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Let n be an integer and let F be a nonarchimedean local field whose characteristic
is not a prime dividing n. Let µk be the group of k-th roots of unity in the algebraic
closure of F ; we assume that µ2n ⊂ F . Let G be a split, simply-connected semisimple
algebraic group over F . We assume that G is actually defined over the ring o of
integers in F in such a way that K = G(o) is a special maximal compact subgroup
of G(F ).

Matsumoto [19] constructed an n-fold metaplectic cover G̃(F ) of G(F ). For this,
we only need µn ⊂ F but the hypothesis µ2n ⊂ F simplifies the metaplectic cocycle
and the resulting formulas. We are interested in values of a spherical Whittaker
function W on G̃(F ).

Let G = Sp2r and let n = 2. In this case, we present two representations of the
Whittaker function.

• Bump, Friedberg and Hoffstein [7] gave a description of the Whittaker function,
essentially as a sum of up to 2r irreducible characters of Sp(2r), that is, of
Cartan type Cr.

• Chinta and Gunnells [13] gave a recipe for the p-parts of Weyl group multiple
Dirichlet series. We will show that this agrees with the description of the
Whittaker function in [7].

In addition to these descriptions, we have three other conjectural formulas for the
metaplectic Whittaker function. Let λ denote a dominant weight for the root system
of Cartan type Br. Let tλ be an element of the split maximal torus parametrized by
λ. Then:

• The value of the Whittaker function W at tλ may be expressed as a sum over
the Kashiwara crystal Bλ. (Conjecture 1.)
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• The value W (tλ) may be expressed as a sum over the Kashiwara crystal Bλ+ρ,
where ρ is the Weyl vector. (Conjecture 2.)

• The value may be expressed as the partition function for a statistical model.
(Conjecture 3).

The second and third conjectural descriptions are easily seen to be equivalent but give
rise to very different considerations. Although these statements are only partially
proved, they are convincingly supported by calculations.

An interesting feature of this situation is the interplay between Type B descrip-
tions and Type C descriptions.

The Classical Case: The Casselman-Shalika formula

Before considering this problem, let us review the situation when n = 1, so that
G(F ) and G̃(F ) are the same. Let Λ be the weight lattice of the connected L-group
LG◦. It is the group X(LT ) of rational characters of a maximal torus LT of LG◦. If
λ ∈ Λ and z ∈ LT we will denote by zλ the value of λ at z. Let Φ be the root system
of LG◦, so that the root system of G is the dual root system Φ̂.

If T is an F -split torus of G, then Λ ∼= T (F )/T (o). If λ ∈ Λ, let tλ be a
representative of its coset in T (F ). Unramified quasicharacters of T (F ) correspond
to elements of LT . Indeed, an unramified quasicharacter ξ of T (F ) is a quasicharacter
that is trivial on T (o), that is, a character of Λ, and so there is an element z ∈ LT
such that ξ(tλ) = zλ. In this case, we write ξ = ξz.

If α is a positive root, then the coroot α∨ is a positive root of G with respect
to T . Let Xα∨ be the corresponding root eigenspace in Lie(G), and let N be the
maximal unipotent subgroup with Lie algebra

⊕
α∈Φ+ Xα∨ . Then B = TN is a Borel

subgroup.
Let ψN be a nondegenerate character of N . Then ψN is trivial on exp(Xα∨) if α

is positive root that is not simple. If α is a simple positive root then we may arrange
that ψN is trivial on exp(Xα∨) ∩K but no larger subgroup of exp(Xα∨).

Let ξ = ξz be a character of T (F ), which we extend to a character of B(F ) by
taking N(F ) to be in the kernel. Let δ be the modular quasicharacter of B(F ). The
normalized induced representation π(ξ) consists of all locally constant functions f :
G(F ) −→ C such that f(bg) = (ξδ1/2)(b)f(g), with G(F ) acting by right translation.
The standard spherical vector f ◦ is the unique function such that f ◦(k) = 1 for
k ∈ K. Let w0 be a representative of the long Weyl group element. We may assume
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that w0 ∈ K. Then the spherical Whittaker function is

W (g) =

∫
N(F )

f ◦(w0ng)ψN(n) dn. (1)

If ξ = ξz then the integral is convergent provided |zα| < 1 for α ∈ Φ+. For other z
it may be defined by analytic continuation from this domain.

According to the formula of Casselman and Shalika [8] we have W (tλ) = 0 unless
the weight λ is dominant, and if λ is dominant, then

W (tλ) =
∏
α∈Φ+

(1− q−1zα)χλ(z), (2)

where χλ is the irreducible character of LG◦ with highest weight λ and q is the
cardinality of the residue field.

Let Bλ be the Kashiwara crystal with highest weight λ, so that

χλ(z) =
∑
v∈Bλ

zwt(v). (3)

Ignoring the normalizing constant
∏

α∈Φ+(1− q−1zα) in (2), this could be regarded
as a formula for the Whittaker function.

We note that by the Weyl character formula∏
α∈Φ+

(1− zα)χλ(z) =
∑
w∈W

(−1)l(w)zw(ρ+λ)+ρ, ρ =
1

2

∑
α∈Φ+

α.

The factor
∏

α∈Φ+(1−zα) is the Weyl denominator and the factor
∏

α∈Φ+(1−q−1zα)
which appears in (2) is a deformation of this factor.

We are therefore interested in deformations of the Weyl character formula in
which the deformed denominator appears. A typical such formula will have the form∏

α∈Φ+

(1− q−1zα)χλ(z) =
∑

v∈Bλ+ρ

G(v)zwt(v), (4)

where Bλ+ρ is the Kashiwara crystal with highest weight λ+ρ. We will call a function
G on Bλ+ρ which satisfies this identity a Tokuyama function. The archetype is the
formula of Tokuyama [21], where it was stated in the language of Gelfand-Tsetlin
patterns, and translated into the crystal language in [4]. This is for Cartan type A.
For Cartan type C, see [1] in this volume.
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For general n, we may define the metaplectic Whittaker function by an integral
generalizing (1), and then ask for a formula of the form

W (tλ) = δ1/2(tλ)
∑

v∈Bλ+ρ

G(v)zwt(v). (5)

We will give analogs of both (3) and (4) for the metaplectic Whittaker function on
the double cover of Sp2r(F ). However this is the only metaplectic example where we
have an analog of (3), whereas analogs of (4) may be found in many cases of group
and degree of metaplectic cover:

• G = SLn and any n: [4], [5], [6].

• G = Spin(2r + 1) and n odd: [1] (rigorously for n = 1 or n sufficiently large).

• G = Spin(2r) and n even: [9].

• G = Sp(2r) and n even: this paper (rigorously for n = 2).

The Metaplectic Whittaker Function

We review the formula for the metaplectic Whittaker function on the double cover of
Sp2r(F ) which was found by Bump, Friedberg and Hoffstein. We are assuming that
µ4 ⊂ F , which simplifies the formula slightly, since the quadratic Hilbert symbol
(−1, a)2 = (a, a)2 = 1 because −1 is a square.

Let Sp2r = {g ∈ GL2r |gJ tg = J}, where J =

(
−Jr

Jr

)
, Jr =

 1
. . .

1

.

The metaplectic cocycle defining the double cover satisfies

σ





x1

. . .

xr
x−1
r

. . .

x−1
1


,



y1

. . .

yr
y−1
r

. . .

y−1
1




=
∏

(xi, yi)2.

The double cover S̃p2r(F ) consists of pairs (g, ε) with g ∈ Sp2r(F ) and ε = ±1.
The multiplication is (g, ε)(g′, ε′) = (gg′, εε′σ(g, g′)). Let ΛC = Z

r; in the next
section we will interpret this as the weight lattice of Cartan Type Cr. An element
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λ = (λ1, · · · , λr) ∈ ΛC is dominant if λ1 > . . . > λr > 0. Let A =
∑

w∈W (−1)l(w)w
in the group algebra of the Weyl group W . As a group acting on the spectral
parameters z = (z1, · · · , zr), this is the group generated by the r! permutations,
and the 2r transformations zi → z±1

i . We will denote zλ =
∏
zλii for λ ∈ ΛC . Let

ρC = (r, r − 1, · · · , 1). By the Weyl denominator formula

∑
w∈W

(−1)zρC = z−ρC
r∏
i=1

(1− z2
i )
∏
i<j

(1− zizj)(1− ziz−1
j ).

Denote this factor ∆C .
If λ ∈ ΛC , let

tλ =



pλ1

. . .

pλr

p−λr

. . .

p−λ1


.

We fix an additive character ψ on F . This gives rise to a nondegenerate character
ψN on the subgroup N(F ) of upper triangular unipotent matrices n of Sp2r(F ) by
ψN(n) = ψ(n12+n23+· · ·nr,r+1). The cocycle σ(n, g) = σ(g, n) = 1 for n ∈ N(F ) and

g arbitrary, so the map N(F ) −→ S̃p2r(F ) given by n 7→ (n, 1) is a homomorphism,
and we may identify N(F ) with its image.

If a ∈ F×, let γ(a) =
√
|a|
∫
ψ(ax2) dx/

∫
ψ(x2) dx where the integral is taken

over any sufficiently large fractional ideal. Let s : T (F ) −→ S̃p2r(F ) be the map
t 7→ s(t) = (t, 1). Then γ(ab)/γ(a)γ(b) = (a, b)2, the local Hilbert symbol.

Theorem 1 (Bump, Friedberg, Hoffstein) If λ ∈ ΛC is dominant, we have

W (tλ) = δ1/2(tλ)
1

∆C

A

(
zλ+ρC

r∏
k=1

(1− q−1/2z−1
i )

)
W (1).

Moreover

W (1) =

(
r∏
i=1

γ(pλi)−1

)∏
i

(1 + q−
1
2 zi)

∏
i<j

(1− q−1ziz
−1
j )(1− q−1zizj).

If λ is not dominant then W (tλ) = 0.
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Let us combine the two most important parts of this formula and write

W (λ) =
∏
i

(1 + q−
1
2 zi)

∏
i<j

(1− q−1ziz
−1
j )(1− q−1zizj)×

1

∆C

A

(
zλ+ρC

r∏
k=1

(1− q−1/2z−1
i )

)
. (6)

We note that in this context λ is integral and that λ + ρB is half-integral. But
(6) makes sense if λ is half-integral. Furthermore, the Whittaker function can be
extended to the larger group GSp2r. It is natural to expect that our results can
be extended to GSp2r, and that the values of (6) when λ is half-integral are to
be interpreted as values of the Whittaker function on GSp2r. Although we cannot
confirm this when λ is half-integral, we will make some observations about the values
of (6) in this case.

An Embarrassment of L-groups

Although Langlands only defined an L-group for algebraic groups, there is a natural
candidate for an L-group of G̃(F ) when G is split. For G = Sp2r, it is natural to
assume that the L-group should be:{

Sp2r(C) if n is even,
Spin2r+1(C) if n is odd.

For example, the alternation of the Cartan type of the L-group is suggested by
Savin [20], who found that the Cartan type of the genuine part of the Iwahori Hecke
algebra was isomorphic to that of Sp2r(F ) if n is odd and of Spin2r+1(F ) if n is
even, suggesting that the L-group of the metaplectic should be isomorphic to the
L-groups of these groups. Thus we may provisionally expect that in generalizing the
Casselman-Shalika formula to the double cover of Sp2r the role of LG◦ should be
played by Sp2r(C), and indeed, such a generalization was found by Bump, Friedberg
and Hoffstein [7].

It is therefore a little surprising that in generalizing (5) the relevant crystal Bλ is
not of type Cr but rather of type Br! In explaining this, both the representations of
Sp2r(C) (type Cr) and Spin2r+1(C) (type Br) will play a role.

We will compare these representation theories by the ad hoc method of identifying
the ambient spaces of their weight lattices. The weight lattice ΛC of type Cr is Zr.
The lattice ΛC has index two in the weight lattice ΛB of type Br. The lattice ΛB

consists of λ = (λ1, · · · , λr) ∈ 1
2
Z
r such that all λi − λj ∈ Z. The Weyl group W of
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type Br is the same as the Weyl group of type Cr; acting on ΛB or ΛC , it is generated
by simple reflections σ1, · · · , σr where σi acting on Λ = Z

r interchanges λi and λi+1

in λ = (λ1, · · · , λr) when i < r, and σr sends λr → −λr. The Weyl vector ρ of
any root system is half the sum of the positive roots, or the sum of the fundamental
dominant weights. The Weyl vectors for Br and Cr are

ρB =

(
r − 1

2
, r − 3

2
, · · · , 1

2

)
, ρC = (r, r − 1, · · · , 1) .

If λ ∈ ΛC is a dominant weight, then the irreducible character of Sp2r(C) with
highest weight λ will be denoted χCλ , and similarly if λ ∈ ΛB is a dominant weight,
the irreducible character of Spin2r+1(C) with highest weight λ will be denoted χBλ .
In either case, let g be an element of the relevant group. Let z = (z1, · · · , zr) be such
that the eigenvalues of g are z±1

i in the symplectic case, or such that the eigenvalues
of the image of g in SO2r+1(C) are z±1

i and 1 in the spin case. Then the Weyl
character formula asserts that

χCλ (g) =
1

∆C

A(zρC+λ) or χBλ (g) =
1

∆B

A(zρB+λ)

depending on which case we are in, where the Weyl denominators are

∆C = A(zρC ) =
∏
i<j

[
(z

1/2
i z

−1/2
j − z−1/2

i z
1/2
j )(z

1/2
i z

1/2
j − z−1/2

i z
−1/2
j )

]∏
i

(zi − z−1
i ),

∆B = A(zρB) =
∏
i<j

[
(z

1/2
i z

−1/2
j − z−1/2

i z
1/2
j )(z

1/2
i z

1/2
j − z−1/2

i z
−1/2
j )

]∏
i

(z
1/2
i − z

−1/2
i ).

In particular
∆C

∆B

=
r∏
i=1

(z
1/2
i + z

−1/2
i ) =

ρC
ρB

r∏
i=1

(1− z−1
i ). (7)

On the face of it, the last formula has little meaning, since the Weyl denominators
live on different groups. We will use it in the next section.

Ambivalence of the L-group

Let G be a reductive group over a nonarchimedean local field F . Let us consider
the role of the L-group in the Casselman-Shalika formula. The semisimple conjugacy
classes of LG◦ parametrize the spherical representations of G(F ). Let π be a spherical
representation and z = zπ the parametrizing conjugacy class. Then the values of
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the irreducible characters of G(F ) on z equal the values of the spherical Whittaker
function of π.

So we should seek a similar interpretation in the metaplectic case. Let G =
Sp2r(F ) and let G̃(F ) be the double cover. Either Sp2r(C) or SO2r+1(C) will serve
to parametrize the principal series representations of G.

But what about the factor:∏
i

(1 + q−
1
2 zi)

∏
i<j

(1− q−1ziz
−1
j )(1− q−1zizj) (8)

This is supposed to be a deformation of the Weyl denominator. The Weyl denomi-
nators of types B and C are, respectively, z−ρB and z−ρC times∏

i

(1− zi)
∏
i<j

(1− ziz−1
j )(1− zizj),

∏
i

(1− z2
i )
∏
i<j

(1− ziz−1
j )(1− zizj).

Now there are two ways of looking at (8). We may write it as∏
i

(1− q−
1
2 zi)

−1 ×
∏
i

(1− q−1z2
i )
∏
i<j

(1− q−1ziz
−1
j )(1− q−1zizj),

and the factor in front is interpreted as the p-part of a quadratic L-function. Letting
q → 1 the remaining product becomes the deformed Weyl denominator of type C.
On the other hand, we may let q−

1
2 → −1, in which case (8) becomes the Weyl

denominator of type B.
A similar dual interpretation pertains with the factor

1

∆C

A

(
zλ+ρC

r∏
k=1

(1− q−1/2z−1
i )

)
. (9)

On the one hand, if we expand the product we get a sum∑
S⊂{1,2,3,··· ,r}

(−q1/2)|S|
1

∆C

A

(
zλ+ρ

∏
i∈S

z−1
i

)
. (10)

Each term is either zero, or an irreducible character of Sp2r(C) by the Weyl character
formula. Hence (9) may be regarded as a sum of 6 2r irreducible characters of
Sp2r(C) and thus has a Type C flavor. But on the other hand, let us again specialize

q
1
2 → −1. Then using (7), the factor (9) becomes

1

∆B

A
(
zλ+ρB

)
= χBλ (z). (11)

Actually this formula generalizes to a formula like (3) for the metaplectic Whittaker
function in the form (9). We will discuss this point later.
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Chinta-Gunnells description

Chinta and Gunnells [12], [13] gave a construction of the p-parts for multiple Dirichlet
series. See also Chinta, Friedberg and Gunnells [11] and Chinta and Offen [10]. We

will show that their construction gives the metaplectic Whittaker function of S̃p2r(F )
when the root system is of type Br.

The Chinta-Gunnells method begins by defining an action on functions of the
spectral parameters, which we review in the case at hand.

As before, let T be the maximal torus of diagonal elements in SO2r+1, whose
eigenvalues are z1, · · · , zr, 1, z−1

r , · · · , z−1
1 . Let T ′ be the preimage of T in Spin2r+1.

The coordinate ring of T ′ is then generated by z±1
i and by

√
z1 · · · zr. We write a

rational function f on T ′ as a linear combination of two parts f+ and f−, which are
the odd and even parts respectively with respect to the rational map of T ′ that sends
zi → zi and

√
z1 · · · zr → −

√
z1 · · · zr. In the particular case at hand, the action is

described separately on f+ and f− and it does not mix them. Thus we may describe
the action separately in the two cases f = f+ and f = f−.

First suppose that f = f+. Let s1, · · · , sr be the simple reflections in W . If
1 6 i < r then

(f |si)(z) = f(siz),

while if i = r then

(f |sr)(z) =
1− q−1/2z−1

r

1− q−1/2zr
f(srz), z = (z1, · · · , zr).

If f = f− then the rule when 1 6 i < r is unchanged but

(f |sr)(z) =
1

zr
f(srz).

The braid relations are satisfied, and so this definition extend to a right action
f 7→ f |w for all w ∈ W . Now the Chinta-Gunnells description of the p-part of the
multiple Dirichlet series may be written

CG(λ, z) = zλ+ρC
∑
w∈W

z−λ−ρC |w
∆C(wz)

. (12)

Let us denote this as CG(λ, z). Let

D(z) =
r∏
i=1

(1− q−1z2
i )
∏
i<j

(1− q−1zizj)(1− q−1ziz
−1
j ).
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Theorem 2 We have

D(z) CG(λ, z) = zλ+ρC W (λ),

where W (λ) is the Whittaker value defined in (6).

Proof Let

P =
r∏
i=1

(1− q−1/2zi).

Lemma 1 If f = f+ then

(f |w−1)(z)

f(wz)
=
P (wz)

P (z)
.

Proof If p(w, z) = P (wz)/P (z) then p satisfies the cocycle condition p(ww′, z) =
p(w,w′z)p(w′, z). The left-hand side also satisfies the same cocycle relation so we
are reduced to the case where w is a simple reflection, in which case it follows easily
from the definition. �

Now CG(λ, z) equals

zλ+ρC

∆C

∑
w∈W

(−1)l(w)(z−λ−ρC |w) =
zλ+ρC

∆C

∑
w∈W

(−1)l(w)(z−λ−ρC |w).

Replacing w by w−1 and using the Lemma, this equals

zλ+ρC

∆CP (z)
A(P (z)z−λ−ρC ).

Now we observe that for any function A(f(z)) = A(f(w0z)). We have w0z =
(z−1

1 , · · · , z−1
r ) and so our last expression equals

zλ+ρC∏r
i=1(1− q−1/2zi)

1

∆C

A

(
zλ+ρC

r∏
i=1

(1− q−1/2z−1
i )

)
.

Multiplying by D(z) and simplifying, the statement follows. �
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BZL Patterns

Let w0 be the long Weyl group element. Choose a decomposition reduced decom-
position w0 = sω1 · · · sωN into a product of simple reflections where 1 6 ωi 6 r (the
rank). Let

ω = (ω1, · · · , ωN)

be the corresponding reduced word for w0.
Let v ∈ B. Let k1 be the largest integer such that ek1ω1

(v) 6= 0. Then let k2 be
the largest integer such that ek2ω2

ek1ω1
(v) 6= 0, and so forth. Then ekNωN · · · e

k1
ω1

(v) = vλ.
The pattern (k1, · · · , kN) determines v, and gives a convenient way of parametrizing
elements of the crystal. These patterns were studied by Littelmann [17] and by
Berenstein and Zelevinsky [2]. We will refer to (k1, · · · , kN) as a BZL pattern and
write (k1, · · · , kN) = BZLω(v).

Theorem 3 There exists a unique function σ on B taking values in the nonnegative
integers with the following properties. If vλ is the highest weight vector then σ(vλ) =
0. If x, y ∈ B and fi(x) = y with i < r, then σ(x) = σ(y). If er(x) = 0, and
y = fkr (x), then

σ(y) =

{
σ(x) if k is even,
σ(x) + 1 if k is odd.

Let us illustrate this with an example.

0

0 1 0

0

1

1

1

0

0

0

0

1

1

1

2

2 1 2

2

1

1

1

1

1

1

0

0
1

0

0

0

0

0

0

This illustrates the crystal with highest weight λ = (2, 1) for B2. We draw x −→ y
with a solid arrow if y = f1(x), and with a dashed arrow if y = f2(x). The vertex in
the upper right-hand corner is vλ. The values of σ are shown for every element.
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Proof We will give one definition of σ for each reduced decomposition

w0 = sω1sω2 · · · sωr2

of the long element. We will show that these definitions are all equivalent, then
deduce the statement. We start with the BZL string of v ∈ B corresponding to this
word. Thus if

ω = (ω1, ω2, · · · , ωr2)

let k1, k2, · · · , kr2 be defined by

eknωn · · · e
k1
ω1
v 6= 0, ekn+1

ωn · · · ek1ω1
v 6= 0,

so that e
kr2
ωr2
· · · ek1ω1

v = vλ is the highest weight element of the crystal base. Define

σω(v) =
∑
ωj=r

{
1 if kj is odd,
0 if kj is even.

(13)

We wish to assert that if σ and σ′ = (ω′1, · · · , ω′r2) are two reduced decompositions
then φσ = φσ′ .

The proof will involve a reduction to the rank two case, so let us first prove that
the statement is true for crystals of type B2. In this case, there are only two reduced
words and we may assume that ω = {1, 2, 1, 2} and ω′ = {2, 1, 2, 1}. In this case,
Littelmann [17] (Section 2) proved that

k′1 = max(k4, k3 − k2, k2 − k1),

k′2 = max(k3, k1 − 2k2 + 2k3, k1 + 2k4),

k′3 = min(k2, 2k1 − k3 + k4, k4 + k1),

k′4 = min(k1, 2k2 − k3, k3 − 2k4).

From this it follows easily that the number of odd elements of the set {k′2, k′4} is the
same as the number of odd elements of the set {k1, k3}, that is, σω = σω′ .

We turn now to the proof that σω = σω′ when r is general. Let Σ be the set of all
reduced words representing the long element, and consider the equivalence relation
generated by ω ∼ ω′ if ω′ is obtained from ω by replacing a string {l,m, l,m, · · · } of
length equal to the order N of slsm in the Weyl group by the string {m, l,m, l, · · · } of
the same length. By a theorem of Tits any two reduced decompositions are equivalent
under this relation. As a consequence, it is sufficient to show that σω = σω′ when σ′

is obtained by replacing an occurrence of l,m, l by m, l,m (m = l + 1 < r), or an
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occurrence of l,m, l,m by m, l,m, l (l = r − 1,m = r) or an occurrence of l,m by
m, l when |l −m| > 1.

Suppose that it = l, it+1 = m, etc. are the elements of σ that are changed in σ′.
The element it−1 and i′t−1 of σ and σ′ preceding this string (if it is not initial) is not
l or m, and similarly the element following it. Let

vh = ekhih · · · e
k1
i1
v, ekh+1

ih
· · · ek1i1 v = 0, v′h = e

k′h
i′h
· · · ek

′
1

i′1
v, e

k′h+1

i′h
· · · ek

′
1

i′1
v = 0,

so v0 = v′0 = v and vr2 = v′r2 = vλ. We will argue that the sequences v0, v2, · · · , vr2
and v′0, v

′
2, · · · , v′r2 are the same, as are the sequences k1, k2, · · · , kr2 and k′1, k

′
2, · · · , k′r2 ,

except that in the middle of the sequences, vt−1 = v′t−1 and vt+N−1 = v′t+N−1 but
vt, vt+1, · · · , vt+N−2 are replaced by their primed counterparts, and similarly the ki.

To see this, remove all edges of the crystal graph except those labeled l and m
produces a crystal graph B′ of type A2, B2, A1 × A1 or A1 × B1. Then vt−1 = v′t−1

since ω and ω′ agree up to this point. Let B′′ be the connected component of B′
containing this. Then vt+N−1 is the highest weight vector in B′′ and so is v′t+N−1. It
is now clear that the portion of the BZL pattern which lies within this crystal is the
only part of k1, · · · , kr2 which is different from k′1, · · · , k′r2 , and we have only to show
that the number of ki within this subpattern with ωi = r such that ki is odd is the
same as for the k′i. That is, we have reduced to the rank two case. If B′ is of type
B2 we have proven this, and the other three cases are trivial, since an A2 or A1×A1

crystal has no edges of type r, while an A1 ×B1 crystal is just a Cartesian product.
Now let 1 6 i 6 r. To verify the assertion that if fi(x) = y, choose a word ω whose

first element ω1 = i. If (k1, · · · , kr2) = BLZω(x) then (k1 +1, k2, · · · , kr2) = BZLω(y).
Thus Since σ(x) is the number of odd ki with ωi = r, it is obvious that σ(x) = y.
On the other hand, suppose that er(x) = 0. Choosing ω such that ω1 = r, we
have BZL(x) = (k1, · · · , kr2) with k1 = 0 while BZL(fkr (x)) = (k, k2, · · · , kr2) and so
obviously σ(fkr (x)) = σ(x) if k is odd and σ(x) + 1 if k is even. �

We recall that the Weyl group acts on the crystal: each simple reflection si acts
by reversing the i-root strings. It is shown that this action gives rise to a well-defined
action on the crystal in Littelmann [18].

Proposition 1 If λ is integral, then the function σ is constant on W orbits of the
crystal.

Proof It is clear from the definition that reversing the i-root string through v ∈ Bλ
does not change σ(v) if i < r since σ is constant on the root string in that case. If
i = r, then the fact that λ is integral means that each root string has odd length,
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and therefore σ(si(v)) = σ(v) in this case also, since v− sr(v) = kαr with k even. If
λ is half-integral, the Weyl group action does not preserve σ. �

Conjecture 1 Assume that λ is integral. Then

1

∆C

A

(
zλ+ρC

r∏
k=1

(1− q−1/2z−1
i )

)
=
∑
v∈Bλ

(−q1/2)σ(v)zwt(v).

This expresses the metaplectic Whittaker function (except for its normalizing
constant) as a sum over the crystal.

Type B crystals

Let B be the crystal of an irreducible finite-dimensional representation for any Cartan
type, and let W be the corresponding Weyl group. We will denote the Kashiwara
(root) operators by ei and fi. The are maps B −→ B∪{0}. If λ is the highest weight
then there is a unique element vλ ∈ B of weight λ.

Let us disregard the normalizing constant (8) for the time being, and consider

(9) to be the value of the the p-adic Whittaker function at tλ in S̃p2r(F ), where λ
is a dominant weight for Spin2r+1(C). Strictly speaking, this only makes sense if
λ is integral. However if λ is half-integral, it is probable that this scenario can be
extended, taking tλ in G̃Sp2r(F ). In any case, (9) is defined whether λ is integral or
half-integral.

We saw in (11) that when q1/2 is specialized to −1 the value of (9) becomes the
character χBλ of an irreducible representation of Spin2r+1(C). We will reinterpret
this fact in terms of crystals, showing that for any q, the expression (9) may be
interpreted as a deformation of χBλ .

Decorated BZL Patterns

We will decorate the values k1, · · · , kN by drawing boxes or circles around some of
them, by rules that we will explain. The boxing rule is as follows. If

fωie
ki−1
ωi−1
· · · ek1ω1

(v) = 0

then we box ki. Concretely, this means that the path from v to vλ that goes through

v, ek1ω1
(v), ek2ω2

ek1ω1
, · · ·

14



includes the entire ωi-string through ekiωi · · · e
k1
ω1

(v). Intuitively, it means (very roughly)
that the value ki is as large as possible, and cannot be increased.

The circling rule may be expressed also very roughly as meaning that the value
ki is as small as possible, and cannot be decreased. To make this precise for type Br

and for one particular reduced word ω, we appeal to some results of Littelmann.
The admissible BZL patterns of type Br (and other Cartan types) are described

in Littelmann [17]. We will use the Bourbaki ordering of the weights, so that the
fundamental dominant weights are ω1, · · · , ωr with ω1 = (1, 0, · · · , 0) the highest
weight of the standard representation, and ωr =

(
1
2
, · · · , 1

2

)
the highest weight of the

spin representation. Then the reduced decomposition that we will use is

w0 = sr(sr−1srsr−1)(sr−2sr−1srsr−1sr−1) · · · (s1 · · · sr · · · s1).

Thus ω = (r, r−1, r, r−1, r−2, r−1, r, r−1, r−2, · · · ) and N = r2. An alternative
indexing will sometimes be convenient, so we will write alternatively

BZL(v) = (k1, · · · , kr2) = (kr,r, kr−1,r−1, kr−1,r, kr−1,r+1, · · · ).

Following Littelman, we put the entries into a triangular array, from bottom to top
and left to right, thus

k1,1 · · · k1,r k1,r+1 · · · k1,2r−1

. . .
... . . .

kr−1,r−1 kr−1,r kr−1,r+1

kr,r

 =


. . .

... . . .

k5 k6 k7 k8 k9

k2 k3 k4

k1


Littelmann proved that the entries in each row satisfy the following inequalities:

2ki,i > 2ki,j+1 > · · · > 2ki,r−1 > ki,r > 2ki,r+1 > · · · > 2ki,2r−i > 0

Note that every value is doubled except the middle one.
Let us describe the rules for this. First, we circle the entry if the corresponding

inequality is strict. Let us make this explicit in the case r = 3. In this case

BZK(v) = (k3,3, k2,2, k2,3, k2,4, k1,1, k1,2, k1,3, k1,4, k1,5) = (k1, k2, · · · , k9)

and the array is:
k1,1 k1,2 k1,3 k1,4 k1,5

k2,2 k2,3 k2,4

k3,3

 =


k5 k6 k7 k8 k9

k2 k3 k4

k1

 . (14)
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We have
k3,3 > 0

and if k3,3 = 0 we circle it. We have 2k2,2 > k2,3 and if this is an equality, we circle
k2,2. Similarly k2,3 > 2k2,3 and if this is equality, we circle k2,3.

We attach a simple root of the Br root system to each column of the array, in
this order:

α1, · · · , αr−1, αr, αr−1, · · · , αr.

Thus if
Thus if and entry is in the column labeled by αi, then the corresponding element

of the long word ω is i. Thus let ci be the sum of the i-th column. We have

wt(v) = λ− (c1 + c2r−1)α1 − (c2 + c2r−1)α2 − · · · − crαr.

Only αr is a short root.

The Sum

Let p be a prime element in the nonarchimedian local field F . Let ( , ) be the local
Hilbert symbol. If 0 6= c ∈ o and m ∈ o

gt(m, c) =
∑

x mod c
gcd(x, c) = 1

ψ
(mx
c

)
(x, c)t.

We will need these for t = 1, 2. We will also denote, for a nonnegative integer a

gt(a) = gt(p
a−1, pa), ht(a) = gt(p

a, pa).

If n = 2, then all these Gauss sums may be made explicit. The Gauss sum
g1(1, p) is a square root of q, which we will denote q1/2; by choosing ψ correctly we
may arrange that it is the positive square root. Assuming n = 2, we then have:

g1(a) = qa−
1
2 , h1(a) =

{
qa−1(q − 1) if a is even,
0 otherwise,

and
g2(a) = −qa−1, h2(a) = (q − 1)qa−1.
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We now assume that n is even, and that B is crystal of type Br. If v ∈ B we
define

G(v) =
∏

k∈BZL(v)


q−kht(k) if k is unboxed and uncircled,
q−kgt(k) if k is boxed but not circled,
1 if k is circled but not boxed,
0 if k is both boxed and circled.

where t = t(k) is 1 if the root corresponding to k is αr, and t = 2 otherwise. This
means that t = 1 if k is in the middle column of the array (14), and t = 2 otherwise.
Note that these differ from the weights used in [4] in two ways:

• Due to the presence of both long and short roots we have two kinds of Gauss
sums, indexed by t.

• The factor is multiplied by q−k which ultimately simplifies the formulas.

• We have made our BZL patterns using the ei instead of the fi. This makes no
real difference.

Now let λ be a dominant weight. Then we claim that G(v) is a Tokuyama function
for the metaplectic Whittaker function. More precisely:

Conjecture 2 Assume that λ is integral. Then with W (λ) as in (6), we have

W (λ) =
∑

v∈Bλ+ρ

G(v)z−wt(v)

Ice Models

We will now give an alternative description of the Whittaker function as the partition
function of a statistical system in the six-vertex model. The Boltzmann weights are
in the free-fermionic regime studied by Brubaker, Bump and Friedberg [3]. This
particular system is closely related to one studied by Hamel and King [14] and
Ivanov [15]. It is also similar to the U-turn models used by Kuperberg [16] to study
a class of alternating sign matrices. Despite these similarities, the particular model
that we describe is new.

Some arguments in this section are very similar to those in Ivanov [15]. The model
that we consider is very similar to the one that he uses, except that the Boltzmann
weights at the “caps” to be introduced below are different in his work.

We consider an array of vertices with 2r rows and sufficiently many columns.
The intersections of the rows and columns of the array will be called vertices . The
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vertices in the odd numbered rows will be designated “Gamma ice” (labeled •) and
those in even numbered rows (labeled ◦) will be designated “Delta ice.” Each pair
of rows will be closed at the right edge by a “cap” containing a single vertex. Thus
if r = 2 the array looks like:

+

−

+

−

+ + + + + +

− + + − + +

11
2

9
2

7
2

5
2

3
2

1
2

z1

z−1
1

z2

z−1
2

We have labeled the boundary edges by certain signs ±. The interior edges will also
be labeled with signs, but these signs will be variable, whereas the boundary edge
signs are fixed and are part of the data describing the system.

The boundary edge signs are to be described as follows. We put −,+,−,+, · · ·
on the left edge, so that the rows of Delta ice begin with − and the rows of Gamma
ice begin with +. We put + along the bottom edge. For the top edge, we label the
columns with half integers beginning with 1

2
at the right and increasing by 1 from

right to left. We put − in the columns labeled from values in λ+ ρB. Thus if r = 2
and λ = (4, 2) then λ+ρB =

(
11
2
, 5

2

)
and so we put − in those columns, as indicated.

The remaining top edges are labeled +.
A state of the system is an assignment of edges to the remaining interior edges.

For the Gamma and Delta vertices, the assignments must be taken from the following
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choices.

Γ vertex

i i i i i i

Boltzmann
weight

1 z−1
i t z−1

i z−1
i (t+ 1) 1

∆ vertex

i i i i i i

Boltzmann
weight

zi zi(t+ 1) 1 zit 1 1

For the cap vertices, which we will label �, the two adjacent edges must have the
same sign, as follows.

� Cap
Vertex

+

+

−

−

Boltzmann
weight

−
√
−tz1/2

i z
−1/2
i

Let t be a parameter to be determined later. Every vertex in the state has a Boltz-
mann weight taken from the above table. Let S = S(z1, · · · , zr, t) be the set of all
states.

Given a state S ∈ S of the system, the Boltzmann weight BW(S) of the state
is the product over all vertices of the weights of the vertex. The partition function
Z(S) is the sum over all states S of BW(S).

The Weyl group W is the group of transformations of z1, · · · , zr generated by
permutations of the zi and the 2r transformations zi → z±1

i .

Proposition 2 The product

zρB
∏
i

(1− i
√
tz−1
i )

[∏
i>j

(1 + tzizj)(1 + tziz
−1
j )

]
Z(S) (15)

is invariant under the action of W .
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The ideas of this proof are similar to those in [3], where the “caduceus” braid
also appears.
Proof We must show invariance under the simple reflections. First we check invari-
ance when zi and zi+1 are switched.

We make use of the following types of vertices.

Type

Γ∆

j i

i j

j i

i j

j i

i j

j i

i j

j i

i j

j i

i j

Boltzmann
weight

t2zj − z−1
i (t+ 1)zj tzj + z−1

i tzj + z−1
i (t+ 1)z−1

i z−1
i − zj

∆∆

j i

i j

j i

i j

j i

i j

j i

i j

j i

i j

j i

i j

Boltzmann
weight

tzi + zj zj(t+ 1) tzj − tzi zi − zj (t+ 1)zi zi + tzj

ΓΓ

j i

i j

j i

i j

j i

i j

j i

i j

j i

i j

j i

i j

Boltzmann
weight

tz−1
i + z−1

j tz−1
j + z−1

i tz−1
j − tz−1

i z−1
i − z−1

j (t+ 1)z−1
i (t+ 1)z−1

j

∆Γ

j i

i j

j i

i j

j i

i j

j i

i j

j i

i j

j i

i j

Boltzmann
weight

zi − z−1
j (t+ 1)zi tzi + z−1

j tzi + z−1
j (t+ 1)z−1

j −t2zi + z−1
j

The results in [3] include the following “star-triangle relation” or Yang-Baxter
equation. Let X, Y ∈ {Γ,∆}. Choose three vertices of types X, Y and XY , whose
Boltzmann weights are given by the above tables. Call these vertices S, T and R. Let
ε1, · · · , ε6 be six signs, ±. Then the following two partition functions (each involving
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two vertices) are equal.

R

S

T

ε2

ε1

ε3

ε4

ε5

ε6 =

R

T

S

ε2

ε1

ε3

ε4

ε5

ε6

This means that (on each side of the equation) we sum over all assignments of signs
to the 3 interior edges, which are marked with unlabeled circles. The reversal of the
spectral parameters, and of the order of the S and T vertices is indicated.

Now consider four rows of the system, which have (alternately) ∆, Γ, ∆, Γ ver-
tices, with spectral parameters zi, z

−1
i , zj and z−1

j . (So j = i + 1.) To the left of
these four rows, we attach the following “caduceus” braid, which was first considered
by Ivanov [15].

∆∆

Γ∆ ∆Γ

ΓΓ

ε4

ε3

ε2

ε1

ε5

ε6

ε7

ε8

zj

z−1
j

zi

z−1
i

zi

z−1
i

zj

z−1
j

We observe that there is only one legal configuration for this system which has
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(ε1, ε2, ε3, ε4) = (+,−,+,−). This configuration is:

∆∆

Γ∆ ∆Γ

ΓΓ

−

+

−

+

−

+

−

+

− −

+ +

zj

z−1
j

zi

z−1
i

zi

z−1
i

zj

z−1
j

The partition function is just the product of the values at the four vertices, which
can be read off from the above table:

(tzj + z−1
i )(zi + tzj)(tz

−1
i + z−1

j )(tzi + z−1
j ). (16)

Therefore attaching the caduceus to the left of the four rows multiplies the partition
function by this factor.

Using the Yang-Baxter equation, the factor moves across the ice until it encoun-
ters the caps. In the process, the zi and zj spectral parameters are interchanged –
effectively the two pairs of rows are switched.

Lemma 2 Let ε1, ε2, ε3, ε4 ∈ {+,−}. Then the partition function of the system on
the left in the following diagram

∆∆

Γ∆ ∆Γ

ΓΓ

ε4

ε3

ε2

ε1

zj

z−1
j

zi

z−1
i

zi

z−1
i

zj

z−1
j

ε4

ε3

ε2

ε1

zj

z−1
j

zi

z−1
i
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equals
(tzi + z−1

j )(tzi + zj)(tz
−1
i + z−1

j )(tzj + z−1
i ). (17)

times the partition function of the system on the right.

This means that interchanging zi and zj = zi+1 has the effect of multiplying Z
by the ratio of (16) to (17). This ratio equals

zj + tzi
zi + tzj

=
zj
zi
·

1− tziz−1
j

1− tzjz−1
i

=
zsiρB

zρB

1− tziz−1
j

1− tzjz−1
i

,

which means that the product (15) is invariant under this interchange.
Now we consider the effect of the interchange zr ↔ z−1

r . For this, we begin by
transforming the very bottom row of Γ vertices with spectral parameters zr into ∆
vertices with the spectral parameter z−1

r by changing the signs of all the horizontal
edges in the row. Thus we are using the following weights before and after the
change:

Γ vertex
(before)

i i i i i i

Boltzmann
weight

1 z−1
r 1 z−1

r t z−1
r (t+ 1)

∆ vertex
(after)

i i i i i i

Boltzmann
weight

1 z−1
r 1 z−1

r t 1 z−1
r (t+ 1)

This change has no effect on the Boltzmann weights because of the boundary con-
ditions: only + occur in the bottom edge spins, and therefore only the first three
patterns occur. In order to compensate for the change, we must replace the cap
vertices with the following modified ones, which we label by � instead of �:

� Cap
Vertex

zi

z−1
i−

+
zi

z−1
i+

−

Boltzmann
weight

−
√
−tz1/2

r z
−1/2
r
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Now we attach a ∆∆ vertex to the left, using the following Boltzmann weights:

∆∆

j i

i j

j i

i j

j i

i j

j i

i j

j i

i j

j i

i j

Boltzmann
weight

tzr + z−1
r z−1

r (t+ 1) tz−1
r − tzr zr − z−1

r (t+ 1)zr zr + tz−1
r

We are putting − on both left edge vertices. This multiplies the partition function
by zr + tz−1

r . We use the Yang-Baxter equation repeatedly to push this ∆∆ vertex
across the bottom two rows until it encounters the cap. Then we have the following
configuration:

zr

z−1
rε2

ε1

It may be checked that the value of this configuration is

(1−
√
−tzr)(1 +

√
−tz−1

r )

times the value of the single � vertex. After this is substituted we may then repeat
the sign change, turning the bottom row back into Γ vertices, with parameter z−1

r

changed to zr.
Therefore zr+tz

−1
r times Z(S) equals (1−

√
−tzr)(1+

√
−tz−1

r ) times the partition
function with zr replaced by its inverse. This implies that (15) is invariant under
zr → z−1

r . �

Conjecture 3 Take t = −1
q
. Then Z(S) equals

zw(ρB)
∏
i

(1 + q−1/2zi)

[∏
i<j

(1− q−1zizj)(1− q−1ziz
−1
j )

]
1

∆C

A

(
zλ+ρC

r∏
k=1

(1− q−1/2z−1
i )

)
It follows from Proposition 2 that Z(S) is divisible by the product

∏
i

(1 + q−1/2zi)

[∏
i<j

(1− q−1zizj)(1− q−1ziz
−1
j )

]
,
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and the quotient is a polynomial in q−1/2 and zi, z
−1
i that is invariant under the Weyl

group. We can prove the conjecture if r 6 3.
Thus, this ice-type model conjecturally represents the Whittaker function. This

conjecture implies Conjecture 2.
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