properties of the multiple Dirichlet series. Whereas
before, on expanding in powers of one of the si parameters, we obtained a
quadratic L-function, now we obtain a Kubota Dirichlet series.

If the Dynkin diagram is not simply-laced, there are long roots and short
roots. In this case there is also a heuristic form, which we will not discuss here.
For each distict pair of simple roots αi and αj let r(αi, αj) be the number
of bonds connecting the nodes connecting αi and αj in the Dynkin diagram.
Thus if θ is the angle between αi and αj let

r(αi, αj) =





0 if αi, αj are orthogonal,
1 if θ = 2π

3 ,
2 if θ = 3π

4 ,
3 if θ = 5π

6 .

Normalize the roots so short roots have length 1; thus every long root α has
||α‖2 = 1, 2 or 3, the last case occurring only with G2. Let
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gα(m, d) =
∑

c mod d

( c
d

)t
ψ
(mc
d

)
, t = ‖α‖2.

Then the heuristic form of the multiple Dirichlet series is

∑

d1,··· ,dr


∏

i,j

(
di
dj

)−r(αi,αj)


[
∏

i

gαi
(mi, di)|di|

−2si

]
. (13)

5 Foundations and the Combinatorial Problem

The first set of foundations for Weyl group multiple Dirichlet series were given
by Fisher and Friedberg [35], and these were used in all earlier papers. Another
set of foundations were explained in [9] and [11] and these have been used for
the most part in subsequent papers. We recall them in this section.

Let V be the ambient vector space of Φ. Let 〈 , 〉 be a W -invariant inner
product on V such that the short roots have length 1. Let B : V ⊗Cr −→ C
be the bilinear map that sends (αi, s) to si, where s = (s1, · · · , sr) to

∑
kisi

and αi is the i-th simple root. Let ρ∨ denote the vector (1, · · · , 1) ∈ Cr.
The reason for this notation is explained in [11]. The Weyl group action on
s, corresponding to the group of functional equations, may be expressed in
terms of B: we require that

B

(
wα,w(s)−

1

2
ρ∨
)

= B

(
α, s−

1

2
ρ∨
)

for w ∈W .
We fix an ordering of simple roots of Φ, so that in order they are

{α1, · · · , αr}. Some of the formulas depend on this ordering, but in an inessen-
tial way. Following [11] let us defineM to be the nonzero but finite dimensional
space of functions on Ψ : (F×

S )r −→ C that satisfy

Ψ(ε1C1, · · · , εrCr) =

r∏

i=1

(εi, Ci)
‖αi‖

2

S




∏

i<j

(εi, Cj)
2〈αi,αj〉
S



Ψ(C1, · · · , Cr)

(14)
when ε1, · · · , εr ∈ o×S (F

×
S )n and Ci ∈ F

×
S .

We seek a function H(C1, · · · , Cr;m1, · · · ,mr) defined if the Ci and mi

are nonzero elements of oS with the following properties. There is the multi-
plicativity condition

H(C1C
′
1, · · · , CrC

′
r;m1, · · · ,mr)

H(C1, · · · , Cr;m1, · · · ,mr) H(C′
1, · · · , C

′
r;m1, · · · ,mr)

=

r∏

i=1

(
Ci

C′
i

)‖αi‖
2 (

C′
i

Ci

)‖αi‖
2 ∏

i<j

(
Ci

C′
j

)2〈αi,αj〉(
C′

i

Cj

)2〈αi,αj〉

. (15)
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There is another multiplicativity condition which, unlike (15), does involve
the mi. If gcd(m

′
1 · · ·m

′
r, C1 · · ·Cr) = 1 we require:

H(C1, · · · , Cr;m1m
′
1, · · · ,mrm

′
r) =

(
m′

1

C1

)−||α1||
2

· · ·

(
m′

r

Cr

)−||αr||
2

H(C1, · · · , Cr;m1, · · · ,mr). (16)

The conditions (14) and (15) together imply that if C1, · · · , Cr is each
multiplied by a unit, then the value of ΨH(C1, · · · , Cr) is unchanged. Since
oS is a principal ideal ring, we see that ΨH(C1, · · · , Cr) is really a function
of ideals. Let

ZΨ (s1, · · · , sr;m1, · · · ,mr) =∑
Ψ(C1, · · · , Cr)H(C1, · · · , Cr;m1, · · · ,mr)|C1|

−2s1 · · · |Cr |
−2sr (17)

where the summation is over ideals (Ci). Also let

Z∗
Ψ (s1, · · · , sr;m1, · · · ,mr) =

[
∏

α∈Φ+

ζα(s)Gα(s)

]
ZΨ (s1, · · · , sr;m1, · · · ,mr),

(18)
where, if α is a positive root

ζα(s) =ζF

(
1 + 2n(α)

〈
α, s−

1

2
ρ∨
〉)

,

Gα(s) =Gn(α)

(
1

2
+

〈
α, s−

1

2
ρ∨
〉)

(19)

with

n(α) =





n if α is a short root,
n if α is a long root and Φ 6= G2, and n is odd
n
2 if α is a long root and Φ 6= G2, and n is even
n if α is a long root and Φ = G2, and 3 ∤ n
n
3 if α is a long root and Φ = G2, and 3|n.

The Kubota Dirichlet series DΨ (s;m) is the special case if ZΨ where the
root system is of type A1.

We still have not fully described H , so we haven’t given a proper definition
of ZΨ . The multiplicativities (15) and (16) together imply that the function
H is determined by its values on prime powers. In other words if we specify
H(pk1 , · · · , pkr ; pl1 , · · · , plr ) for prime elements p, the function is determined.

The fundamental combinatorial problem is this: given a global field F in
which −1 is an n-th power and a root system, give a correct definition of the
multiple Dirichlet series extrapolating the heuristic one, such that expanding
in powers of every si gives a sum of Kubota Dirichlet series all having the
same functional equations. Naturally this must be made more precise. We
will write s = (s1, · · · , sr) and m = (m1, · · · ,mr).
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Fundamental Combinatorial Problem.Define H(pk1 , · · · , pkr ; pl1 , · · · , plr)
in such a way that for each index i the series ZΨ (s;m) has an expansion

∑

M

DΨi
(si,M)PM (s) (20)

for some Ψi, where PM is a Dirichlet polynomial, such that for each i we have

PM (σis) = |M |
1−2siPM (s). (21)

If this can be done, then we have a functional equation

ZΨ (s;m) = ZΨ ′(σis;m) (22)

for some Ψ ′. Here σi is the simple reflection in the Weyl group action on
the parameters s; if the root system is simply-laced it is the action (7), or
see [11] for the general case. The method of analytic continuation described
in Section 2 is applicable. This yields both the meromorphic continuation and
the scattering matrix, which we recall from Section 2 amounts to an action of
W on Ψ such that in (22) we have Ψ ′ = σiΨ and more generally

Z∗
wΨ (ws;m) = Z∗

Ψ (s;m).

The normalizing factor in (18) works out as follows: the factor ζαGα with
α = αi is needed to normalize the Kubota Dirichlet series in (20). The other
such factors are simply permuted by s 7−→ σi(s).

Let us consider briefly how this works in the case of Type A2. See [9] for
a complete discussion and detailed proof for this case. We have noted above
that specifying the coefficients H(pk1 , pk2 ; pl1 , pl2) completely determines the
function H . In this example, let us take m1 = m2 = 1 so l1 = l2 = 0 for all p.
The coefficients to be described are given by the following table

Let the nonzero values of H(pk1 , pk2 ; 1, 1) be given by the following table:

k1

k2

0 1 2
0 1 g(1, p)
1 g(1, p) g(p, p)g(1, p) g(p, p2)g(1, p)
2 g(p, p2)g(1, p) g(p, p2)g(1, p)2

Then, collecting terms with equal powers of |p|−s2 we have a decomposition
(20) where the summation includes terms of the following type:

DΨ ′(s1; 1), g(1, p)|p|−2s2DΨ ′′(s1; p), g(1, p)g(p, p2)|p|−2s1−4s2DΨ ′′′(s1; 1),

for suitable Ψ ′, Ψ ′′ and Ψ ′′′. We recognize the p-parts of these Kubota Dirichlet
series from the tabulated values by collecting the terms in each column of the
table.

Early papers in this subject gave ad hoc solutions to the combinatorial
problem. Such direct verifications become fairly difficult, for example in [25]
and [21].
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6 p-parts

Let us define the p-part of Z to be the Dirichlet series

∞∑

ki=0

H(pk1 , · · · , pkr ; pl1 , · · · , plr )|p|−2k1s1−...−2krsr . (23)

We fix the representative p of the prime and ignore Ψ . By twisted multi-
plicativity, if the p-parts are known for all p, the multiple Dirichlet series is
determined.

Returning to (17), let us consider the effect of the parametersm1, · · · ,mr.
These are called twisting parameters, and the term “twisting” is supposed
to evoke the usual twisting of L-functions: if L(s, f) =

∑
ann

−s is some L-
function and χ is a Dirichlet character then L(s, f, χ) =

∑
χ(n)ann

−s. The
term “twisting” in the present context is both apt and in a way misleading,
as we will now explain.

First suppose that m1, · · · ,mr are coprime to C1, · · · , Cr. Then by (16)
we have

H(C1, · · · , Cr;m1, · · · ,mr) =
(
m1

C1

)−||α1||
2

· · ·

(
mr

Cr

)−||αr||
2

H(C1, · · · , Cr; 1, · · · , 1) (24)

Thus these coefficients are indeed simply multiplied by an n-th order charac-
ter, as the term “twisting” suggests.

On the other hand, if the mi are not coprime to the Ci, then the effect of
the mi is much more profound. For example in H(pk1 , · · · , pkr ; pl1 , · · · , plr)
it is important to think of (l1, · · · , lr) as indexing a weight,

∑
li̟i, where

̟1, · · · , ̟r are the fundamental dominant weights of the root system Φ. Then
we may think of the p-part (23) as being something related to the character of
an irreducible representation of the associated Lie group, times a deformation
of the Weyl denominator, but with the weight multiplicities replaced by sums
of products of Gauss sums. In particular, varying mi = pli affects the p-part
in a profound way, no simple twisting.

With mi general, their meaning may be explained as follows: specifying
m1, · · · ,mr is equivalent to specifying, for each p, dominant weight λp such
that λp = 0 for almost all p. Indeed, factor mi = plim′

i where p ∤ m
′
i and take

λp =
∑
li̟i.

Now let the prime p and the exponents l1, · · · , lr be fixed, and let λ =
λp =

∑
li̟i be the corresponding dominant weight. Also let

ρ =
r∑

i=1

̟i =
1

2

∑

α∈Φ+

α

be the Weyl vector. Let W be the Weyl group of Φ. If w ∈ W , let k(w) be the
r-tuple of nonnegative integers (k1, · · · , kr) such that ρ+λ−w(ρ+λ) =

∑
kiαi.
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The coefficients H(pk1 , · · · , pkr ; pl1 , · · · , plr) in general do not admit an
easy description, but if (k1, · · · , kr) = k(w) for some w, then it is a product
of l(w) Gauss sums, where l(w) is the length of w. To make this explicit, let
Φw be the set of all positive roots α such that w(α) is a negative root, so
|Φw| = l(w). Then (see [12]) we have

H(pk1 , . . . , pkr ; pl1 , . . . , plr) =
∏

α∈Φw

g‖α‖2(p〈λ+ρ,α〉−1, p〈λ+ρ,α〉). (25)

Let Supp(λ) be the support of H(pk1 , · · · , pkr ; pl1 , · · · , plr ), that is, the set of
k = (k1, · · · , kr) such that H(pk1 , · · · , pkr ; pl1 , · · · , plr) 6= 0. Then by (25),
{k(w)|w ∈ W} is contained in Supp(λ).

Most importantly, the |W | points k(w) are the extremal values of the
support. That is, Supp(λ) is contained in the convex hull of k(w). These |W |
extremal points are called stable in [11] and [12] for the following reason. If
n is sufficiently large, then Supp(λ) = {k(w)|w ∈ W}, and in this case, the
values (25) are the only nonzero values ofH(pk1 , . . . , pkr ; pl1 , . . . , plr ). So these
values are “stable” and the combinatorial problem is solved by (25).

For arbitrary n, Supp(λ) is at least contained in the convex hull of
{k(w)|w ∈ W}. But for interior points of this convex polytope, the description
of H(pk1 , . . . , pkr ; pl1 , . . . , plr ) is much more difficult. We will next look at the
various approaches.

7 Multiple Dirichlet Series and Combinatorics

In this section we will introduce the modern combinatorial theory of the p-
parts of Weyl group multiple Dirichlet series. There are several different meth-
ods of representing the p-parts of multiple Dirichlet series to be considered,
each with its own individual combinatorial flavor. The combinatorial theory
has only taken shape in the last few years. We will state things most fully in
the “nonmetaplectic” case n = 1, leaving the reader hopefully oriented and
ready to explore the general cases in the literature.

We see that correctly specifying the p-part of the function H produces
a Dirichlet series ZΨ with global meromorphic continuation. These functions
turn out to be extremely interesting. Several definitions of H emerged, and
proving their equivalence proved to be nontrivial. Moreover, as the functions
H were intensively studied, various clues seemed to suggest connections with
the theory of quantum groups. We will discuss these points in this section.

The following main classes of definitions were found.

• Definition by the “Averaging method,” sometimes known as the Chinta-
Gunnells method.

• Definition as spherical p-adic Whittaker functions.
• Definition as sums over crystal bases.
• Definition as partition functions of statistical-mechanical lattice models.
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The first and second definitions give uniform descriptions for all root systems
and all n. The third and fourth definitions are on a case-by-case basis and
have not been carried out for all n. Nevertheless they are very interesting,
and it is the latter two approaches that suggest connections with quantum
groups.

The equivalence of these different definitions is by no means clear or easy.
However it is now mostly proved by the following scheme.

Chinta-Gunnells
method

←→
Whittaker
function

←→
Crystal

description
←→

Statistical
model

The equivalence of the averaging method with the Whittaker definition was
proved by Chinta and Offen [29] for Type A by generalizing the original proof
of Casselman and Shalika. This was extended by McNamara [49] to arbitrary
Cartan types. Two results which both assert that the Whittaker definition
is equivalent to the crystal definition (in Type A) are Brubaker, Bump and
Friedberg [13] and McNamara [50]. The first paper directly computes the
Whittaker coefficients of Eisenstein series, and the second paper proceeds
locally by partitioning the unipotent integration into cells that contribute
the individual terms in the sum over the crystal. The relationship between
the statistical model scheme and the crystal description must be done on a
case-by-case basis, but we will discuss these below.

Yet another possibility has appeared on the horizon within the last few
months.

• Approach p-adic Whittaker functions by means of Demazure-Lusztig op-
erators and “metaplectic” generalizations of them.

The above remarks concern mainly what is, in the language of Whittaker
models, the spherical Whittaker function. However it is useful to consider a
larger class of Whittaker functions, namely the Iwahori fixed vectors in the
Whittaker model. When these are considered, the Demazure-Lusztig operators
and their metaplectic analogs appear.

There are other objects in mathematics that may be related to these.

• Some examples of zeta functions of prehomogeneous vector spaces seem to
be specializations of Weyl group multiple Dirichlet series. These connec-
tions are under investigation by Chinta and Taniguchi.

• Jacquet conjectured that an O(r) period of an automorphic form on GLr

is related to a Whittaker coefficent of the Shimura correspondent on the
double cover of GLr. Applying this to Eisenstein series, this would mean
that orthogonal periods of Eisenstein series on GLr are related to Type
Ar−1. When r − 1 = 2, this was investigated by Chinta and Offen [30].

• Zeta functions of prehomogeneous vector spaces as well as the Witten
zeta functions studied by Komori, Matsumoto and Tsumura [45] in this
volume are both special cases of Shintani zeta functions. It is by no means
clear that the Witten zeta functions can be related to Weyl group multiple
Dirichlet series but potentially there are undiscovered connections.
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Let us begin with p-adic Whittaker functions. Casselman and Shalika [24]
showed that the values of the spherical Whittaker function are expressible as
values of the characters of irreducible representations of the L-group, times a
deformation of the Weyl denominator. We begin by reviewing this important
formula.

Let G be a split Chevalley group, or more generally a split reductive group
defined over Z. Let F be a nonarchimedean local field with residue field o/p =
Fq, where o is the ring of integers and p its maximal ideal. Let B = TN be
a Borel subgroup, where T is a maximal split torus, and N is the unipotent
radical. The root system lives in the group X∗(T ) of rational characters of T
and the roots so that N is the subgroup generated by the root groups of the
positive roots.

We may take the algebraic groups G, T,B,N to be defined over o. Then
G(o) is a special maximal compact subgroup. If w is an element of the Weyl
group W , we will choose a representative for it in G(o), which, by abuse of
notation, we will also denote as w.

Let Ĝ be the (connected) Langlands L-group. It is an algebraic group
defined over C. Then G and Ĝ contain split maximal tori T and T̂ respectively;
T we have already chosen. Then T̂ (C) is isomorphic to the group of unramified
characters of T (F ), that is, the characters that are trivial on T (o). If z ∈ T̂ (C),
let τz denote the corresponding unramified character.

Let Λ be the weight lattice of T̂ , that is, the group of rational characters.
Then Λ is isomorphic to T (F )/T (o). The isomorphism may be chosen so
that if λ is a weight and aλ is a representative of the corresponding coset in
T (F )/T (o), then

τz(aλ) = zλ. (26)

There are now two root systems to be considered: the root system of G relative
to T , and the root system of Ĝ relative to T̂ . The latter is more important for
us, so we will denote it as Φ. Thus Φ is contained in the Euclidean vector space
R⊗Λ. If α ∈ Φ then the corresponding coroot α∨ is a root of G with respect
to T , and we will denote by iα : SL2 −→ G the corresponding Chevalley
embedding.

For example, let G = GLr+1. Then Ĝ = GLr+1. We take T and T̂ to be
the diagonal tori. We may identify the weight lattice Λ of T̂ with Zr+1 in such
a way that λ = (λ1, · · · , λr+1) ∈ Zr+1 corresponds to the rational character

z =



z1

. . .

zr+1


 7−→

∏

i

zλi

i .

If p is a generator of p we may take

aλ =



pλ1

. . .

pλr+1


 .
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Then (26) is satisfied with

τz



t1

. . .

tr+1


 =

∏
z
ordp(ti)
i .

Returning to the general case, let z ∈ T̂ (C). We may induce τz to G(F ),
by considering the vector space Vz of functions f : G(F ) −→ C that satisfy

f(bg) = (δ1/2τz)(b)f(g), b ∈ B(F ). (27)

The groupG(F ) acts on Vz by right translation. If z is in general position, this
representation is irreducible, and unchanged if z is replaced by any conjugate
by an element of the Weyl group. If it is not irreducible, at least its set of
irreducible constitutents are unchanged if z is conjugated.

Let ψ : N(F ) −→ C be a character. We will assume that if α is a simple

root, then the character x 7−→ iα

(
1 x
1

)
of F is trivial on o but no larger

fractional ideal. If f ∈ Vz and g ∈ G(F ), define the Whittaker function on
G(F ) associated with f by

Wf (g) =

∫

N(F )

f(w0ng)ψ(n) dn, (28)

where w0 is a representative in G(o) of the long Weyl group element. The
integral is convergent if |zα| < 1 for positive roots α; for other z, it may be
extended by analytic continuation. The space Vz has a distinguished spherical

vector f◦ characterized by the assumption that f◦(g) = 1 for g ∈ G(o). Let
W ◦ =Wf◦ .

Theorem 1. (Casselman-Shalika [24]) Let λ ∈ Λ. Then

δ−1/2(aλ)W
◦(aλ) =

{[∏
α∈Φ+(1− q−1zα)

]
χλ(z) if λ is dominant,

0 otherwise.
(29)

Here with λ dominant, χλ is the character of the finite-dimensional irre-
ducible representation of Ĝ having highest weight λ. Note that the product
on the right-hand side is a deformation of the Weyl denominator. Thus if ρ
is half the sum of the positive roots, on specializing q−1 to 1, the right-hand
side of (29) becomes

[
∏

α∈Φ+

(1− zα)

]
χλ(z) = zρ

∑

w∈W

(−1)l(w)zw(λ+ρ), (30)

where we have used the Weyl character formula to rewrite the specialization
as a sum over the Weyl group.
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We next consider how expressions such as the character χλ may be inter-
preted as the p-parts of multiple Dirichlet series.

Let q be a power of a rational prime. Let λ be a dominant weight. We
consider an expression E =

∑
µm(µ)zµ, where the sum is over weights µ,

and m(µ) is a complex number that is nonzero for only finitely many µ. More
precisely, we assume m(µ) = 0 unless µ is in the convex hull of the polytope
spanned by the W -orbit of λ, and moreover λ−µ is in the root lattice, which
is the lattice in Λ spanned by Φ.1 We will also assume that m does not vanish
on the W -orbit of λ, though it may vanish for roots in the interior of the
polytope. We will call E a λ-expression. For example, χλ is a λ-expression,
and the numerator in the Weyl character formula, in other words (30), is a
(λ+ ρ)-expression.

Given a λ-expression E, let us show how to obtain a Dirichlet polynomial,
that is, a polynomial in q−2s1 , · · · , q−2sr where r is the rank of Ĝ. Given µ,
there exist nonnegative integers (k1, · · · , kr) = (k1(µ), · · · , kr(µ)) such that∑
kiαi = µ− w0(λ), where w0 is the long Weyl group element. Then we call

∑

µ

m(µ)q−2k1(µ)s1−...−2kr(µ)sr

the Dirichlet polynomial associated with the λ-expression E. The p-parts of
the multiple Dirichlet series that we are considering are all of this type. If
n = 1, the (λ+ ρ)-expression producing the p-part is

[
∏

α∈Φ+

(1− q−1zα)

]
χλ(z) (31)

which, we observe, differs from (30) by the insertion of q−1. Thus the p-part is
a deformation of (30). Comparing with the Casselman-Shalika formula (29),
we see that this is essentially a value of the spherical Whittaker function.

Similarly, the p-part (23) with q = |p| is derived from a certain (λ + ρ)-
expression, and these (λ + ρ)-expressions turn out to be values of spherical
Whittaker functions on metaplectic covers of G. The integer li in (23) is the
inner product of λ with the coroot α∨

i . These (λ + ρ)-expressions might be
regarded as analogs of (31) in which the integers m(µ) have been replaced
by sums of products of Gauss sums. As we will explain, they are extremely
interesting objects from a purely combinatorial point of view.

The averaging method of Chinta-Gunnells expresses the p-part of the mul-
tiple Dirichlet series as a ratio in which the numerator is a sum over the Weyl
group, and in the case n = 1, it reduces to the right-hand side of (30). When
n > 1, the Weyl group action on functions is non-obvious; the simple reflec-
tions involve Gauss sums and congruence conditions, and verifying the braid
relations is not a simple matter. See Chinta and Gunnells [27] for this action,

1 If Ĝ is semisimple then the root lattice has finite index in Λ.
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and Patterson [52] for a meditation on the relationship between the method
and the intertwining operators for principal series representations.

We turn next to the crystal description. Crystals arose from the represen-
tation theory of quantum groups, that is, quantized enveloping algebras. Let
ĝ be a complex Lie algebra, which for us will be the Lie algebra of Ĝ. Then
the quantized enveloping algebra Uq(ĝ) is a Hopf algebra that is a deforma-
tion of the usual universal enveloping algebra U(ĝ) to which it reduces when
q = 1. The representations of Ĝ(C) correspond bijectively to characters of ĝ,
and hence to U(ĝ); they extend naturally to representations of Uq(ĝ).

Suppose that λ is a dominant weight, which is the highest weight vector of
an irreducible representation of of Ĝ and hence of Uq(ĝ). This module Uq(ĝ)
has a distinguished basis, Kashiwara’s global crystal basis, which is closely
related to Lusztig’s canonical basis. Let us denote it as Bλ. Let 0 be the zero
element of the module. Let α1, · · · , αr be the simple roots. If α = αi, then

diα

(
0 1
0 0

)
and diα

(
0 0
1 0

)
are in a certain sense approximated by maps ei

and fi from Bλ to Bλ ∪ {0}, the Kashiwara operators ; each such operator
applied to v ∈ Bλ either gives 0 or another element of the basis.

Also, every element of the crystal basis lies in a well-defined weight space
so there is a map wt : Bλ −→ Λ mapping each element to its weight. We have

χλ(z) =
∑

v∈Bλ

zλ. (32)

The maps ei and fi shift the weights: if x, y ∈ Bλ then fi(x) = y if and only if
ei(y) = x and in this case, wt(y) = wt(x)− α. When this is true, we draw an

arrow x
i
−→ y, and the resulting directed graph, with edges labeled by indices

i is the crystal graph.
Let us consider an example. Take G = GL3. Its Cartan Type is A2. In this

case, the weight lattice Λ may be identified with Z3. If λ is a weight, then
with this identification λ = (λ1, λ2, λ3) where zλ = zλ1

1 zλ2

2 zλ3

3 . The weight
is dominant if λ1 > λ2 > λ3. Assume that λ is dominant, and furthermore
λ3 > 0, so that λ is a partition. The elements of Bλ may be identified with
semistandard Young tableaux with shape λ. So if λ = (3, 1, 0) and r = 2,
the crystal graph of Bλ is shown in Figure 1. The weight of a tableau T is
wt(T ) = (µ1, µ2, µ3) where µi is the number of entries in T equal to i.

If w ∈ W then Bλ has a unique element vwλ of weight wλ. We will call
these elements extremal. Consider a function f on Bλ, which we assume does
not vanish on the extremal elements. Then we may consider

Ef =
∑

v∈Bλ

f(v)zwt(v).

This is a λ-expression. For example if f(v) = 1 for all v, then Ef is the
character of the irreducible representation with highest weight λ.
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We call a weight strongly dominant if it is of the form λ+ ρ with λ domi-
nant. A dominant weight is strongly dominant if and only if W acts freely on
its orbit, or equalently, if it is in the interior of the positive Weyl chamber.
Let λ + ρ be a strongly dominant weight. We recall that the numerator (30)
in the Weyl character formula, as are the p-parts of the Weyl group multiple
Dirichlet series, are (λ+ ρ)-expressions. So we may hope to find a function f
on Bλ+ρ such that Ef equals this numerator or p-part. In some cases, a defor-
mation of the Weyl character formula exists in which the numerator is a sum
over Bλ+ρ. The formula will express χλ as a ratio of this sum to a denominator
that is a deformation of the Weyl denominator, of the form

∏
α∈Φ+(1 − tzα)

where t is a deformation parameter. Taking t = 1, only the extremal elements
of Bλ+ρ will make a nonzero contribution, and the numerator will reduce to
the numerator in the Weyl character formula. Taking t = 0, the only terms
that contribute will be those in the image of a map Bλ −→ Bλ+ρ, and the
sum reduces to a sum over Bλ. Thus when t = 0, the formula reduces to (32).
Most importantly for us, taking t = q−1 and comparing with (29), we see that
the sum over Bλ+ρ is exactly δ1/2(aλ)W

◦(aλ).
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Fig. 1. The Crystal B(3,1,0) with an element of weight (1, 2, 1) highlighted.

Moreover such formulas exist for metaplectic Whittaker functions. In other
words, there is often a way of summing over Bλ+ρ and obtaining a Whittaker
function on the n-fold cover of some group. There should actually be one such
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formula for every reduced decomposition of the long Weyl group element into
a product of simple reflections, and in some sense this is true. But in practice
only certain such decompositions give clean and elegant formulas. Here is a
list of cases where nice formulas are known, rigorously or conjecturally.

• Cartan Type Ar, any n. See [14] and [13]. These produce Whittaker func-
tions on the n-fold covers of GLr+1. In this case proofs are complete.

• Cartan Type Br, n even. These would produce Whittaker functions on
even covers of Sp2r. For general even n, the representation is conjectural,
and even in the n = 2 case there is still work to be done. See [10], this
volume, for the case n = 2.

• Cartan Type Cr, n odd. See [3], this volume and Ivanov [40] for a discussion
of the Yang-Baxter equation. These will produce Whittaker functions on
the n-covers of Sp2r+1. Only the case n = 1 is proved.

• Cartan Type Dr, any n. See [28], this volume. This case is still largely
conjectural.

Let us explain how this works for Type Ar for arbitrary r, so G = GLr+1

(or SLr+1). If n = 1, the formula in question is Tokuyama’s formula.
Tokuyama [54] expressed his formula as a sum over strict Gelfand-Tsetlin
patterns, but it may be reformulated in terms of tableaux, or crystals. Using
crystals, Tokuyama’s formula may be written

[
∏

α∈Φ+

(1 − tzα)

]
χλ(z) =

∑

v∈Bλ+ρ

G♭(v)zwt(v)−w0ρ, (33)

where w0 is the long Weyl group element, and the function G♭(v) will be
described below. Tokuyama’s formula is a deformation of the Weyl charac-
ter formula, which is obtained by specializing t −→ 1; the formula (32) is
recovered by specializing t −→ 0. Taking t = q−1 to be the cardinality of
the residue field for a nonarchimedean local field, and combining Tokuyama’s
formula with the Casselman-Shalika formula (29), it gives a formula for the
p-adic Whittaker function, and similar formulas give the p-part of the multiple
Dirichlet series. Since this is the case we are concerned with, we will write q−1

instead of t for the deformation parameter, even if occasionally we want to
think of it as an indeterminate.

To define G♭(v), we first associate with v a BZL-pattern (for Berenstein,
Zelevinsky [4] and Littelmann [47]). We choose a “long word” by which we
mean a decomposition of w0 = σω1

· · ·σωN
into a product of simple reflections

σωi
(1 6 i 6 r), where N is the number of positive roots. Let b1 be the

number of times we may apply fω1
to v, that is, the largest integer such that

f b1
ω1
(v) 6= 0. Then we we let b2 be the largest integer such that f b2

ω2
f b1
ω1
(v) 6= 0.

Continuing this way, we define b1, · · · , bN . We may characterize BZL(v) =
(b1, b2, · · · , bωN

) as the unique sequence of N nonnegative integers such that
f bN
ωN
· · · f b1

ω1
(v) is the unique vector vw0λ with lowest weight w0λ.
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We should be able to give a suitable definition of G♭ for any Cartan type
and any long word, but in practice we only know how to give precise combi-
natorial definitions in certain cases. We will choose this word:

(ω1, · · · , ωN ) = (1, 2, 1, 3, 2, 1, · · · )

corresponding to the decomposition into simple reflections:

w0 = σω1
· · ·σωN

= σ1σ2σ1σ3σ2σ1 · · ·σrσr−1 · · ·σ1,

where σi is the i-th simple reflection in W . We will write BZL(v) in a tabular
array:

BZL(v) =




. . .
...

b4 b5 b6
b2 b3
b1


 (34)

This has the significance that each column corresponds to a single root oper-
ator fi where i = 1 for the rightmost column, i = 2 for the next column, and
so forth.

Now we will decorate the pattern by drawing boxes or circles around var-
ious bi according to certain rules that we will now discuss. We describe the
circling rule first. It may be proved that bi satisfies the inequality bi > bi+1,
except in the case that i is a triangular number, so that bi is the last entry in
its row; in the latter case, we only have the inequality bi > 0. In either case
We circle bi if it’s inequality is an equality. In other words we circle bi if (in
the first case) bi = bi+1 or (in the second case) bi = 0.

For the boxing rule, we box bi if eωi+1
f bi
ωi
· · · f b1

ω1
(v) = 0.

Let us consider an example. We take (ω1, ω2, ω1) = (2, 1, 2) and v to be

the element
1 2 2

3
in the crystal B(3,1,0) that is highlighted in Figure 1. Then

it is easy to see that

BZL(v) =

[
1 1
1

]
.

We decorate this as follows. Since b2 = b3, we circle b2. Moreover eω1
(v) =

0, since (referring to the crystal graph) there is no way to move in the e1
direction. Thus b1 is boxed and the decorated BZL pattern looks like this:

BZL(v) =



?>=<89:;1 1

1




The boxing and circling rules may seem artificial, but are actually natural,
for they have the following interpretation. Kashiwara defined, in addition to
the crystals Bλ corresponding to the finite-dimensional irreducible representa-
tions, a crystal B∞ which is a crystal basis of the quantized universal eveloping
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algebra of the lower unipotent part of the Lie algebra of G. There is another
crystal Tλ with precisely one element having weight λ. Then B∞ ⊗ Tλ+ρ is a
“universal” crystal with a highest weight vector having weight λ+ ρ. There is
then a morphism of crystals Bλ+ρ −→ B∞ ⊗ Tλ+ρ. See Kashiwara [41]. This
morphism may be made explicit by adopting a viewpoint similar to Littel-
mann [47]. Indeed, the notion of BZL patterns makes sense for B∞ ⊗ Tλ+ρ,
and the set of BZL patterns is precisely the cone of patterns (34) such that

b1 > 0, b2 > b3 > 0, b4 > b5 > b6 > 0, · · · .

The morphism Bλ+ρ −→ B∞ ⊗ Tλ+ρ is then characterized by the condition
that corresponding elements of the two crystals have the same BZL pattern.
See Figure 1 of Bump and Nakasuji [23] for a picture of this embedding.

Now the circling rule may be explained as follows: embedding v ∈ Bλ+ρ

into B∞ ⊗ Tλ+ρ, an entry in the BZL pattern is circled if and only if BZL(v)
lies on the boundary of the cone. Similarly there is a crystal B−∞ ⊗ Tw0(λ+ρ)

with a unique lowest weight vector having weight w0(λ + ρ), and we may
embed Bλ+ρ into this crystal by matching up the lowest weight vectors, and
an entry is boxed if and only if BZL(v) lies on the boundary of this opposite
cone.

Returning to Tokuyama’s formula, define

G♭(v) =

N∏

i=1





1 if bi is circled but not boxed;
−q−1 if bi is boxed but not circled;
1− q−1 if bi is neither circled nor boxed;
0 if bi is both circled and boxed.





This was generalized to the n > 1 case as follows. There is, in this general-
ity, a Whittaker function on the metaplectic group, and as in the case n = 1,
we have

δ−1/2(aλ)W
◦(aλ) =

∑

v∈Bλ+ρ

G♭(v)zwt(v)−w0ρ. (35)

Now the definition of G♭ must be slightly changed. Let a be a positive integer.
Define g(a) = q−ag(pa−1, pa) and h(a) = q−ag(pa, pa) in terms of the Gauss
sum discussed in the last section. These depend only on a modulo n. Then we
have

G♭(v) =

N∏

i=1





1 if bi is circled but not boxed;
g(bi) if bi is boxed but not circled;
h(gi) if bi is neither circled nor boxed;
0 if bi is both circled and boxed.





If n = 1, this reduces to our previous definition.
Tokuyama’s formula may be given another interpretation, as evaluating

the partition function of a statistical mechanical system of the free-fermionic
six-vertex model. For this, see [15], Chapter 19 of [14], and the paper [8] in
this volume. Since more details may be found in these references, we will be
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brief. In a statistical mechanical system, there is given a collection of (many)
states , and each state is assigned a Boltzmann weight which is a measure of
how energetic the state is; more more highly energetic states are less probable.

For example, the two-dimensional Ising model consists of a collection of
sites, each of which may be assigned a spin + or −. These sites might represent
atoms in a ferromagnetic substance, and in the two dimensional model they
lie in a plane. A state of the system consists of an assignment of spins to every
site. At each site, there is a local Boltzmann weight, depending on spin at the
site and at its nearest neighbors. This system was analyzed by Onsager, who
found, surprisingly, that the partition function could be evaluated explicitly.

Later investigators considered models in which the spins are assigned not
to the sites themselves, but to edges in a grid connecting the sites. The Boltz-
mann weight at the vertex depends on the configuration of spins on the four
edges adjacent to the vertex. Thus if the site is x, we label the four adjacent
edges with εi = + or − by the following scheme:

ε2

ε1 ε3

ε4

x

(36)

Of particular interest to us is the six-vertex or two-dimensional ice model

which was solved by Lieb and Sutherland in the 1960’s, though it is the
treatment of Baxter [1] that is most important to us. There are six admissible
configurations. These are given by the following table.

x x x x x x

Boltzmann
weight

a1 = a1(x) a2 b1 b2 c1 c2

The set of Boltzmann weights used may vary from site to site, so if (as in the
table) the site is x we may write a1(x) to indicate this dependence.

If a1 = a2, b1 = b2 and c1 = c2 then the site is called field-free. If a1a2 +
b1b2 = c1c2, the site is called free-fermionic. The term comes from physics: in
the free-fermionic case, the row transfer matrices (see [8]) are differentiated
versions of the Hamiltonians of a quantummechanical system, the XXZmodel,
and the quanta for this model are particles of spin 1/2, called fermions.

Hamel and King [38] and Brubaker, Bump and Friedberg [15] showed that
one may exhibit a free-fermionic six-vertex model whose partition function is
exactly the Tokuyama expression (33). In [8] in this volume, this is generalized
to a system whose partition function is the metaplectic spherical Whittaker
function (35). The explanation for this is as follows: there is a map from the
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set of states of the model to the Bλ+ρ crystal. The map is not surjective, but
its image is precisely the set of v ∈ Bλ+ρ such that G♭(v) 6= 0.

Thus using this bijection of the set of states with those v ∈ Bλ+ρ such
that G♭(v) 6= 0 means that Tokuyama’s theorem may be formulated either
as the evaluation of a sum over a crystal or as the partition function of a
statistical-mechanical system. But there is a subtle and important difference
between these two setups. For example, different tools are available. There
is a an automorphism of the crystal graph, the Schützenberger involution,
that takes a vertex of weight µ to one of weight w0µ, where w0 is the long
Weyl group element; this is sometimes useful in proofs. The set of states of
the statistical-mechanical system has no such involution, yet another, more
powerful tool becomes available: the Yang-Baxter equation.

To describe it, let us associate a matrix with the Boltzmann weights at a
site as follows. Let V be a two-dimensional vector space with basis v+ and
v−. (In the metaplectic case, the scheme proposed in [8] gives its dimension as
2n.) Associate with each site an endomorphism of V ⊗V as follows. With the
vertices labeled as in (36), let R be the linear transformation such that the
coefficient of vε3 ⊗ vε4 in R(vε1 ⊗ vε2) is the Boltzmann weight corresponding
to the four spins ε1, ε2, ε3, ε4. Thus the only nonzero entries in the matrix of
R with respect to the basis v± ⊗ v± are a1, a2, b1, b2, c1, c2. We will call an
endomorphism R of V ⊗ V (or its matrix) an R-matrix . We then denote by
R12, R13 and R23 endomorphisms of V ⊗ V ⊗ V in which Rij acts on the
i-th and j-th components, and the identity 1V acts on the remaining one. For
example R12 = R⊗ 1V .

We are interested in endomorphisms R,S and T of V ⊗ V such that

R12S13T23 = T23S13R12.

It is not hard to check that this is equivalent to (25) in [8]. This was called
the star-triangle relation by Baxter, and the Yang-Baxter equation by others,
particularly in the case where R,S, T are either all equal, or drawn from the
same parametrized family. In particular let Γ be a group, and g 7−→ R(g) a
map from Γ into the set of R-matrices such that

R12(g)R13(gh)R23(h) = R23(h)R13(gh)R12(g). (37)

Then (37) is called a parametrized Yang-Baxter equation.
In Section 9.6 of [1], Baxter essentially found parametrized Yang-Baxter

equations in the field-free case, where a1 = a2 = a, b1 = b2 = b and c1 =
c2 = c. Fix a complex number ∆. Then his construction gives a parametrized
Yang-Baxter equation, with parameter group C×, such that the image of R
consists of endomorphisms of V ⊗ V with corresponding to such field-free R-
matrices with (a2+b2−c2)/2ab = ∆. This construction led to the development
of quantum groups. In the formulation of Drinfeld [33], this instance of the

Yang-Baxter equation is related to Hopf algebra Uq(ŝl2). The parameter group
indexes modules of this Hopf algebra with ∆ = 1

2 (q + q−1), and Yang-Baxter
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equation is a consequence of a property (quasitriangularity) of Uq(ŝl2), or a
suitable completion.

A parametrized Yang-Baxter equation with parameter group SL(2,C) was
given in Korepin, Boguliubov and Izergin [44], p. 126. The parametrized R-
matrices are contained within the free-fermionic six-vertex model. Scalar R-
matrices may be added trivially, so the actual group is SL(2,C)×GL1(C). This
nonabelian parametrized Yang-Baxter equation was rediscovered in slightly
greater generality by Brubaker, Bump and Friedberg [15], who found a
parametrized Yang-Baxter equation for the entire set of R-matrices in the
free-fermionic six-vertex model, with parameter group GL2(C) × GL1(C). It
is an interesting question how to formulate this in terms of a Hopf algebra,
analogous to the field-free case.

Brubaker, Bump and Friedberg [15] showed that a system may be found,
with free-fermionic Boltzmann weights, whose partition function is precisely
(33). This fact was generalized Bump, McNamara and Nakasuji [22], who
showed that one may replace the character on the left-hand side by a factorial
Schur function. Then the parametrized free-fermionic Yang-Baxter equation
can be used to prove Tokuyama’s formula (or its generalization to factorial
Schur functions). Moreover, in [8] a different generalization is given, in which
the partition function represents the metaplectic Whittaker function. In the
latter case, however, no Yang-Baxter equation is known if n > 1.

When n = 1, various facts about Whittaker functions may be proved us-
ing the free-fermionic Yang-Baxter equation. One fact that may be checked
is that the partition function representing (33), divided by the product on
the left-hand side of the equation, is symmetric, in other words invariant un-
der permuting the eigenvalues of z. This is a step in a proof of Tokuyama’s
theorem. As explained in [8], this fact has a generalization to partition func-
tions representing metaplectic Whittaker functions, and seems amenable to
the Yang-Baxter equation, but no Yang-Baxter equation is known in this case.

In (35), the definition of G♭ depends on the choice of a reduced word
representing the long Weyl group element. Two particular long words are
considered, and the Yang-Baxter equation is used to show that both repre-
sentations give the same result. If n > 1, this remains true, but again the
Yang-Baxter equation is unavailable. Consequently different proofs, based on
the Schützenberger involution of the crystal Bλ+ρ are given. However these
arguments require extremely difficult combinatorial arguments, and it would
be good to have an alternative approach based on the Yang-Baxter equation.

See [10] another application of the free-fermionic Yang-Baxter equation to
metaplectic Whittaker functions, this time on the double cover of Sp(2r).

8 Demazure operators

Let (π, V ) be a principal series representation of G(F ), where G is a split
semisimple Lie group. The theory described above, including the Casselman-
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Shalika formula (and its metaplectic generalizations) is for the spherical Whit-
taker function, that is, the K-fixed vector in the Whittaker model, where
K = G(o).

Let J be the Iwahori subgroup, which is the inverse image of B(Fq) under
the map G(o) −→ G(Fq) that is reduction mod p. We may consider more
generally the space V J of J-fixed vectors in the Whittaker model. These play
an important role in the proof of the Casselman-Shalika formula which, we
have seen, is a key result in the above discussion.

Until 2011, the investigations that we have been discussing in the above
pages concentrated on the unique (up to scalar) K-fixed vector, rather than
elements of V J , though the Iwahori fixed vectors appeared in the work of
Chinta and Offen [29] and McNamara [49] generalizing Casselman and Shalika.
Still, the essence of the Casselman-Shalika proof is to finesse as much as
possible in order to avoid getting involved with direct calculations of Iwahori
Whittaker functions. But it turns out that there is an elegant calculus of
Iwahori Whittaker functions, and this is likely to be a key to the relationship
between the theory of Whittaker functions and combinatorics.

If w ∈ W , the Demazure operator ∂w acts on the ring O(T̂ ) of rational
functions on T̂ . To define it, first consider the case where w = σi is a simple
reflection. Then if f is a rational function on T̂ (C),

∂σi
f(z) =

f(z)− z−αif(σiz)

1− z−αi
.

The numerator is divisible by the denominator, so this is again a rational
function. The definition of ∂w is completed by the requirement that if l(ww′) =
l(w) + l(w′), where l is the length function on W , then ∂ww′ = ∂w∂w′ .

If λ is a dominant weight then ∂w0
zλ is the character χλ(z), and for

general w we will call ∂wz
λ a Demazure character . These first arose in the

cohomology of line bundles over Schubert varieties, and they have proved to
be quite important in combinatorics. As Littelmann and Kashiwara showed,
they may be interpreted as operators on functions on crystals. As we will
explain, Demazure operators, and the related Demazure-Lusztig operators
arise naturally in the theory of Whittaker functions.

Iwahori and Matsumoto observed that V J is naturally a module for the
convolution ring of compactly supported J-biinvariant functions, and they de-
termined the structure of this ring. Later Bernstein, Zelevinsky and Lusztig
gave a different presentation of this ring. It is the (extended) affine Hecke
algebra H̃q, and it has also turned out to be a key object in combinatorics
independent of its origin in the representation theory of p-adic groups. Re-
stricting ourselves to the semisimple case for simplicity, this algebra may be
defined as follows. It contains a |W |-dimensional subalgebra Hq with genera-
tors T1, · · · , Tr subject to the quadratic relations

T 2
i = (q − 1)Ti + q

together with the braid relations: when i 6= j,
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TiTjTi · · · = TjTiTj · · ·

where the number of terms on either side is the order of σiσj , and as before
σi is the i-th simple reflection.

The algebra H̃q is the amalgam of Hq with an abelian subalgebra ζΛ

isomorphic to the weight lattice Λ. If λ ∈ Λ let ζλ be the corresponding
element of ζΛ. To complete the presentation of H̃ we have the relation

Tiζ
λ − ζσiλTi = ζλTi − Tiζ

σiλ =

(
v − 1

1− ζ−αi

)
(ζλ − ζσiλ), (38)

sometimes known as the Bernstein relation.
Though historically it first appeared in the representation theory of p-adic

groups, the affine Hecke algebra appears in other contexts. For example, the
investigation of Kazhdan and Lusztig [42], motivated by Springer’s work on
the representation theory of Weyl groups, used H̃q in a fundamental way, and
led to applications in different areas of mathematics, such as the topology of
flag varieties and the structure of Verma modules. Significantly for the present
discussion, Lusztig [48] showed that H̃v (with v an indeterminate) may be
realized as a ring acting on the equivariant K-theory of the flag manifold of
Ĝ, and Kazhdan and Lusztig [48], [43] then applied this back to the local
Langlands correspondence by constructing the irreducible representations of
G(F ) having an Iwahori fixed vector.

The equivariant K-theory of Ĝ may be described as follows. Let O(T̂ ) be
the ring of rational functions on T̂ (C). In our previous notation, it is simply
the group algebra of the weight lattice Λ. If X is the flag variety of Ĝ then
KĜ(X) ∼= O(T̂ ). Better still, let M = Ĝ×GL1, where the GL1 acts trivially

on X . Then KM (X) ∼= C[v, v−1]⊗O(T̂ ) where v is a parameter.
The starting point of the investigations of Kazhdan and Lusztig is a rep-

resentation of H̃v on this ring. In this representation on C[v, v−1]⊗O(T̂ ) the
generators of Hv act by certain operators called Demazure-Lusztig operators ,
while the commutative subalgebra ζΛ acts by multiplication. We will call this
representation of H̃v on C[v, v−1]⊗O(T̂ ) the Lusztig representation.

The same representation of H̃ appears in another way, independent of
Lusztig’s cohomological interpretation. There are two versions of this.

• Ion [39] observed such a representation in the space of Iwahori fixed vectors
of the spherical model of an unramified principal series representation. He
concluded that these matrix coefficients are expressed in terms of the non-
symmetric Macdonald polynomials. His methods are based on the double
affine Hecke algebra.

• Brubaker, Bump and Licata [16] found a representation equivalent to the
Lusztig representation acting on Whittaker functions. Their method could
also be used in the setting of [39].

After Brubaker, Bump and Licata mentioned the connection between
Whittaker functions and Demazure characters, Chinta and Gunnells began



32 Daniel Bump

looking at the metaplectic case. They found “metaplectic Demazure opera-
tors” involving Gauss sums that are related to the Chinta-Gunnells repre-
sentation. Also, with A. Schilling, Brubaker, Bump and Licata looked at the
possibility that the results of [16] could be reinterpreted in terms of the crys-
tal graph, similarly to the crystal interpretation of Tokuyama’s formula. This
seems to be a promising line of investigation.

Let us briefly recall the results of [16]. Let V = Vz be as in (27). Let Ω
be one of the following two linear functionals on V : it is either the Whittaker
functional

Ω(f) =

∫

N(F )

f(wn)ψ(n) dn,

where ψ is as in (28), or the spherical functional Ω(f) =
∫
K f(k) dk. If w ∈ W

let Φw be the element of V J defined as follows. Every element of G(F ) may
be written as bw′k with b ∈ B(F ), w′ ∈ W and k ∈ J . Then, with τz as in
(26),

Φw(bw
′k) =

{
δ1/2τz(b) if w = w′,
0 otherwise.

The |W | functions Φw are a basis of the space of J-fixed vectors in V . (The
action π : G(F )→ End(V ) is by right translation.) We also define

Ww(g) = Ω(π(g)Φw).

Φ̃w =
∑

u>w

Φu, W̃w =
∑

u>w

Wu

where u > w is with respect to the Bruhat order.
Let λ be a weight; if Ω is the Whittaker functional, we require λ to be

dominant. We may regard Ww(aλ) as an element of C[q, q−1] ⊗ O(T̂ ). Then
there exist operators Ti on C[q, q−1]⊗O(T̂ ) such that

T 2
i = (q−1 − 1)Ti + q−1

and which also satisfy the braid relations. Therefore we obtain a representation
of Hq−1 on C[q, q−1]⊗O(T̂ ). It may be extended to an action of H̃q−1 . Now
if the simple reflection σi is a left descent of w ∈ W , that is, l(σiw) < l(w),
then

Wσiw(aλ) = TiWw(aλ).

(See [16]). The operators Ti are slightly different in the two cases (Ω the
Whittaker or Spherical functional.) In both cases they are essentially the
Demazure-Lusztig operators. For definiteness, we will describe them when Ω
is the Whittaker functional. If f is a function on T̂ (C), define

∂′if(z) =
f(z)− zαif(σiz)

1− zαi
=
f(σiz)− z−αif(z)

1− z−αi
.
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This is the usual Demazure operator conjugated by the map z 7→ −z. Then
the operators Ti are given by

D′
i = (1− q−1zα)∂′α, T′

i = D′
i − 1.

The Whittaker functions Ww can thus be obtained fromWw0
by applying the

Ti. Moreover Ww0
has a particularly simple form:

Ww0
(aλ) =

{
δ1/2(aλ)z

w0λ if λ is dominant,
0 otherwise.

In conclusion, the Lusztig representation arises naturally in the theory of
Whittaker functions or, in Ion’s setup, K, J-biinvariant matrix coefficients. It
gives a calculus whereby the Whittaker functions may be computed recursively
from the simplest one Ww0

.
It is also important to consider W̃w. For example, W̃1 is the spherical

Whittaker function which we have discussed at length in the previous sections.
In the theory of multiple Dirichlet series it might be useful to substitute W̃w for
the p-part at a finite number of places. In the study of the W̃w the remarkable
combinatorics of the Bruhat order begins to play an important role. See [16]
for further information. An important issue is to extend the theory of the
previous sections to the theory of the W̃w, and to carry out this unified theory
in the metaplectic context.
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Math., pages 1–26. Birkhäuser Boston, Boston, MA, 2008.

13. B. Brubaker, D. Bump, and S. Friedberg. Weyl group multiple Dirichlet series,
Eisenstein series and crystal bases. Ann. of Math. (2), 173(2):1081–1120, 2011.

14. B. Brubaker, D. Bump, and S. Friedberg. Weyl group multiple Dirichlet series:
type A combinatorial theory, volume 175 of Annals of Mathematics Studies.
Princeton University Press, Princeton, NJ, 2011.

15. B. Brubaker, D. Bump, and S. Friedberg. Schur polynomials and the Yang-
Baxter equation. Comm. Math. Phys., 308(2):281-301, 2011.

16. B. Brubaker, D. Bump, and A. Licata. Whittaker functions and Demazure
operators. Preprint, 2011.

17. B. Brubaker, S. Friedberg, and J. Hoffstein. Cubic twists of GL(2) automorphic
L-functions. Invent. Math., 160(1):31–58, 2005.

18. Ben Brubaker and Daniel Bump. On Kubota’s Dirichlet series. J. Reine Angew.
Math., 598:159–184, 2006.

19. Alina Bucur and Adrian Diaconu. Moments of quadratic Dirichlet L-functions
over rational function fields. Mosc. Math. J., 10(3):485–517, 661, 2010.

20. D. Bump, S. Friedberg, and J. Hoffstein. On some applications of automorphic
forms to number theory. Bull. Amer. Math. Soc. (N.S.), 33(2):157–175, 1996.

21. D. Bump, S. Friedberg, and J. Hoffstein. Sums of twisted GL(3) automorphic
L-functions. In Contributions to automorphic forms, geometry, and number
theory, pages 131–162. Johns Hopkins Univ. Press, Baltimore, MD, 2004.

22. D. Bump, P. McNamara and M. Nakasuji. Factorial Schur Functions and the
Yang-Baxter Equation, Preprint, 2011.

23. D. Bump and M. Nakasuji. Integration on p-adic groups and crystal bases. Proc.
Amer. Math. Soc., 138(5):1595–1605, 2010.

24. W. Casselman and J. Shalika. The unramified principal series of p-adic groups.
II. The Whittaker function. Compositio Math., 41(2):207–231, 1980.

25. G. Chinta. Mean values of biquadratic zeta functions. Invent. Math., 160(1):145–
163, 2005.

26. G. Chinta, S. Friedberg, and J. Hoffstein. Multiple Dirichlet series and auto-
morphic forms. In Multiple Dirichlet series, automorphic forms, and analytic
number theory, volume 75 of Proc. Sympos. Pure Math., pages 3–41. Amer.
Math. Soc., Providence, RI, 2006.

27. G. Chinta and P. Gunnells. Constructing Weyl group multiple Dirichlet series.
J. Amer. Math. Soc., 23:189–215, 2010.

28. G. Chinta and P. Gunnells. Littelmann patterns andWeyl group multiple Dirich-
let series of type D, in this volume.

29. G. Chinta and O. Offen. A metaplectic Casselman-Shalika formula for GLr,
Amer. J. Math., to appear.



Multiple Dirichlet Series 35

30. G. Chinta and O. Offen. Orthgonal period of a GL(3,Z) Eisenstein series. In
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