
Google Prodcast Season Three Episode Thirteen

[JAVI BELTRAN, "TELEBOT"]

STEVE MCGHEE: Welcome to season three of The Prodcast, Google's podcast about site reliability 

engineering and production software. I'm your host, Steve McGhee. This season, we're going to focus 

on designing and building software in SRE. Our guests come from a variety of roles, both inside and 

outside of Google. Happy listening, and remember, hope is not a strategy.

—

STEVE MCGHEE: Welcome back to the broadcast, Google's podcast on SRE and production software. 

I'm your host, Steve McGhee, and I'm joined again by Jordan Greenberg. Hi, Jordan.

JORDAN GREENBERG: Hi.

STEVE MCGHEE: Hi. This season is all about software engineering and SRE. And today's episode is 

about something maybe we don't always think about as traditional software engineering, but it is dear 

to SRE's hearts, configuration.

You might have heard about imperative versus declarative configuration and config as code. But I like 

to say config is code. And today, we'll dig into the ramifications of that. OK, let's bring in our guests. 

Today, we have Dominic and Nicc. Guys, please introduce yourselves.

DOMINIC: Sure. I'm Dominic. I'm a Staff SRE at HashiCorp. Before that, I spent most of my time in 

smaller early stage engineering organizations, where I've been lucky to work on a mix of stuff, like from 

satellites and IoT through to SaaS in the finance and HR space. I don't know. They were foolish enough 

to give me a chance, and I had a bunch of fun and opportunity to learn. So that's me. Nicc?

NICCOLO': Hey, thanks. I'm Nicc. I have been a Google SRE since the very beginning of my career. I just 

came to Google straight off my university. I started in Google in 2011, and I've been working in the last 

10 years for the internal continuous delivery system, which is based on a declarative approach, which 

is going to be part of the topic that we talk about today.

JORDAN GREENBERG: Nice. Another person who started at Google as their first job out of college. We 

are kindred spirits.



STEVE MCGHEE: Me too, kind of. I had a job in a different college. Does that count? I don't think that 

counts. I think it was--

JORDAN GREENBERG: I don't think that counts.

STEVE MCGHEE: No? OK.

JORDAN GREENBERG: I think you're good. We're twins.

DOMINIC: You've been ousted. You're not part of the club, unfortunately. I'm sorry.

JORDAN GREENBERG: You know what? You are now. You made it. You're here. Glad to have you.

STEVE MCGHEE: There are many clubs, it turns out.

JORDAN GREENBERG: Yes. So I would like to know, as an SRE TPM, what does declarative and 

imperative mean in this context of SREism? Did you make these words up? Were they adapted from 

something else? Math is different than SRE apparently. So what does it mean in this context?

DOMINIC: I don't think we made them up. Pretty sure we took them from a bunch of other domains. All 

stuff's derivative, right?

JORDAN GREENBERG: Yes. Absolutely.

DOMINIC: Obviously, computer science and programming.

JORDAN GREENBERG: Yeah.

STEVE MCGHEE: All words are made up, it turns out.

JORDAN GREENBERG: So what are the terms declarative and imperative in this context? They do 

come from other places like math and whatever. And I guess math is SRE. But in the SRE context, what 

does declarative and imperative mean in this way?

DOMINIC: We definitely stole them from somewhere, that's for sure. I don't know. I guess I have some 

formal study background, like I work a lot on Vibe and things I've learned over the years. To me, the 

main difference is that declarative normally involves like there's a DSL that describes something. And 

you give that DSL to something, which decides how to arrive at the point you described.



STEVE MCGHEE: That's a domain-specific language, right? The DSL.

DOMINIC: Yeah. Sorry. I'm bad at the acronyms thing as well. I'll try to cut back on that. And then 

imperative is like most people will be used to in like traditional programming. It's like you write some 

instructions, and they work through top to bottom. Maybe there's some control flow and like loops 

that do this thing 10 times. But yeah, that's very broad brush strokes. But the practicalities, when it 

actually comes to config management, there's some subtle differences. I don't know. Nicc, what do 

you reckon?

NICCOLO': Yeah, I agree with you that the things that I explain, I used to explain what declarative and 

imperative really means is I always say if you are giving me a piece of code, a script, a snippet of 

Python, bash script that runs specific instructions one after the other, that to me is imperative. It can 

be a very complicated script that is embedded into a larger system like Spinnaker, which by itself has a 

declarative-based API because you declare your workflow in Spinnaker through the Cloud API. But the 

end result is an imperative workflow that executes their operations.

If you are telling me instead that here is the data, a piece of data, which is normally a protocol buffer, a 

JSON file, or literally data, no program, and that defines the intended state that you want to reach, 

whatever the intended state represents, then to me, that is declarative system. So as you said 

correctly, you must have a domain-specific language which abstracts the right atom for you to 

operate in order to perform a declarative-based operation.

DOMINIC: I guess there's another part I'd add into that, which is like something I commonly see in 

declarative, change control systems, is like the concept of modules or things you can import that other 

people have authored. And you can use them in your declarative stuff. And you kind of compose it all 

together to achieve the end result you wanted.

Whereas like, yeah, you do do that in scripts. Well, sorry, I don't want to reduce imperative to scripts 

straight away. But in the imperative sort of change control world, you do do that. It just doesn't seem 

to be such a focus on it, which we might touch on a bit later.

NICCOLO': Yeah.

JORDAN GREENBERG: OK. So summing up, an imperative system, you have to produce the code for 

and in a declarative system, you produce the data for. Can an imperative system have a declarative 

interface?



NICCOLO': Yes. As I said before, Spinnaker, it's the example that I brought before, which is itself, 

Spinnaker is a workflow engine, which means that you're going to write a workflow, which is just a 

script on steroids, if you want, which does many more things, and it's much more elaborated.

And you produce the scripts by using declarative APIs like create, update. So you are going to create a 

node, you're going to create a step. You're going to create an action, whatever are the atoms that the 

Spinnaker API proposes. But in the end, your result is a workflow, which is an imperative script. That's 

how I would describe it.

If I want to give you a contrast, then I'll also let Dominic tell his own opinion on this. Kubernetes instead 

is declarative because if you look at a YAML file in Kubernetes, you say, I want to have this deployment 

with this image and this number of replicas. You don't tell it what to do. You just give to it. This is the 

intended state. Please reach it based on your own internal logic on how to enforce the intended state.

JORDAN GREENBERG: When would you use an imperative versus a declarative?

DOMINIC: I don't know about Nicc, but for me, speed is like something that comes in quickly. I can 

knock together a crappy script pretty quickly. But then I need to put on my engineering hat and be like, 

what is the longevity I expect out of this thing? Like do I expect it to be around for a couple of years? 

Like who's going to maintain it? Am I going to maintain it? Am I going to have to bring other people up 

to speed on it? Am I going to be able to satisfy the constraints that I need to, like security, or cost 

control, or whatever it is. Once it gets, I'm going to say more advanced, I start to lean towards 

declarative approaches definitely, like imperatives for quick stuff, quick and dirty in my books. But 

that's just my opinion.

NICCOLO': Well, I share your opinion, to be very honest, because I was going to answer something 

along the same lines. So the advantages of imperative is that normally programmers are very used to 

writing imperative languages. So you execute the order. You execute the instruction in order and you 

know what is going to happen.

Then you introduce multi-threading, and then it's where things start to become interesting. And it's the 

same for imperative because think about it. You start small. You start with your script and it becomes a 

Python program. Then this Python program that's responsible, maybe to push the version of your 

Docker images or whatever, is responsible for you need to push, not only to cooperate with another 

script that your colleague has written, that is the one that adjusts the dimensions of your replica sets 



or whatever capacity-management related things.

And now you have two scripts that both contribute to the intended state of the same resource. And 

they need to cooperate because they do not share the intended state, the final intended state, 

because they just know a piece of it. So when you start to go in that direction. And then add more 

processes, and it becomes a quadratic problem because every other script needs to know the logic of 

everything else in order to synchronize, or you do it naively and with the mental synchronization, and 

then it becomes an interesting debugging exercise.

Or you put everything under a declarative hood, which says the intended state is this and different 

components, different processes produce the specific part of the intent that they are responsible for, 

one for the version, one for the capacity, one for the other things, the experiment, flags, or whatever. 

They get combined into an intended state, which is then rolled out by the same system which takes 

care of rolling out the intended state across the fleet, following policies, following your predefined 

rules that you put as part of your configuration for, in this case, a continuous delivery system that is 

based on declarative engine.

JORDAN GREENBERG: OK. So it's like the system is coming up with the imperative instructions to 

achieve declared intent.

NICCOLO': Yes. The process described is for that can be written in any form you want. But in the end, 

they produce a part of the intended state, which is data. So it's like they are all contributing to the same 

piece of data, which is the intended state of the overall fleet, the overall system, or whatever they are 

controlling through the declarative engine.

JORDAN GREENBERG: Nice.

DOMINIC: In addition to the synchronization issues you touched on, something else that I want to 

bring up is like at least when you're in smaller orgs and you don't have a bunch of resources, you write 

this script, and it begins small. And then you need to add some things, and you add some other things. 

And all of a sudden, the script is big and depended on by many people and many things.

And then one day, like change is risk, right? You need to change the script to do a thing, and it breaks. 

And the blast radius of that script has grown as the length of it has grown as well. I find with the 

declarative systems, you can decompose and pull stuff apart into smaller chunks, so that you sort of 

have like a blast radius or like a failure domain around like, oh, this is the module that controls the 



database, or this is the module that controls, I wouldn't even go that big, like x step in setting the 

database up, as opposed to like, oh, I changed the script, and we have a half deployed set of 

infrastructure, and nothing works. What do we do now? Rally the troops, I guess.

JORDAN GREENBERG: So in an emergency, if we need to make some changes really fast, are 

declarative workflows slower than imperative ones?

NICCOLO': I don't think the engine per se is slower. It depends how you configure it. So if you need to 

do something ad hoc because your specific emergency requires you to do one off data migration. If 

your declarative engine is not already supporting that thing, you're not going to be able to quickly 

implement it in the declarative system. So probably, it's better that someone puts down some good 

imperative workflows, or scripts, or whatever.

Although I would say, normally, if you are in a declarative system where you can prepare your own 

emergency operations in advance, you are not in a rush to implement them quickly because that's the 

moment you make the outage worse to try to make it better. You make a very quick script that tries to 

go over everything, but then you type something wrong, and then you go over everything and 

everything else that you are not supposed to touch. And then the outage is suddenly worse. So it's 

always a balance to understand how quick you want to patch something. But remember, the quicker 

you go, the faster you make a mistake. The blast radius is bigger.

DOMINIC: Yeah, I agree with that. I think an interesting thing I think about is like the breadth of how 

wide the number of systems you have to touch with this modification is. I think a lot of smaller orgs, I'll 

use the data migration example, they need to touch one database that backs their entire production 

system.

And then like you get up to Google mothership scale, and it's like oh, well, globally replicated and 

shuttered, and there's definitely not one database, that's for sure. So we need to apply it across this 

wide set of infrastructure.

I think operational teams find it hard to figure out when it's worth like approaching the buy-in to this 

declarative thing that allows me to roll out across a fleet, versus like what I commonly see in most orgs 

that are smaller, which is like, oh, I'll just open a console, or I'll have someone review my script and then 

run it against this thing.

JORDAN GREENBERG: I know patching is really common in SRE. You're trying to do that gradual 



change that SREs are so gung ho about. You don't want to change everything at once because that's 

tough. But a patch sometimes can make that very big change when you don't want it to. Can you tell 

me about a time where a patch made something go sideways?

DOMINIC: Yeah. I don't know if I want to get into the details.

JORDAN GREENBERG: We won't share this with anybody, we swear.

DOMINIC: Something that stands out to me, I guess with patching is like when you are trying to control 

the rollout of a patch with infrastructure as code, either declarative or imperative, I question if that's 

the right way to get that level of control you want, sort of contained the potential fallout.

I start to look towards progressive rollout techniques, like feature flag enablement, or like perhaps a 

small segment of the fleet gets that first, and you observe it, referred to as a canary by most people 

before you let it roll broader.

You can affect that progressive change through declarative or imperative change control flows. But 

like I don't see that as like infrastructure as code's job. Infrastructure as code is just what you use to 

achieve that gradual rollout. Like it's no silver bullet, right? Yeah. Nicc, do you want to share a spooky 

patch outage story?

NICCOLO': Yeah. It's a very complex and multifaceted question because the first thing I would say is 

that, well, it depends what kind of change it is, right. Is it- are you introducing a new feature? Are you 

removing a load feature? Are you writing a program to do a one off data migration from database A 

structure to database B structure?

So each of these is his own answer. I would say that in general, the majority of the changes gets 

packaged into a release of an artifact. Normally is the new compiled binary of your backend or the new 

set of JavaScript files that you need to roll out to production.

I think the union of microservice architecture and micropatching is the strategy that is probably the 

most winning if you can do it and if you can afford it. Because not all situations can be done like that. If 

you are uploading firmware on on-premises devices of people, including the heating system that runs 

in your home, those get updated sometimes. You want to be very sure that those are always working. 

You don't want to shut down the heating system of the people in the middle of the winter because you 

made a mistake.



So probably those kinds of situations, you go on a much lower development because the risk of 

making a mistake is bigger. So it boils down to the risk management. So what risk are you managing? 

Are you risking mission critical systems that if they fail, they cannot work? Think about the Rover on 

Mars or Voyager 1. They are going to be very careful what they push to those things. Because you can't 

just go and fix them.

If instead, it's a microservice architecture, which is more fluid by nature and by architecture, and you 

can easily redirect traffic from non-working instances because you have set up canarying in the 

proper way, and you of course, you're doing the right AB, blue green approach to do comparison and 

doing regression analysis. The risk is much lower. So it depends a lot on what you are running to know 

if you need to deal with big patches or not.

DOMINIC: I see patches as definitely something different to a code deploy, like a release of a new 

software version of software that we ship. That patch doesn't conjure that image up in my head. Like a 

patch to me is like, I don't know, an OS system dependency on the VMs that you like pull together to 

run your scheduler or what have you. And you increase it because you're like, yeah, faster JSON 

parsing. And then you're like, no, everything is on fire and nothing can talk to anything all of a sudden. I 

don't know what we did. Yeah, I guess I definitely answered for that.

NICCOLO': Cool. Yeah, the first question I would ask in that situation would be what process triggered 

that? Was it a global sudden change? Because most of the time, you realize that you have a system 

that is global unknowingly. And you may all rely on a specific file in a specific distributed file system, 

just to coordinate the lock.

And that one file is a global file. And if you change the name of the file because you are doing a 

migration, despite your system being well distributed and released in a gradual fashion and everything, 

then you have this single point of failure that the moment you touch it, everything falls apart.

So this is always very good. Now we're going probably more in a postmortem kind of culture and 

understanding what is going on. But that's exactly where you analyze what happened in the 

architecture to remove this point of failure when possible. Or you protect them with additional 

mechanisms that would prevent the next time a bad catastrophic failure to happen, probably.

DOMINIC: I think I can tie it back to declarative pretty well. An exercise I'd recommend any team does 

is like think about your failure domains. And like maybe go through an exercise like fault tree analysis 



for your systems. Personally, as an engineer, like I find that decomposing stuff into declarative modules 

that I like pull in, and I manage, that helps me reason about these boundaries of failure and like break 

things up into components, and these things that interact with one another.

It's not like just doing that. It's not analyzing your failure domains, but it really helps, and it helps also 

get the team on the same page about what to refer to the bits and pieces as and how do they 

interact? Yeah.

STEVE MCGHEE: Totally. One kind of issue that arises sometimes with teams that maybe have been 

around for a while, or let's just call them enterprises. Like large companies that have lots of people who 

have been doing different jobs for a while. Often we'll find, at least when I talk with customers, we'll 

find that there's a cultural like issue at play here when it comes to the team who writes the code and 

the team who manages the configuration. And often, we'll just call this the dev team and the ops team 

just for shorthand, but it can be lots of stuff.

And so I think that one thing that we can we're kind of getting at here is the ability for the team who 

wrote the code and kind of owns the product and the complexity of the system, to be able to also then 

be the ones who tinker with the config and push the config or change the config or whatever. Because 

traditionally, it was not that. There was this set of config files that this other team just kind of either 

blindly or by following playbooks, would flip switches. Maybe not considering failure domains and 

things like that.

So I'm eventually getting to a question here. Like A, do you think this is a true story, or is Steve just 

making this up? But B, like is there something that can be done here for the industry and like within 

platform teams, within enterprises, where you build up a system that allows teams to manage their 

own fate? To not have to pass the ball over the wall, as we say. Where we can say like you can actually 

manage your own configuration through this new thing, and it has all these features and has these 

control structures.

I think the trick here is alluding to all the problems we just talked through and all the options that we 

just talked through, like it's a big hairy beast. And so making people who are developing software 

choose through all that is yet another burden. And this is why we see platform engineering teams arise 

and saying like, here's how we configure the stuff. Like use this from now on. That was a long question. 

Like what do you guys think of this worldview? Am I way off base, or is this a real thing?



DOMINIC: I'm on board with it. I think there'll be a couple of answers to this question. We might go 

back and forth over it a bit. When I work with the notion of platform engineering, that's what 

everyone's trying to do when they're working with infrastructure as code, I think, whether they 

recognize it or not.

The thing I circle around a lot is like what abstraction are you exposing to your consumers? Whether it's 

like a module that they can import, or I know I've seen like GitHub pull request-based workflows, 

where it's like open PR and this repo. And you'll get a bunch of stuff spun up, and you put the YAML 

block in the PR, and it configures what you get.

Like whatever the interface is, the abstraction, like not the paradigm of like declarative versus 

imperative, but the abstraction that you expose is really where the meat of the problem is. Something 

that I struggle with like in the smaller orgs is the needs of the business evolve really quickly. So like you 

spend this time to build this awesome abstraction for the infrastructure needs of today.

And by the time you ship it, they're like, no, we don't need that anymore. We do thing x now, and you're 

like, damn. I guess we'll chase that dream. So it doesn't solve the problem, but it does help. It gives you, 

especially in places where no product market fit and what you're shipping is more well figured out and 

stable, static, I think it's more attainable.

But I would caution against investing in it too early because it's maybe a waste of effort at the very 

beginning. I'm saying like early stage business, it's like maybe not the best idea to pursue. I don't know. 

Nicc?

NICCOLO': Yeah. That makes sense. In the end, on one side, you must have the right incentives in the 

right moment in order to create the culture necessary to go from very tactical reactions and follow the 

things very quickly to a more strategic, long term maintainable system.

And different products go and switch to the more mature phase at different points in time. And this 

also means that the company will end up having a system that is very quick in development, that it 

doesn't have time to look on the long term things, and they'd rather do it quickly. Plus there is the long 

term that is not fully fleshed out. So you're always in a little bit in this sea of uncertainty of what's the 

right thing to do.

But I have to say, in general, if you are a company that has already developed a set of policies around 

gradual rollouts or continuous delivery and deployment, which are mature because you already have a 



set of products that are mature, and they need to be reliable because now, people rely on them.

The new products should be shifted toward looking into that direction quickly, which means that this 

long term durable thing should, over time, lower the bar, to make greenfields more accessible and 

directly jump into it right away. It's not always going to be possible, but that's the kind of 

transformation that you need to do in order to make it sustainable.

You make it good for the hard thing first or the most important thing first. And then you gradually 

expand the scope, of course, if there are the possibilities. Once you are in this situation, any type of 

change can then become part of the same rollout system. So it's not becoming, oh, I just do version 

releases with the full fledged thing, and then all the config releases remain forgotten and done by hand 

by the poor chap that knows the things in and out and knows how to do the right ordering.

So once you have the system that can declaratively push the things to production following a policy, it 

should be normally easy to adopt it to also perform other types of changes following the same logic. 

Because you give an example. You deploy your firewall backend across all your cloud regions or your 

data centers.

You release the binary following a certain qualification process, which is probably going to be 

regionalized and take care of the traffic pattern and all of that. And then you also have the firewall 

rules. The firewall rules also are deployed together with the rest of your production. And probably, they 

follow very similar locations in logic as well as the binary.

So why don't you use the same system or technology or at least logic that you use to push the versions 

across the entire fleet of binary of your firewall to also push the config rules for your firewalls? It's not 

easily done because people start to think about the firewalls is a global rule. I need to always have the 

same global rule everywhere.

But if you start to break it down, you realize that it's not really true that it's global because the firewall 

itself is already distributed. So it's not going to be atomically using the firewall rule everywhere at the 

same time unless it's engineered on that purpose. But if it's an engineering that purpose, it means that 

you have an actual global point of failure, which is the configuration. So again, it depends what is the 

risk that you're managing, going back to what I was answering before.

DOMINIC: That resonates with me, something that jumps out in my head. My head does this. 

Sometimes, it just bubbles up a thought. Sequencing is the magical word. And I think every team 



should talk about sequencing when they look at how these different components roll out.

The obvious one is like, is it code then infra, infra as code, or is it infra as code, then code? Do they go 

together? But then I think an often overlooked one is where does the database fit into that? Like 

database migration, is it database migration, then code, then infra-- like you should all have the same 

understanding of what's going out when. Because if you design your change with a different 

understanding of when that's going to get affected in mind, that's a recipe for like unforeseen 

circumstance or consequence.

I think that's kind of what you're touching on, right, Nicc? It's like what system affects the change isn't 

so much it. But I really hope that people understand it consistently because I've been in a lot of 

incidents where it's like, ah, yeah, we didn't know that would happen when this hit. We thought this 

would land before that landed. And that's why x interacted with y, and we got potatoes. And I'm like, 

OK, well.

NICCOLO': If I may follow up on that. You also touched one thing that is one of the most expensive 

thing that a team needs to do in order to go really declarative. So if you buy the declarative approach, 

the first thing you notice is that if you're lucky, half of your system is modeled. The rest is maybe 

written in some document, and then 10% of it is just in people's heads.

So the very first problem that you're solving is you realize that you do not even have the full 

specification of your system in place. So the very first thing is to admit that, recognize the problem, 

and then start to insert into the system model of your declarative continuous delivery system all the 

dependency of your system in order to be able to manage it.

DOMINIC: I think the thing that really gets to me is like once you have this declarative infrastructure as 

code, I don't need docs. I read the infrastructure as code to understand what's deployed where. When 

a new person joins the team, I'm like, hey, read this stuff. And they're like, ah, cool. I understand all the 

bits and pieces.

Where I'm like, hey, welcome to the team. Please read these 400 lines of bash that talk to various GCP 

APIs. They're like, yeah, I read it. I'm like, no, you didn't. You definitely didn't. But that's OK. We can learn 

as we go along. I've definitely seen that happen, like in orgs I've been in the past.

NICCOLO': So what would be nice, so when you have configured your system model properly, since 

the machine is following the system model in order to do the right order of operations, it should also 



be able to render the graph. And all of a sudden, instead of the TL of the project coming and doing the 

usual thing that all TLs do, draw boxes and arrows on a whiteboard that says, well, the machine thinks 

that our architecture is like this. Actually, the model dictates that the architecture looks like this. And 

then you get the pregenerated understanding of the model.

Once you have the model in place, it means that your version release qualification, your capacity 

management, your experiment control system, they are all contributing to the intended state, and that 

is the relationship between the various components. Because all of a sudden, if you want to release 

the binary version of your backend that talks to your database, you can start to connect things 

together, and it's no longer given to the human the task to make sure that when you update the 

version of the binary, make sure that is never going to be to version above the version of the database 

schema, whatever is the policy that you must have.

Instead, all the system's descriptions is part of the model, and the model allows you to implement 

policies and invariants, which will prevent accidental outages just because the new person didn't know 

that rule that was just documented in the people's brain.

DOMINIC: Can I jump one more?

NICCOLO': Yeah, please.

DOMINIC: That prompted something for me. It's like I'm reminded of the word hermetic or 

hermeticism. It's like everything you need to run, prod or whatever code, infra, the config of the infra, 

the data migrations to get it set up, you contain it all in one thing, and that's like your hermetic artifact 

to arrive you at the state you want to be. I think NixOS and like the Nix Project is a good example of 

hermetic, an intriguing example of achieving hermeticism or enforcing it rather. Like it's pretty hard not 

to break its paradigm.

When the system gets bigger, this becomes a very useful tool for diagnostic and debugging and also 

reasoning about. Like what am I shipping? Oh, I'm shipping this thing that contains all the possible bits 

and pieces, as opposed to like I'm shipping this thing which has this dependency on this thing outside 

of my control, and I don't know what that's doing at this point in time.

STEVE MCGHEE: At the end of the day, I feel like we've hit a bunch of high points here, which are all 

inextricably interconnected in a very complex, confusing way. But essentially, like let's throw a few 

terms that came up today. Hermiticity is a good one. Hermetic builds is a thing that people have heard 



of.

But the idea of hermetic in general is something that can be applied beyond just CI. It can go further 

than that. Another one that came up was sequencing. That was a good one. Making sure that you 

understand or can understand by reading a script or the actual code to determine what is the process 

by which things happen in our system.

And then I think the last thing that popped up in my head in terms of what is the outcome of all of this 

is really what we're trying to avoid is unintended side effects of change. And often, when we just have 

people out there “yoloing” and installing the new JSON optimizer, which accidentally removes all 

semicolons, like this is the problem is that we're not keeping track of what the change is, and we're not 

applying gradual change effectively. We're just expecting expert humans to be experts and never 

make mistakes and remember every single thing they did and predict the future. And none of that is 

good.

So instead, we have these other things. And whether it's imperative or declarative, some have benefits. 

Some have detractors. It's all just code because kind of I alluded to at the top, like config still is just 

code. It's just telling other code what to do or what to not do. So you really just making changes to the 

system.

So make sure you focus on understanding your failure domains through your entire system and look 

out for those unintended side effects. Thanks for the awesome discussion, both of you guys, Dominic 

and Nicc. That was awesome. Before we go, is there anything that you want to leave our audience with 

in terms of how to hear more from your voice or just like one last shout out to your favorite thing?

NICCOLO': Actually, I invite people if they're curious to know more into the details, everything that I 

based my conversation on is the system that we developed in the last 10 years at Google, you can find 

a USENIX paper that we publish in 2021 that is called Prodspec and Annealing. So if you just Google 

Prospect and Annealing, you should find it very easily. And I think we can add the resource to the 

podcast metadata, so you can find it from there.

DOMINIC: Yeah, somewhat boldly, I'm going to commit myself to do something which I haven't yet 

done, which is I'm working on a blog.

JORDAN GREENBERG: Oh, wow.



DOMINIC: That's one where I practice my terrible drawing. And maybe I make the concepts and 

principles of reliability engineering more accessible to people. It's early days, as in I haven't written 

anything on it yet. But maybe by the time that this goes out, there might be something on it.

JORDAN GREENBERG: Nice.

DOMINIC: If you want to check it out, it'll be available at sketchreliability.engineering.

STEVE MCGHEE: Nice.

NICCOLO': I'll make sure to check it out. Good luck.

JORDAN GREENBERG: It's in the ether now. You have to do it.

DOMINIC: Yeah. I really put myself on the spot. Now I might red line this like right before it goes out 

and be like, please, no, I have not written any posts.

STEVE MCGHEE: No problem. No pressure.

JORDAN GREENBERG: Yeah. Well, thank you to both of our guests, Dominic and Nicc. Thanks so much 

for coming here. And thanks to my co-host, Steve. I hope everybody has an awesome day and we'll 

see you soon.

DOMINIC: Thanks for having us.

—

[JAVI BELTRAN, "TELEBOT"]

JORDAN GREENBERG: You've been listening to Podcast, Google's podcast on site reliability 

engineering. 

Visit us on the web at sre.google, where you can find papers, workshops, videos, and more about SRE. 

This season's host is Steve McGhee with contributions from Jordan Greenberg and Florian Rathgeber. 

The podcast is produced by Paul Guglielmino, Sunny Hsiao, and Salim Virji. 

The podcast theme is “Telebot” by Javi Beltran. 

Special thanks to MP English and Jenn Petoff.


