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Abstract. We define Schubert Eisenstein series as sums like usual Eisenstein
series but with the summation restricted to elements of a particular Schubert
cell, indexed by an element of the Weyl group. They are generally not fully
automorphic. We will develop some results and methods for GL3 that may
be suggestive about the general case. The six Schubert Eisenstein series are
shown to have meromorphic continuation and some functional equations.
The Schubert Eisenstein series Es,s, and Es,s, corresponding to the Weyl
group elements of order three are particularly interesting: at the point where
the full Eisenstein series is maximally polar, they unexpectedly become (with
minor correction terms added) fully automorphic and related to each other.
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We define Schubert Fisenstein series as sums like usual Eisenstein series
but with the summation restricted to elements coming from a particular
Schubert cell. More precisely, let G be a split semisimple algebraic group
over a global field F', and let B be a Borel subgroup. The usual Eisenstein
series are sums over B(F)\G(F'), that is, over the integer points in the flag
variety X = B\G. Given a Weyl group element w, one may alternatively
consider the sum restricted to a single Schubert cell X,,. This is the closure
of the image in X of the double coset BwB. If w = wy, the long Weyl group
element, then X,, = X so this contains the usual Eisenstein series as a special
case. The notion of Schubert Eisenstein series seems a natural one, but little
studied. The purpose of this paper is to look closely at the special case where
G = GL(3) that suggest general lines of research for the general case.

The Schubert Eisenstein series is not automorphic, so its place in the
spectral theory is less obvious. An immediate question is whether the Schu-
bert Eisenstein series, like the classical ones have analytic continuation. We
will prove this when G = GL(3) and we hope that it is true in general. We
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will observe some other interesting phenomena on GL(3), to be described
below.

We will begin by supplying some motivation for this investigation. Re-
cently it has been observed that Fourier-Whittaker coefficients of some Eisen-
stein series, such as the Borel Eisenstein series on G L, 1, are multiple Dirich-
let series which may often be expressed as sums over Kashiwara crystals. See
the survey article Bump [5] for discussion of this this phenomenon and its
history. An analysis of the proof of one particular case, in Brubaker, Bump
and Friedberg [3] shows the mechanism behind this phenomenon makes use
of Bott-Samelson varieties. In this connection, we call attention to one par-
ticular point: that such a representation of the Whittaker coefficient of an
Eisenstein series as a sum over a crystal requires a choice of a reduced word,
by which we mean a decomposition of the long Weyl group element wy into
a product of simple reflections of shortest possible length.

Bott-Samelson varieties have important applications to the study of Schu-
bert varieties. First, they give a desingularization. Also, they are used in
the analyzing the cohomology of the flag variety, and also the cohomology of
line bundles on Schubert varieties, that is, the Demazure character formula.
See Demazure [10] and Andersen [1].

To define the Bott-Samelson variety, one chooses reduced word to for w,
after which one may define Z,,, the so-called Bott-Samelson variety, together
with a birational morphism to X,,. (The definition is given below.) The vari-
ety Z, is always nonsingular, and may be built up by successive fiberings by
P!, which corresponds to the procedure in representation theory of reducing
a computation on G to a series of SLy computations. And this is what was
done (for the full Eisenstein series, that is, for the case where w = wy) in
Brubaker, Bump and Friedberg [3].

Once one accepts the idea of studying Eisenstein series by means of the
Bott-Samelson variety for the full flag variety, one is led to consider Schubert
Eisenstein series. Even if one only cares about the full Eisenstein series
(which is the sum over the integer points in the full flag variety X,,,) the
Bott-Samelson varieties for other Schubert cells appear naturally. This is
because Bott-Samelson varieties are built up from one another by successive
fiberings. So a calculation that involves Bott-Samelson varieties will usually
be an inductive one involving Bott-Samelson varieties for lower-dimensional
Schubert cells.

We turn now to a more detailed discussion of what is in this paper.

Let G be a split reductive algebraic group over a global field F'. Let T



be the maximal torus of the group G with opposite root data, so that G(C)
is the connected Langlands L-group. Let v € T((C) Then v parametrizes a
character y, of T'(A)/T(F'), where A is the adele ring of F'. Extending x,, to
the Borel subgroup B(A), let f, be an element of the corresponding induced
representation, so that

fu(bg) = (8%x,)(b) f(9), b€ B(A). (1)

Here ¢ is the modular quasicharacter of the Borel subgroup. The usual
Eisenstein series is defined to be

E(gv)= > flw= > fO9).
)

YEB(F)\G(F) VEX(F

In the last expression, we are observing that the sum is actually over the
integer points of X = B\G, which is the flag variety.
The Bruhat decomposition of GG gives the decomposition of the flag variety
into Schubert cells
X=|JVY,

weWw

where W is the Weyl group and Y,, is the image of BwB in B\G. The closure
of Y, is the closed Schubert variety

Xw:UYu

u<w

where < is the Bruhat order. It seems a natural question to consider the
Schubert Eisenstein series

Eu(g.v) = Y f(9). (2)

YEXw(F)

This is no longer an automorphic form, but we may ask whether it has
analytic continuation and at least some functional equations.

In order to see how this could be useful, let us recall the very useful
Bott-Samelson varieties and their relationship with Schubert varieties. (See
Bott and Samelson [2] and Demazure [10].) We will denote by «; and s;
the simple roots and corresponding simple reflections. Let w € W and let
= (s, Sy, - ,5,) be a reduced decomposition of w into a product of
simple reflections: w = s;, - - -s;,. Let P; be the minimal parabolic subgroup,
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which is rank one parabolic subgroup, generated by B and s;. We define a
left action of B¥ on P;, x -- - P, by

(br,- 5 bk) - (Pis -+ o pi) = (bipayby ' bopibs - -+ i, ). (3)

The quotient B*\(P;, x - -+ x P, ) is the Bott-Samelson variety Zy,. There is
a morphism BSy, : Z, — X, induced by the multiplication map that sends

(pi17 e 7Pik) = Diy " Dig-

This map is a surjective birational morphism.

Unlike the Schubert varieties, Bott-Samelson varieties are always non-
singular, so this gives a resolution of the singularities of X,. The map
BSy @ Zw — X, may not be an isomorphism. In special cases where it
is an isomorphism, every element of X, has a unique representation as a
product i, (71) - * - tay, (Vk), where if « is a root (in this case a simple root) ¢4
is the Chevalley embedding of SL(2) into G corresponding to «, so the image
of ¢4, lies in the Levi subgroup of F;. Beyond these special cases where BS,,
is an isomorphism, in every case each element of X, has such a factorization,
and if the element is in general position, it is unique, since BS, is birational.
Let us call this a Bott-Samelson factorization. (See Lemma 2 for a precise
statement.) This means that we may write

ES1"'Sk (g, l/) = Z Eslmsk,l (Lock (7]9)97 V)? (4)
Yk E€BsLy (F)\ SLa(F)

building up the Schubert Eisenstein series by repeated SL, summations. If
BSy, : Zw — X, is not an isomorphism, a modification of this method
should be applicable. (Proposition 13.)

This method of representing the Eisenstein series E(g,v) = Ey,(g,v),
with wy the long Weyl group element, is implicit in the method used by
Brubaker, Bump and Friedberg [3] in order to prove that the Whittaker
function of Eisenstein series on the metaplectic cover of GL,.1(F) had a
representation as a sum over a crystal basis of a representation of GL,,;. The
proof depends on a parametrization, described in Section 5 of the paper, of an
element of P\G, where P is a maximal parabolic subgroup, by choosing the
representative factored over such a product of SLy. Although P is a maximal
parabolic subgroup, the process is an inductive one, and one could equally
well avoid the induction and take the summation over B\G. The mechanism
underlying this proof therefore is the Bott-Samelson factorization.
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This suggests looking more closely at the Schubert Eisenstein series F,,.
Even though E,, is not automorphic, and not accessible by the usual methods
of automorphic forms, one may hope that it has analytic continuation and
functional equations by some subgroup. If w is the long element of the
Weyl group of the Levi subgroup M of some parabolic subgroup, then this
is true. The first cases where w is not the long element of a Levi subgroup
are w = s1S89 and S981, in the case where G = GL3. Therefore we will look at
these Schubert Eisenstein series in detail. As it turns out, these had occurred
previously in Bump and Goldfeld [7] and in Vinogradov and Takhtajan [15],
in disguised forms.

We will take a close look at E;, s,. We have described it here by means of
the definition (2) and by the recursive formula (4), but we will also see that
it emerges naturally when one works out the Piatetski-Shapiro [14] Fourier-
Whittaker expansion of the Eisenstein series. For a cusp form ¢ on GL,, with
Whittaker function W, this Fourier expansion appears as

w-x (1))

v€UgL,,_; (F)\ GLy—1(F)

where Ugy,, , is the unipotent radical of the standard Borel subgroup of
GL,_1. If ¢ is not cuspidal, then one must include other degenerate terms,
and then the summation over v may produce Schubert Eisenstein series. We
will see this for GLs.

An extremely interesting phenomenon occurs in this GL3 case at the point
where the Eisenstein series has its pole. We will choose coordinates vy, vy for
the Langlands parameters such that the poles of the Eisenstein series are on
the six lines vy, 5 or 1 — vy — 15 equals 0 or %, and we will look at the pole
at v; = v = 0. In the Laurent expansion of the Eisenstein series F(g; vy, o)
the coefficient of I/fvlyévz is nonzero if N1, Ny > —1. If Ny = Ny = —1, the
coefficent is constant. Following Bump and Goldfeld, the coefficient x(g) of
v; ! is then interesting.

Bump and Goldfeld [7] proved the following result. If K /Q is a cubic field,
and a is an ideal class of K one may associate with a a compact torus of GL3,
and if L, is the period of x(g) over this torus, then the Taylor expansion of
the L-function L(s,a) has the form ps™ + L, + ---. Therefore if 6 is a
nontrivial character of the ideal class group then L(s,0) = > 6(a)L,. The
proof involves showing that the torus period of the Eisenstein series equals a

Rankin-Selberg integral of a Hilbert modular Eisenstein series.



An analysis of this situation reveals that x(g) may be expressed in terms
of the Schubert Eisenstein series. There are two ways to do this, giving ex-
pressions involving either Ej, ¢, or E;,, at a special value. Thus at the point
where the residue is taken, the Schubert Eisenstein series (with some correc-
tion terms) is “promoted” to full GL3 automorphicity! It is also surprising
that Ey, s, and E,s,, which are presumably unrelated in general, develop an
unexpected relationship at 14, = vy = 0.

Now let us indicate a few questions about Schubert Eisenstein series in
general. As we will see, these questions have interesting affirmative answers
in the case of GLs3.

e Does the Schubert Eisenstein series always have meromorphic contin-
uation to all values of the parameters?

e Although they will not have the full group of functional equations that
the complete Eisenstein series has, they should have some functional
equations.

e In Theorems 4 and 5 we will give examples of linear combinations of
Schubert Eisenstein series for GL3 that are entire, that is, have no poles
in the parameters. It would be desirable to have a general theory of
such linear combinations.

e In Proposition 13 we give an example of how to represent a Schubert
Eisenstein series recursively in a case where the Bott-Samelson map
BSy is not an isomorphism. It would be good to work this out for
more complicated examples.

e We find that for GL3 Schubert Eisenstein series occur naturally in the
context of the Piatetski-Shapiro Fourier-Whittaker expansion when one
takes degenerate terms into account. It would be good to see general-
izations of this phenomenon.

e We may speculate that it is possible to associate a Whittaker func-
tion with F,. This would be an Euler product whose p-part may be
expressed in terms of Demazure characters. Such an expression fol-
lows from the Casselman-Shalika formula if w is the long element in
a parabolic subgroup of the Weyl group, so the first test case of this
hypothesis is when w = s;s5 (or s351) on GL(3). In this case, we have



checked that a suitably defined Whittaker function may indeed be ex-
pressed in terms of the Demazure character corresponding to s;ss. For
reasons of space, we are not including these computations. Brubaker,
Bump and Licata [4] have local results relating Iwahori Whittaker func-
tions to Demazure characters, but we do not know how to relate those
formulas to Schubert Eisenstein series.
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1 Review of Eisensteln series

If G is an algebraic group defined over a field contained in a commutative ring
R, we will use G(R) or G interchangeably to denote the group of R-rational
points of G.

Let F be a global field, and A its adele ring. Let G be a split semisimple
algebraic group over F', with Borel subgroup B = T'U, where T is its maximal
split torus and U the unipotent radical. Let W = N(T')/T be the Weyl group,
where N(T') is the normalizer of T'. If v is a place of F', we will denote by
G, = G(F,), and similarly for algebraic subgroups of G. We will denote by
® the root system of GG, divided as usual into positive and negative roots ®*
and ®~. If «; is a simple root, we will denote by s; the corresponding simple
reflection in W.

If v is a place of F', let K, be a maximal compact subgroup of G, = G(F,).
We assume that K, = G(o,) for all nonarchimedean places v. We assume
that G, = B,K,. Then K = [[ K, is a maximal compact subgroup of
G(A). If w € W we will choose a representative of W that is in K; by abuse
of notation we will denote this representative by the same letter w.

We review the definition of the usual Eisenstein series. Let y be a qua-
sicharacter of T'(A)/T(F'). We may extend Y, to a quasicharacter of B, by
letting U, be in the kernel.

Let (m,(xv), Vo(xv)) be the corresponding principal series representation.
Thus V, () is the space of functions f, : G,, — C that satisfy

fo(bg) = (8%x.)(b) ful9)



for b € B, = B(F,), and which are K,-finite. Here § is the modular qua-
sicharacter. If v is nonarchimedean the group G, acts by right-translation:

T (go) fo(2) = fu(Tgs).

If v is archimedean, this definition is wrong since m,(g,)f, may not be K-
finite, but the K ,-finite vectors are invariant under the corresponding repre-
sentation of the Lie algebra g, and so at an archimedean place v, V,(,) is a
(gv, K,y)-module.

For simplicity we assume that y = ®,x, where Yy, is unramified at every
nonarchimedean place. This means that the space of K,-fixed vectors is
nonzero. The vector space V,(x,) has a K,-fixed vector f; = f7 that is
unique up to scalar multiple. We will normalize it so that fJ(1) = 1.

Let V(x) be the space of finite linear combinations of functions of the
form [, fu(g9) where f, € V,(x») and f, = fy for all but finitely many v.
If the function f is of this form (rather than a finite linear combination of
such functions) then we will write f = ®,f,. The space V(x) is thus the
restricted tensor product of the local modules V, ().

Then we may consider the Eisenstein series

E(g,f.x)= Y f(g), feVX).

vE€BF\GF

This will be convergent for particular x. Indeed, for every simple positive root
« there is a Chevalley embedding ¢, : SLy — G such that ¢, (SLs(0,)) C K,
for v nonarchimedean, where o, is the ring of integers of F,. Then

(e

for some v(«) € C. Indeed, since x is trivial on T'(F), the left-hand side of
(5) is 1 when ¢t € F*; then if A] is the group of ideles of norm 1, the left-
hand side of (5) defines a homomorphism of A'/F* into the multiplicative
group of positive reals. But A/F* is compact, so the left-hand side of (5)
is trivial on A;" and thus must be a power of |t|. The Eisenstein series will
be absolutely convergent provided every re(v(a)) > 3. For x not satisfying
this inequality, we may make sense of the Eisenstein series by meromorphic
continuation, with the exception of y corresponding to poles of the Eisenstein
series.



In order to state the functional equations of the Eisenstein series, one
considers the standard intertwining integrals. If w € W, define a map

My (w) = Vo (xo) — Vo(X)
where W acts on the right on quasicharacters by
Xy () = xo(wtw™).

If re(v(a)) > 0, then M, (w) may be defined by the integral

Mo(w)fo) = [ fulwag)du= [ fu(wug) du,
(Upnw=1Uyw)\Uy UyNw—1U; w

where U, is the unipotent radical of the opposite Borel subgroup of B. It
may be checked that M, (w)V,(x») € V,(x¥), and that M,(w) is an inter-
twining operator. The map M, (w) may then be extended by meromorphic
continuation to other values of x and v.

The formula of Gindikin and Karpelevich computes M, (w)fs. First as-
sume that v is nonarchimedean. If « is a positive root, let us denote by a,

the element
Wy
Lo wv—l )

where w, is a generator of the maximal ideal p, of o0,. Let g, = |0,/p,|. We
choose the volume element dz, on F, so that o, has volume 1.

Proposition 1 If v is nonarchimedean then

o 1_qu_1xv<aa) o
Mv(w)fxv = H 1_X (CL ) fwi
a € dt AT
w @) € &~

This is called the formula of Gindikin and Karpelevich, but in this nonar-
chimedean case, it is due to Langlands.

Proof See Casselman [8], Theorem 3.1. O

Next assume that v is archimedean. Let I" be the usual gamma function

and let
Iy(s) = 77%/?I'(s/2) if v is real,
\8) = (2m)~*I'(s) if v is complex.
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Since Yy, is unramified, Y, is trivial on T, N K, and it follows that

()

Proposition 2 If v is archimedean then

R Iy (v(a o
Mmwif,= T —aA g (©
aedt
wHa) € &~
Proof This is the original formula of Gindikin and Karpelevich [11]. We
are choosing the volume element on F), to be the one that makes this formula
true. U

We have choosen dzx, for every v to be the volume element that makes
the formula of Gindikin and Karpelevich true. On the adele group A there
is a natural volume element dx, which is self-dual for the Fourier transform
determined by an additive character 1) on A that is trivial on F. Equivalently,
dz is the volume element that gives A/F volume 1. The local and global
volumes are related by the formula

dr = |Ds| ] do. (7)

where Dy is the discriminant of F.
There is also a global intertwining integral M(w) : V(x) — V(x%),
defined by

M(w)f(g) = /( oy g du = / S

We are normalizing the Haar measure so that the volume U, /Up is 1, and
similarly for its unipotent algebraic subgroups such as Uy N w 'Upw and
Uy Nw UL w.

If « is a positive root, let

G )= (1 — xu(as))™t if v is nonarchimedean
v I, (v(«a)) if v is archimedean.

We will also denote

(- o, @) = (1 — ¢ xw(as))™t  if v is nonarchimedean,
X @ =T, (vla ) 1) if v is archimedean.
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Then let

= HCU(XU?Q)? |X, HCU |Xv>

Proposition 3 Suppose that x is unramified at every place, and define f; €
V(x) to be [, fo (90). Then

o _ Pl xa) .
Mer=eE s I e

“1(a) e &~
where l(w) is the length function on the Weyl group.

Proof Because the dimension of UNw™'Uw is [(w), (7) implies that, when
du and du, are the Haar measures on Uy N w‘lU&w and U, Nw™ U, w with
our normalizations we have

du = |Dp|'®)/? H du,.

The statement then follows on combining (1) and (6). O

2 Induction and restriction

Mackey’s theorem for finite groups and their representations may be formu-
lated in different ways, but one statement is as follows. Let H; and Hy be
subgroups of G' and let m; be representations of H; and Hy. We want to
determine the restriction of Ilﬂdg1 (m1) to Hs. To answer this question we
consider the double cosets Ho\G/H;. If w is a double coset representative,
let H, = H; Nw 'Hyw. Then we may restrict m to H,, and conjugating
by w we obtain a representation 7 of wH,w™! = wHw™' N H,. This is a
subspace of Hs, and Mackey’s theorem states that

Ind§, (m)|m, = € Ind? (=)
wEHz\G/Hl

There is an analogous property of Eisenstein series. The induction and
restriction functors between finite groups and subgroups will be replaced by

11



Eisenstein series and constant term functors for Levi subgroups. Let P and @)
be parabolic subgroups of G containing B. Let P = MpUp and @) = MgUg
be the Levi decompositions, with unipotent radicals Up and Ug contained in
U. Given an automorphic form on Mg, one may consider the corresponding
Eisenstein series on GG and its constant term with respect to Up, which is an
automorphic form on Mp. The problem is to describe its spectral expansion.

Using the Bruhat decomposition G = J BwB, representatives of double
cosets P\G/Q may be chosen in W, and thus P\G/Q is in bijection with
Wp\W/Wg, where Wp and Wy, are the Weyl groups of the Levi subgroups
of P and Q. If w is such a representative, Mg Nw ™' Mpw is a Levi subgroup
of Mg, so we may take the constant term along the unipotent radical of the
corresponding parabolic subgroup @ N w~!Pw and obtain an automorphic
form for Mg Nw~"Mpw. Then conjugate this to wMgw ™ N Mp which is an
Eisenstein series on Mp. Summing over w should give an identity with the
automorphic form obtained previously.

Let us prove this in the special case where () = B. In this case, Mg =T
is the maximal torus. We will denote M = Mp, and By; = BN M. We will
denote by ®,; C & the root system of M. We will also denote by W), the
Weyl group of M, which was previously denoted Wp.

Lemma 1 Every coset in W/Wy, has a representative w such that if o« € ®yy
then o € ®F, if and only if w(a) € ®T. For this w, we have

Pnw 'Bw=U"By, UY =UpNw ' Buw.

Proof We leave this to the reader. OJ

Let X5, be the particular set of representatives for W /W), given by
Lemma 1. If g € M(A) we will denote

Eu(g. f0= Y, f(v)

B (F)\M(F)

which is an Eisenstein series for the Levi subgroup M.

Theorem 1 Let g € M(A).

/ E(ug, f,x)du=Y" Exi(g, M(w)f,x") (8)
Up(F)\Up(4)

WEX Ny
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Proof We may enumerate coset representatives for Bp\Gr as follows. Let
w run through a set of coset representatives for Bp\Gp/Pr, and for each
w let y run through a set of coset representatives for H¥\ Pr, where HY =
PNw 'Bw. Then wvy runs through a complete set of coset representatives
for B F\G F-

Using the Bruhat decomposition, we know that we may choose the repre-
sentatives for w from a set of coset representatives of W /Wy, and we choose
these as in Lemma 1. Therefore HY = UYB,; where U* = Up N w™'Bw.
Then we may further analyze v € H{E\ Pr as vy where v € By (F)\Mp
and vy € UR\Up.

We may write the left-hand side in (8) as

> > e
wesy, T UPENUP (A “/1€BM(F)\M(F)“/U€U}£\UF

Since M normalizes Up, we may interchange u and ~; in this expression,
then telescope the integration with the summation over ~y. After this we
will write v instead of 77, and obtain

>/ S flwwg)du
wesy VU ENUPA) Lep (F)\M(F)
We may write the integral as
Z / / Z f(wuuyg) du duy,
wemy U N (8) JUS(A\UP(B) | (P ar ()

but the integration over the compact quotient wa ) may be discarded

(U™ (A)
since f(wuig) = f(wg) independent of u; € U*(A). Hence we obtain

oY (M) f)(vg) du,

weXiy yEBM (F)\M (F)

and (8) is proved. O

3 Schubert Eisenstein series

The flag variety X = B\G is a projective variety. We recall its decomposition
into Schubert cells. We have the Bruhat decomposition G = |JBwB, a
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disjoint union over w € W, and let Y,, be the image of BwB in X. The
Schubert cell X, is the Zariski closure of Y,,. It equals

U v

u€eW
u < w

where v < w is the Bruhat order. Let G, be the subset of G that is the
union of BuB for u < w. It is not a subgroup in general. Let X,,(F') be the
set of v € Bp\Gr belonging to X,,. Thus X, (F) = Bp\G,(F). We may
now define the Schubert Eisenstein series

Wg. )= > ).

vEXw(F)

As we explained in the introduction, the Bott-Samelson map is a useful tool
for studying Schubert Eisenstein series. We recall that we defined a smooth
variety Z, for every reduced word to = (s;,,---,s;, ) representing the Weyl
group element w, with a birational morphism BS, : Z, — X,,.

Lemma 2 [If BS,, is an isomorphism then we may enumerate X,,(F) as
follows. Let ; run through Bsy,(F)\ SLao(F) fori=1,--- k. Then

o, (Y1) -+ ey, () (9)

runs through X, (F) (without repetition).

If BSy, is not an isomorphism, then every element of X,,(F') can still be
written as in (9), but the representation will not necessarily be unique. (It
will be unique if the element is in general position.) See Proposition 13.

Proof If BS,, is an isomorphism, then we may choose the representatives
for Z, as follows. First choose p;, € B\P,,. We are allowed to choose this in
the Levi subgroup M;, = SLs, and so we may choose this representative to
be tq,, (1) with 7, chosen from By, \ SLy, where Bsr, is the Borel subgroup
of upper triangular matrices in SLy. Then we may choose p;, , from B\FP;,__,,
and again we may choose it from the Levi subgroup of P;, ,. Continuing this
way, the statement is clear. O
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4 GL3 Schubert Eisenstein series

Let

(1 —¢;*)~! if v is nonarchimedean,

o= Tl 6o ={ Eg™ i e

where we recall that Dy is the discriminant of . With this normalization
of the Dedekind zeta function the functional equation is

¢"(s) = (1 = ).

For simplicity we will assume that the character y is unramified at every
place. Find vy, 15 € C such that

n
(51/2X) s — |y1|21/1+l/2‘y2|l/2—1/1‘y3‘—l/1—21/2'
Ys

We will denote this character x,, ,,. Also, take f = f° where

@) = £, =] £9).

Thus if k € K
Yy * *
T O L R e e 7
Y3

Then we will denote

E(g;v1,v2) = E(g, % Xvim)-

Due to the fact that the K-finite vectors are not invariant under right trans-
lation, we will sometimes restrict ourselves to g in the GLj3 of the finite
adeles.

Denoting by a7 and as the simple positive roots we have

Gl-hoa) = GBum), Gl a2) =GBr), Gl X, artaz) = GBr+3r,—1).

The product of these three factors is the local normalizing factor for the
Eisenstein series at the place v. However we wish to include a power of the
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discriminant in the global normalizing factor, so we use (*(s) which includes
gamma factors and a power of the discriminant, and define

E*(g;1v1,12) = C*(3v1)C* (312) " (Bvy + Bve — 1) E(g; 14, ).

The normalized Eisenstein series £* is analytic except at poles where vy, 1,
or 1 — 1y — vy equals 0 or % It satisfies the functional equations

E*(g; V1, V2) = E*(EH w(Vb V2))

Here the action of w € W on the parameters vy, 15 is as follows. The simple

reflections s; and s send (v, 15) to (% — v,V + 1 — %) and (V1 + vy — %, % —

respectively. We will similarly normalize the Schubert Eisenstein series and
denote

Ey(g;v1,10) = C(3v1) " (31e)(* (Brn + vy — 1) By (g5 v1, 12).
If w=1, then

Ei(g;v1,v9) = " (301) ¢ (310) (311 + 32 — 1) £, ,,(9)- (10)

For particular w, we will also define E* with only some of the normalizing
zeta functions. We will omit g from the notation.

B (v, 10) = CF(311) By, (v1, 1), B3 (11, 10) = (" (312) By, (v1, 1),

E:;Z(Vl, V2) = C*(3V1>E8182(V17 V2>7 E::sl (Vlv V2) = C*(3V2)E3231 (Vlv V2)'

We will also consider some linear combinations denoted E* or E** that have
better decay properties. These are

~ 2 1
E;(Vlv vy) = E;(Vla vy) — Ef(v1,12) — B (g -V, e — g) )

E:T(Vh Vy) = E::(Vlv vy) — C*(3V1)f51,u2 (9) — ¢ By — 1)f§_,,1,,,1+u2_%(9)7

[ * * * 12
ESQ(V1> 1/2) = ESQ(Vl’ 1/2) — EQ(I/l, 1/2) — E2 (7/1 + vy — g, g — 1/2) s

E::(Vl, vp) = E;*(Vl, vy) — C*(3V2)f51,u2 (9) — " (3v2 — 1)f5 2 (9),

1+v2—3,5—V2

. 2 1
By, (v,m) = B (v, 1e) — B, (v, 12) — E, (g — v,V + s — §) :

16
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R 1 2
E:281(V17 Vg) = E;kgsl(ylv V2) - E;kl(yh V2) - E;kl (Vl + vy — g, g — 1/2) ,

E** (1/1, I/Q) =

S182

Eslsg(yl7y2) _C (3V1)E52(1/1,l/2) _C (37/1 - 1)E82 (_ — Vi, +V2 - _) )

3 3
B, (n,1) =

Eszsl(l/17 V2) —C (3V2)E51(V1> V2) —C (37/2 - 1)E51 vy + vy — g, 5 — V.
Proposition 4 We have

/ E(ug;VhVQ)du: ZM(w)fIfhl/z(g)’

Ur\Ux weW
Moreover
E*(ug; vi,v9) du = Z Ei(g;w(v, v2)). (11)
Ur\Ua weW

Here E is the Schubert Eisenstein series corresponding to the identity
1€ W. Thus E, = f° and E} = (*(3v1)(*(3v2)(* (31 + 3vp — 1) f°.

Proof The first formula the special case of Theorem 1 where P = B. For
the second we need to know that

¢ (Br1) ¢ Bra)C* (B + 3vp — 1) M(w) £, ,,(9) = Er(g; w(v, ). (12)

Using the fact that M(ww') = M(w) o M(w’) when the length [(ww') =
l(w) 4+ l(w'"), we are reduced to the case where w is a simple reflection. For
example, if w = s1, Proposition 3 implies that

(31 — 1
M) 50) = S a0

Now using the functional equation (*(3vy — 1) = (*(2 — 314), the left-hand
side of (12) equals

C*(2 = 31)C*(312)C*(Bvy + 3vp — 1)f§_y17yl+y2_%(g),

17



as required. O

First we study E,,. This is essentially a GL, Eisenstein series. To see

this, let P = P; be the parabolic with Levi factor M; = t4,(SLy)T. Then
provided g € M;(A) we have

B (i1, 10) = > Forw(tar (1)9) = Eny (g5 11, 12). (13)
’YEBSL2 (F)\ SL2(F)

Proposition 5 The normalized Schubert Eisenstein series E7 has mero-
morphic continuation to all vy, vy, and satisfies

2 1

E:1(9§V17V2) = E <9§§ —V1,V1+V2—§) . (14)
Furthermore

Esl(g;ylal/Q):Esl g;g_yl,V1+V2—§ . (15)
We have

1 =z
/ EY, 1 g;v, v | de =
AJF 1
. . 2 1
Ei(g;v1, 1) + B <9§§ — v, + g — g) . (16)

Proof For h € GLy(A),

h'_>EM1 << h 1 )g;V17V2)

is a GL, Eisenstein series, and (*(311) is its normalizing factor. The analytic

continuation and functional equation (15) follows from the well-known GL;

theory. The two factors (*(3vs) and (*(3v; 4+ 3v, — 1) are interchanged by the
1

transformation (v, v5) — (% — v,V + 1y — g). Therefore the functional

equation (14) follows. The GLy constant term is

1 =z

/ B 1 g, v | de =
A/F 1

2 1
C*(3h) Er(gy 11, 12) + CF (31 — 1) E4 <9; 37 Vi,V + Vg — g) ;

18



which is equivalent to (16). O

Proposition 6 The truncated Fisenstein series E;f (g;11,12) is entire and
of rapid decay in the the oy direction.

By this we mean that
. Yroo*
E;* Y2 X g; V1, V2
Y3

is analytic for all 14 and vy, and is of faster than polynomial decay as
|y1/y2| — o0, uniformly if ¢ is in a compact set.

Proof This again follows from the theory of GL; Eisenstein series. We have
the Fourier expansion

1 =x
OB / L 1 o) v(an) de.

acl 1

where ¢ is an additive character of A/F. Using (16) the pieces that are
subtracted to give E;" are the contribution of o = 0. On the other hand if

a#0

1 =z «
/ B 1 g | v(ax)de =W 1 g
A/F 1 1
where
1 z
W= [ B 1 o] e de
A/F 1

is essentially a GLy Whittaker function. The analytic continuation of W to
all v1, 15 is Théoreme 1.9 of Jacquet [12], and its decay properties guarantee
that

!
ES(g) =) W Ly
acF'x 1
is entire and of rapid decay in the oy direction. 0

Similarly
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Proposition 7 The normalized Schubert Eisenstein series E}, has mero-
morphic continuation to all vy, vy, and satisfies

. . 1 2
Esz(g;VbV?):Esg (g;yl_l_VZ_g?g_VQ)' (17)

Moreover E}¥(g;vi,v2) is entire and is of rapid decay in the ay direction.

We turn now to the Schubert Eisenstein series Ejy, s, and Es,,,. These
are important examples since s;1s, and sps; are not long elements in Levi
subgroups of the Weyl group, so their analytic properties do not follow from
the usual theory of Eisenstein series.

Using (17) we have

E:ls2(V1, Vg) = E;klsg(yh V2) — E:Q(I/l, VQ) — E:Q (VQ, 1-— 1% + Vg) . (18)
Similarly
E* (Vl, Vg) =FE (1/1, Vg) — E:l (1/1, 1/2) — E:l (1 — vV + Vo, V1) . (19)

5281 5281

Lemma 3 Let g € G. Let f = [ ,,. Then there exists a constant C
depending only on g such that

|[f(hg)| < Clf(R)].
Proof We write h = bk where b € B(F) and k € K. Then since f = f°

| (hg)l = |(62X) O)If (k)| = £ (W] f (kg)].

Since K is compact, C'= maxg | f(kg)| < oc. O

Proposition 8 The function

> EZ7 (tas ()95 1, 1) (20)

YEBsL, (F)\ SLa(F)

18 entire in vy and vs.
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Proof We know that E;*f is entire but we need to show that the sum over
7 is convergent for all v and vy. If v € Bgp, (F)\ SLa(F') consider

(17)g: o y;(kfy) , k. kek

y3(7)
We will show that if o > 1 then
—20
Z y1(7) (21)
> y2(7)

Applying the Lemma to the function

Yy ok ok 20

.f Yo x k = & )
Y2

Y3

we may assume g = 1 in order to prove (21). Then we note that since v € SLa,

we have y;1(7) = 1 and yo(7)ys(y) = 1. Thus y1(7)/v2(7) = Vys(v)/v2(7),

and so we must show

Y

Yy2(7) 7
y3(7)’ =

This however is a GLy Eisenstein series and converges if o > 1. Now due to
the rapid decay of E7" in the a; direction, we have

) Yok % —20
ES Y2 X <
Ys

h
Y2

as |y1/ys| —> oo for any o. Thus the estimate (21) implies the convergence
of (20). O

For w = 5155, the Schubert variety X, s, coincides with the Bott-Samelson
variety Z, s,), since the rational map Z, s,) — X, 1S an isomorphism.

Theorem 2 E}  (g;v1,12) has meromorphic continuation to all vy, v,. It

has a functional equation

Eslsg(g;l/:l?l/?) = E8182 (gﬂg — v,V Ve — g) .

A** . y y y
Moreover E7Y, (g;v1,12) is an entire function.
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Proof When w = s1s9 and to = (s1, s9) the Bott-Samelson homomorphism
BSy : Zw — X, is an isomorphism and so by Lemma 2 we may write

B, (gi0n,1ve) = > B (tay (1) g5 11, 1) (22)
’YEBSLQ(F)\ SLa(F)
Write this

¢*(Br2)¢"(Br + 312 — 1) > B (tan (V)3 11, v2)

YEBsL, (F)\ SL2(F)
+ > B (tas ()95 11, 12)

’*/GBSL2 (F)\ SLo (F)

N 2 1
+ Z Eq La2(7)g;§—1/1,1/1—|—1/2—§ .
’YEBSLQ(F)\ SLa(F)

The meromorphic continuation of each term is known; for the first term this
is by Proposition 8. Moreover, dividing by (*(315)(*(3v1 + 32 — 1) and
rearranging gives

B (g, 1) = Z E (tay (7)95 11, 12),
'YEBSLQ (F)\ SL2(F)
so it follows from Proposition 8 that E:fsz (g; 11, 112) is entire. O

5 Fourier-Whittaker expansion

The Fourier-Whittaker expansion of a GL, cusp form was described by
Piatetski-Shapiro [14] and is standard. For forms which are not cuspidal,
the Fourier expansion is slightly more complicated, and we recall it here.
Before specializing to the Fisenstein series, let F(g) denote an arbitrary au-
tomorphic form on GL3. If ¢,d € F, let

1 XT3
E;(g) = / 1) 1 i) qg @D(Cl’g + dl’g) dl’g dl’g
(A/F)? 1
and
1 1 I3
E.a(g) = / E I g | Y(cxy + dxs) dxy dxg das.
(a/F)3 1
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We recall that 1 is a nontrivial additive character on A/F.

Theorem 3 We have

E(g) = Eg(9) + > Eoalte(7)9)
¥EUsL, (F)\ SLa(F)

v
+ > 0% (( ) ) g) (23)
’YEUGLQ(F)\GLQ(F)

. 1
Here Ugr, = Ust, is the one parameter subgroup ¢, ( 913 )

Proof The proof is in Chapter IV of Bump [6]. We leave it to the reader
to translate it to the adelic setting. O

Now let us consider the case where F(g) = E*(g; 1, vs).
Proposition 9 We have

1 T3
/ E* 1 i) qgiVi, Vs dZL’Q dflfg =
(A/F)? 1

E; (g;vi, 1) + ES (9;1 — vy —vp,10) + B} (g5 12,1 — v — 10).

This is EJ(g) when E(g) = E*(g; vy, vs).

Proof This is a special case of Theorem 1. The three double coset repre-
sentatives in >, are

1 1 1

1 1 1

Using (13) the corresponding GL, Eisenstein series may be written as

1 2 2 1
E;(Q; Vi, Va), EZ, <9; V1+V2—§,§—V2) ) EZ, <g;§—1/1,1/1+y2—§) )

and using the functional equations these are the three terms in the statement.
OJ
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Proposition 10 We have

15(71 XT3

/ B 1 gV, d!L’l dl’g =
(A/F)3 1

B (g;vi, 1) + B (9;1 — vy —vp,10) + B3 (g5 12,1 — v — 1),

Proof This is similar to Proposition 9 except that we use the other maximal
parabolic subgroup. O]

Proposition 11 If E(g) = E*(g;v1,vs) then

> Eo1(tay(7)9) =

YEUsL, (F)\ SL2(F)
B (g, ve) + B, (9:1—v1 —vp,vn) + B (gi10,1 —v1 — 1)
—2(E3 (g;v1,v2) + E5 (951 —v1 —vp, 1) + B (9512, 1 —v1 — 1))

s1
Proof We may write the left-hand side as

n—l

>, > Eo n taa (7)9

YEBsL, (r)\ SLa(F) neF* 1

A simple change of variables shows that

Eo,l n g\l = Eo,n(g)

so the left-hand side equals

Z Z Eon(tar (7)9)-

YEBsLy (I1)\ SL2(F) neF*

We will show that

Z Z Eon(ta; (7)9) =

YEBsL, (F)\ SL2(F) neF
Bl (051, 0) + Bl (951 =11 — v, ) + By (iva L= —1a) (24)

S$981
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and that

Z EOO Loq Z E ga V1’V2))' (25)

YEBsL, (F)\ SLa(F) weWw
Combining these two identities gives the statement. Observe that

11’1 I3

Z EO,n Z / 1 i) g ¢(n$2) dl‘l dIQ dl‘g =
nekr neF ” (A/F)? 1
1 r1 X3
/ E 1 g | dzidxs,
(4/F)3 1

which is evaluated in Proposition 10. Thus (24) is the sum of three terms, a
typical one being

> E, (ton (V)93 11, v2).

YEBsL, (F)\ SL2(F)

This is EZ , (g; v1,12), similarly to (22), whence (24). Also note that Eyo(g)

8981
is evaluated above in (11), and summing over ¢, () gives

S B (g, ).

weW

We note that this may be written as

2(E (g;v1,v2) + E5 (951 —vi —wvp, 1) + B (9512, 1 —v1 — 1))

because of the functional equation (14). O
Let
g = X w((7 ) )a). (26)
v€UGL, (F)\ GL2(F)
where
1 Ty XT3
W(g) :/ E” 1z | gsvn,ve | ¥(21 + 32) day das dus.
(A/F) 1
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Theorem 4 The function H(g;vy, 1) is entire as a function of 11 and vs.
We have

E*(g;vi,10) =
H(g;vivp)+
B (giv,ve) + B (951 — v — o) + EZ ( )
—E; (g;v1,1) — B (9:1 —vi —vo,v1) — B (gi10, 1 =11 — 1) =
Bl (givn,1e) + B (931 — o1 — v, v1) + B2, (g3 )
+E3 (g;v1,v2) + ES (91 — v — vp,11) + B (g )

givo, 1 — 11 — 1y

81

N

vo, 1 —v1 — 11

Proof We have

= H Wv(gv)

where the Jacquet-Whittaker function W, has analytic continuation for every
place v by Jacquet [12], Corollaire 3.5, and the convergence of the sum in (26)
follows from the decay properties of the Whittaker function (Proposition 2.2
in Jacquet, Piatetski-Shapiro and Shalika [13]. Therefore H is entire.

We note that H(g; v, va) is one of the three terms in (23). The remaining
terms are evaluated in Proposition 9 and Proposition 11. Combining these
gives first expression. The second expression follows by using the definition
of E* O

8281°

Similarly, one may prove that if

H'(g;v1,10) = > W (( 1 v )g)

then the following is true.

Theorem 5 The function H'(g;v1,v) is entire as a function of v1 and vs.
We have

E*(g;vi,10) =

H'(g; v1v2)+
E; o (givi, ) + B (g1 — v — v, vn) + B (g5 100, 1 — 11 — 1)
—E;, (g;v1,1) — B (9:1 —v1 — vy, Vl) 2(9 Vo, 1 — 1 — 1)
B (givim) + B (051 — v — o, mn) + B (g5 vs, 1 — 11 — 1)
+E3, (g;v1,v2) + B (9;1 — v — vo,v1) + B3 (9512, 1 — 11 — 18)
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6 Kronecker Limit Formula

The poles of the Eisenstein series are on the six lines where vy, vy or 1—v; — 1
equals 0 or % We will consider the Taylor expansions of FE,, for various w
at v; = 1, = 0. In particular, the coefficient of v;! is interesting. If ¢
is a function of g and v, s, let R be the coefficient of ;! in the Taylor

expansion of ¢ at 1y =15 = 0. Let
k(g) = RE(g; v1,10).

Bump and Goldfeld [7] proved the following result. If K/Q is a cubic field,
and a is an ideal class of K one may associate with a a compact torus of GLs,
and if L, is the period of k(g) over this torus, then the Taylor expansion of the
L-function L(s, a) has the form ps™' + L, +- - -. Therefore if § is a character
of the ideal class group then L(s,0) = >  6(a)L,. The proof involves showing
that the torus period of the Eisenstein series equals a Rankin-Selberg integral
of a Hilbert modular Eisenstein series.

An analysis of this situation reveals that x(g) may be expressed in terms
of the Schubert Eisenstein series. There are two ways to do this, giving
expressions involving either E; ,, or Ey,,, at a special value. Thus at the
point where the residue is taken, the Schubert Eisenstein series (with some
correction terms) is “promoted” to full GLs automorphicity!

Let us write

CH(s) = g +5+0(s).
Then

EX (g1, v2) = 5= + 6ui(g302) + O(1)
1

where ¢, satisfies
¢81 (ial (7)9; V2) = ¢31 (g; V2)7

since F, has the same automorphicity. Similarly

B33 (g ,00) = 5o+ bu(gi1) + O().

We will write

G5, (9) = 5,(950),  ds,(9) = 05,(9;0).
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The automorphic forms ¢, and ¢, are essentially GLy automorphic forms,
similar to the function log |n(z)| that appears in the classical Kronecker Limit
Formula.
Let
d

Q= PIC- 4D =5 [CECED +og ).

These are absolute constants depending only on the field.

Theorem 6 We have

w(9) = 80" () [B21, (9:0,0) + B2 (9:1,0)] + o
Furthermore

K(9) = £C°(2) |2l (9:1,0) + 60 (9)]| + by

Proof The points (v1,15) = (0,0) and (1,0) are related by a functional
equation of the total Eisenstein series E(g;v1, 1), but not of the Schubert
Eisenstein series. We could alternatively take the Taylor coefficient of v
and obtain a similar pair of identities.

By Theorem 4 we have

K(g) = Z RX;

where X; runs through the following six terms.

X; long form RX;

e () ¢ (3r1) ¢ (31 + 3re — 1) B vl 1\ Err (.
E3231(97V17V2) E:;sl(%’/l,’/z) §C ( 1)E3251<97070)
- *(3—=31r1 —3 (2—-3

By (g1 —vi — vy, 1) ¢ (A v = 3a)C7 v2) 0

By (g1 — vy — vy, v1)

. C*(gl/g)c*(Q - 31/1)
B (give, 1 — v — 1)

S281

E: (g:1v2,1 — 11 — 1)

5281

C*(BVQ)C*(Bl/l + 31/2 — ]_)

E;(QQ V17V2> E;kl*(g; V1>V2)

C*(311)¢*(2 — 3u)

Bilgil = —ve i) EX(g;1— v —1n,11)

5C(=DE (95 1,0).

C*(B — 31/1 — 31/2)C*(2 — 31/1)
B (g;ve, 1 — 11 — 10)

E:l(ga V271 — UV — V2)
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Alternatively, by Theorem 5 we may use the following six terms:

X; long form RX;
E: (1= v —va,17) EA;E:(?;V;E(Z_—BVV:)ul) LCr(—1)Ezr,,(1,0)
E;sz (g: 8,1 — 11 — 1) C*(3 =31 — 31m)(*(2 — 311) 0

E:fsz(% Vo, 1 — v — 1)

C*(3V1>C*(3V1 + 31/2 — 1)

Ez,(g;v1,10) EX(giv, )

C*(?) — 31/1 — 31/2)C*(2 — 31/2)

E;kg(g;l_yl_VZal/l) E;k:(g;l—Vl—I/Q,I/l)

C(312)C*(2 — 311)
EX (g 10,1 —vi — 1)

E; (g;v2,1 — v — 1)

7 When BS, is not an isomorphism

Let wgy be the long Weyl group element. The Schubert Eisenstein series E,,
is then just the full Eisenstein series, which is well understood. Nevertheless,
we may try to understand it as a Schubert Eisenstein series.

For GLs, there are two reduced words w = (s1, s9, 81) or (sg, S1, S2) rep-
resenting wy. If 1o is either of these, the Bott-Samelson homomorphism
BSy @ Zw — X,, = X is not an isomorphism. However, since it is
birational, it is a local isomorphism on the complement of a closed sub-
variety, which may be described as follows. The space X may be identi-
fied with the space of full flags in a 3-dimensional vector subspace V. Let
Vo € Vi C Vo C V3 be the standard flag, where V; is the span of eq,--- ,¢;,
in terms of the standard basis vectors e; of V.

Proposition 12 With to = (s, S92, 81), Zw may be identified with the space

of flags Vo C Uy C Uy C V3 with an auxiliary piece of data, namely a one-
dimensional vector space Wy such that Wi C Vo N Us.
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Proof To see this, consider the sequence of flags:

Vs Vs Vs Vs
| | | |
Vs Vs Us Us
[ L M I T (27)
Vi Wi Wi Uy
| | | |
Vo Vo Vo Vo

We select elements 61, 0 and 03 of GL3 such that 6, takes the second flag to
the first, 05 takes the third to the second, and 63 takes the last to the third.
Then 6, is in the parabolic subgroup P; that fixes the partial flag Vo C V5 C
V3, 05 stabilizes the partial flag Vi, C W7 C V3 and 63 fixes the partial flag
Vo C Uy C V3. This means that 6,6, 191_ !is in the parabolic subgroup P, that
fixes the partial flag V[, C V4 C V5 and similarly 6,60,05 19,107 is in P,. Let
us consider (py,pa, ps) = (07, 010507, 010,05105°071) € PLx Py x Pp. Tt is
easy to see that (pi, p2, p3) is determined modulo the left action of B x B x B
on (p1,pa, p3) defined in (3). The the coset of (p1,p2,p3) is determined by
the data in (27). In addition to the standard flag Vo C Vi C V4 C V3 (which
is fixed throughout the discussion) this data consists of the flag V C U; C
Uy C V3 together with Wi, which can be any one-dimensional vector space
contained in V5 N Us. O

Regarding X,,, as the parameter space for the flag Vo C Uy C Uy C V5, the
Bott-Samelson map BS,, : Z, — X, consists of discarding the auxiliary
piece of data W;. We may now compute the exceptional subvariety of X,
where BS,, has a fiber that consists of more than one point. Clearly given
the flag Vo € U; C Uy C V,, the vector space Wi satisfying W, C Vo N U,
will be determined except for the case where Uy = V5.

Because BS,, : Z, — Xy, is not an isomorphism, Lemma 2 fails, but
since we understand the exceptional set, we may understand how to remedy
it and to express E,,, in terms of E; ,,.

Proposition 13 We have

Euy(g;11,v2) = Es (g5 v1,19) + > (Esiso — Es1)(tar (13) 95 11, 12).-
¥3€Bsw, (F)\ SL2(F)
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Proof The element v = #,6,03 has a unique factorization

bay (71)%!2 (72)%!1 (73)

as in Lemma 2 with ~; € Bgr, (F')\ SL2(F') except when ~ lies in the excep-
tional subvariety. This means that v(Uy) = V5, that is, when v € Gy, =
B U Bs;B. These correspond to the terms where vo € Bgy,.

These exceptional terms contribute exactly Ey,. For the remaining terms,
we note that

Z f(l’al (71>L0¢2 (72).9) = E8182 - ESl’

7 € BsL, (F)\ SL2(F)
Y2 € BsL, (F)\ SL2(F)
72 & BsL,

and these terms therefore contribute the second term. O

This type of analysis would in principle allow one to represent more com-

plicated Schubert Eisenstein series by an analog of the procedure we used for
E s,
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