
A Text-Based Syntax Completion Method
using LR Parsing

Isao Sasano
Department of Computer Science and Engineering

Shibaura Institute of Technology
Tokyo, Japan

sasano@sic.shibaura-it.ac.jp

Kwanghoon Choi
Department of Software Engineering

Chonnam National University
Gwangju, Korea

kwanghoon.choi@jnu.ac.kr

Abstract
This paper presents a text-based syntax completion method
using an LR parser. We propose formal definitions of can-
didate text to be completed based on the sentential forms,
and we design algorithms for computing candidates through
reductions in the LR parsing. This is in contrast to the ex-
isting methods that have not clearly stated what candidates
they intend to produce. This is also different from a trans-
formation approach using an LR parser, which transforms
the grammar of the programming language, a burdensome
task at this moment. The advantage of our method is that LR
parsers can be adopted without modification, and a syntax
completion system can be built using them, without incur-
ring efforts. We implemented the algorithms as an Emacs
server to demonstrate the feasibility of their application.

CCSConcepts: • Software and its engineering→Parsers;
Syntax; Integrated and visual development environments.

Keywords: syntax completion, LR parsing, parser generator,
sentential forms, reduction, integrated development environ-
ments

ACM Reference Format:
Isao Sasano and Kwanghoon Choi. 2021. A Text-Based Syntax Com-
pletion Method using LR Parsing. In Proceedings of the 2021 ACM
SIGPLANWorkshop on Partial Evaluation and ProgramManipulation
(PEPM ’21), January 18–19, 2021, Virtual, Denmark. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3441296.3441395

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PEPM ’21, January 18–19, 2021, Virtual, Denmark
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8305-9/21/01. . . $15.00
https://doi.org/10.1145/3441296.3441395

1 Introduction
Integrated development environments (IDEs) such as Eclipse
provide syntax completion, which is used for editing an in-
complete program text. Developers of an IDE have to imple-
ment features, such as syntax completion, for each language.
It reduces cost to help developers to implement such features
from a specification in a systematic way .
In this study, we investigate how to generate syntactic

candidates for completion from the grammar of the language.
For simplicity, we only use the program text up to the cursor
position on the editor.
We describe this idea using a running example when as-

suming grammar of a subset of Standard ML as follows:

start := exp
exp := appexp

| fn ID => exp
appexp := atexp

| appexp atexp
atexp := ID

| (exp)
| let dec in exp end

dec := val ID = exp
| fun ID ID = exp

Here, start is the start symbol. The symbols in italics repre-
sent non-terminal symbols, whereas the remaining symbols
directly represent the terminal symbols or lexemes. In addi-
tion, ID represents an identifier, fn ID => exp represents a
function abstraction, appexp atexp represents a function ap-
plication, and let dec in exp end represents a let expression,
where dec is a declaration. There are two types of declara-
tions, i.e., value and function declarations. We included the
parenthesized expression (exp) in the syntax to express sit-
uations in which open parentheses that are not yet closed
are present.

When the program text up to the cursor position is

let val add = fn x =>,

a program fragment ‘fn x =>’ is a partially input function ab-
straction. A candidate may be exp, which makes the function
abstraction complete. This is defined as a simple candidate
in Section 2.

32

https://doi.org/10.1145/3441296.3441395
https://doi.org/10.1145/3441296.3441395

PEPM ’21, January 18–19, 2021, Virtual, Denmark Isao Sasano and Kwanghoon Choi

Because the let expression is also partially input, users may
expect a candidate including in and end. Thus, we consider
nested candidates. For the program text above, there are two
nested candidates, which will be described in Section 4.
The formal treatment of syntax-aware editing has been

supported by so-called structured or projectional editors,
such as Synthesizer Generator [23] and MENTOR [8]. The
program source code is represented as a tree structure in
a structured editor. A tree structure is maintained by re-
structuring it when the program is modified. The behaviors
of the editors can be formally specified, and some features,
such as the syntax completion, can be easily implemented.
We say an editor is text-based when it does not prevent the
programmers from editing the program text on a character
basis. When compared with text-based editors, the majority
of structured editors prevent programmers from freely edit-
ing the program text, with the exception of a system called
LRC, implemented by Kuiper et al. [14, 27]. Owing to such
inconvenience, programmers may not like to apply struc-
tured editors for editing the program source code despite
their suitability for editing structured data apart from the
program source code.
An alternative approach may be to use the internal in-

formation of the LR parser, which was recently taken by a
system called Merlin [3]. Merlin provides various functional-
ities, including syntax completion, for OCaml language, by
using the internal information of the LR parser. The idea is
basically to fill in the missing part of the partial AST, possibly
with error recovery, although technical details about filling
in the missing part were not given.

The study presented herein takes this approach to propose
an algorithm for generating syntax completion functional-
ity from a grammar using the internal information of the
LR parser and argues the technical details. Based on the al-
gorithm we implement a system for syntax completion by
using a general-purpose LR parser generator [16], which,
given a grammar, builds an LR parser that can access the
internal information of the parser. We extend the LR parser
generator with a functionality to compute candidates for a
syntax completion. The extended LR parser generator au-
tomatically provides a syntax completion system, given a
specific grammar.

We herein specify syntactic candidates to be completed in
terms of a given grammar for a particular language. Subse-
quently, we present algorithms based on LR parsing, which
enable completion on text-based editors. Furthermore, we
implement a completion system for Emacs.

The contributions of this paper are as follows.

• We proposed a formal definition of simple and nested
candidates for a text-based syntax completion system.

• We designed algorithms for computing the syntax com-
pletion candidates based on an LR parser.

• To show its feasibility, we implemented the algorithm
as a server that interacts with Emacs.

• We developed a tool to provide a text-based syntax
completion system automatically from a specific gram-
mar.

The rest of this paper is organized as follows. In Section
2, we propose a formal definition for simple candidates. In
Section 3, we design an LR parser based algorithm for sim-
ple candidates. Section 4 extends the definition to nested
candidates, and describes a backtracking algorithm used for
computing such candidates. Section 5 describes an imple-
mentation for the algorithms. After a discussion in Section 6
and related studies in Section 7, we conclude with remarks
in Section 8.

2 Specifications of Simple Candidates
In this section we specify simple candidates. First, the postfix
sentential form, which intuitively corresponds to the remain-
ing part of the program text being input up to the cursor
position, is defined.

Definition 2.1 (Postfix sentential forms). Let α be a se-
quence of (terminal or non-terminal) symbols. When αβ
is a sentential form, the sequence β is referred to as a postfix
sentential form with respect to α .

Intuitively, the candidates that the users expect to com-
plete with are those that must follow or close some of the
syntactic components in the program text up to the cursor
position. First, we formalize the definition of a simple can-
didate based on this observation. Subsequently, we design
an algorithm for computing the candidate. Later, we use this
definition as a basic block for constructing larger candidates
to be defined as nested candidates.

Definition 2.2 (Simple candidates). Let α be a prefix of a
sentential form. A sequence of (terminal or non-terminal)
symbols γ is a simple candidate with respect to α when the
following conditions hold.

1. γ is a prefix of a postfix sentential form with respect
to α .

2. A postfix of αγ constitutes the right-hand side of a
productionA → rhs in the grammar, where |rhs| > |γ |.

Figure 1. Definition of a simple candidate γ

33

A Text-Based Syntax Completion Method using LR Parsing PEPM ’21, January 18–19, 2021, Virtual, Denmark

In this definition, |s | represents the length of a sequence
of (terminal or non-terminal) symbols s . Intuitively, the first
condition states that γ does not introduce any syntax errors
when α is a prefix of a sentential form. The second condition
states that γ is a postfix of the right hand side (rhs) of a
production such that γ plays a role in closing some of the
syntactic components in α , i.e, |rhs| > |γ |. The conditions
are illustrated in Fig. 1.

Note that there may be more than one simple candidate γ
for a sequence α . For example, let us consider the following
grammar of an arithmetic language.

E := A | E + A | E - A
A := num | (E)

Here, num is a sequence of digits. When the program text
up to the cursor position is ‘(2+3’, there are three simple
candidates.

+A, −A,)

These candidates are popped up on Emacs as in Fig. 2, where

Figure 2. A screen shot of the three simple candidates
popped up for the program text ’(2+3’ in an arithmetic lan-
guage

A is replaced with the ellipsis. The implementation will be
discussed in Section 5.

First, we describe why they are the simple candidates for
‘(2+3’. Let us start by deriving sentential forms constrained
by the program text, from the starting symbol, E. Of the three
productions with E on the left-hand side, consider E → A
and then A → (E) resulting in the following derivation.

E ⇒ A ⇒ (E)

We must now choose either E → E+A or E → E-A. Other-
wise, the program text will not be derivable.

(E) ⇒ (E+A) or (E) ⇒ (E-A).

After each derivation, there are several ways to derive sen-
tential forms with the program text as a prefix. The shortest
way is as follows.

(E) ⇒ (E+A) ⇒ (E+3) ⇒ (A+3) ⇒ (2+3).

Here, we find a sentential form, (E), whose prefix, (E, derives
the program text, (2+3. We analyze this using Definition 1
as follows: Here, α is (E, γ is), the rest of the symbols after
γ are empty, and the production is A → (E). This explains
why) is a simple candidate for a syntax completion of (2+3.

Let us derive another sentential form using E → E + A
from (E+A) as follows:

(E+A) ⇒ (E+A+A) ⇒ · · · ⇒ (2+3+A)

where the sentential form found is (E+A), whose prefix, (E,
derives the program text, (2+3. An analysis using Definition
1 reveals that α is (E, γ is +A, the rest of the symbols after
γ are), and the production is E → E+A. This gives us the
second simple candidate, + · · · , obtained by replacing a non-
terminal A with the ellipsis in +A.
The same argument, but using E → E-A, provides an

account for the third simple candidate, - · · · , in the following
derivation.

(E) ⇒ (E-A) ⇒ (E+A-A) ⇒ · · · (2+3-A)

Second, we argue that there are no more than these three
simple candidates by showing that no new simple candidates
can be obtained from any of the sentential forms that are yet
to be derived. The remaining methods of derivation must
start with one of the following:

E ⇒ A ⇒ (E) ⇒ (E+A) ⇒ (E-A+A)

and

E ⇒ A ⇒ (E) ⇒ (E-A) ⇒ (E-A-A).

The symbol - appears immediately after E in any of two
sentential forms, (E-A+A) and (E-A-A), but is not in the
program text. Thus, for the program text to be a prefix of a
sentential form, it must be derived by the non-terminal E.
Therefore, any of the symbols right after E −A, that is, +A
and −A, must occur after γ . As a result, a problem of finding
simple candidates with the two sentential forms becomes
the same as that with (E-A · · ·) because the part with the
ellipsis is irrelevant to simple candidates. The problem can
then be solved in the same way as the derivation E ⇒ A ⇒

(E) ⇒ (E-A) used to compute the third simple candidate
above.

Here let us note that γ in Definition 2.2 may be an empty
sequence, in which case the empty sequence is just not dis-
played to the users as a candidate. Allowing an empty se-
quence as a simple candidate is necessary when considering
a nested candidate as a concatenation of simple candidates,
as is shown in Section 4.

3 Algorithm for Computing Simple
Candidates

In this section, we present an algorithm for computing simple
candidates. The algorithm is based on LR parsers, and thus
we assume the basic knowledge behind them.

34

PEPM ’21, January 18–19, 2021, Virtual, Denmark Isao Sasano and Kwanghoon Choi

As one basic idea behind the algorithm, the input of the
algorithm is the stack of the LR parser when the parser reads
terminal symbols for the program text up to the cursor, and
the output is a set of simple candidates. The algorithm tries
every sequence of the parsing actions after processing the
program text up to the cursor, deriving all possible sentential
forms to find simple candidates according to Definition 2.2.
The algorithm is as follows. Suppose the lexical analysis

has succeeded for the input program up to the cursor and
obtained the sequence of tokens. First, we parse the input
sequence of tokens to the end. When successfully parsed,
there are no candidates. When a parse error occurs, we start
the following computation. Let α be the sequence of (termi-
nal or non-terminal) symbols at this moment. We suppose
that the stack of the LR parser alternately contains states
and (terminal or non-terminal) symbols. In the algorithm, we
“pick up” terminal or non-terminal symbols corresponding
to “go to” and “shift”, and picked-up symbols are made into
a sequence when “reducing”, which becomes a candidate.

(1) When there are reducing actions (possibly for different
lookahead symbols and different productions) in the
current state, one of them is attempted as follows.
(* Return here later by backtracking and take
some other reducing action. When all reducing
actions are attempted, backtrack. *)
Let A → rhs be the production associated with the
reducing action. We then apply the reducing action.
Immediately before the reducing action, a postfix of
the sequence of symbols on the stack coincides with
rhs. Then, the postfix is replaced with the non-terminal
symbol A. Let α ′ be the sequence of symbols on the
stack immediately after the replacement.

(1-1) When |α | ≥ |α ′ |, create a sequence of picked-up
symbols, add it to the candidate list, and backtrack.

(1-2) Otherwise, backtrack.
(2) When there is no reducing action in the current state,
(2-1) When there are entries in the current state in the

goto table, take one of them.
(* Return here later by backtracking and
take some other goto entry. When all goto
entries have been tried, backtrack. *)
Pick up the (non-terminal) symbol associated with
the goto entry, "go to" the state according to the
entry, and go to (1).

(2-2) When there is no entry in the current state in the
goto table,

(2-2-1) When there is an accept entry in the current state,
backtrack.

(2-2-2) When there are entries as shift actions (possibly
for different lookahead symbols) in the current
state, take one of them.
(* Return here later by backtracking and
take some other shifting action. When

all shifting actions have been attempted,
backtrack. *)
Pick up the lookahead (terminal) symbol, “shift"
according to the entry, and go back to (1).

Note that the condition |α | ≥ |α ′ | in (1-1) is equivalent to
the condition |rhs| > |γ | in Definition 2.2.

In the algorithm, the terminal and non-terminal symbols
are picked up during shift and goto actions, respectively,
and later used for creating a sequence of the picked-up sym-
bols, which is γi . When backtracking, the sequence is reset.
Otherwise, the sequence remains.

Here, let us make a remark regarding the algorithm.

Remark 1. Given a sequence of terminal or non-terminal
symbols α , the algorithm computes all simple candidates
with respect to α according to Definition 2.2.

4 Nested Syntax Completion
In this section, we extend the simple candidates defined in
Section 2 to nested candidates. To define the nested candi-
dates, let us recall a notion of the rightmost derivation. We
use the symbol ⇒

rm
used in a textbook [1] for representing

the rightmost derivation.

Definition 4.1 (Rightmost derivation). α ⇒
rm

β holds when
the following conditions hold.

1. The rightmost non-terminal symbol in α is A.
2. A → γ is a production, and
3. β is a sequence obtained by replacing the rightmost

non-terminal symbol A with γ in α .

Using the notion of the rightmost derivation and simple
candidates defined in Section 2, we define the nested candi-
dates.

Definition 4.2 (Nested candidates). Let α0 be a prefix of
a sentential form. For i ≥ 1, let γi be a simple candidate
with respect to αi if there is any and αi+1 be a sequence of
(terminal or non-terminal) symbols that satisfiesαi+1 ⇒

rm
αiγi .

A concatenation of γ0, . . . ,γj for some j ≥ 0 with γj being
defined, is a nested candidate with respect to α0.

In general, there may be more than one simple candidate
γi for each αi , so the set of nested candidates constitute a tree
structure. Definition of nested candidates in Definition 4.2 is
illustrated in Fig. 3. Note that, in Definition 4.2, γi may be
an empty sequence, which will be illustrated in the example
below.
Before describing an example, let us make a remark re-

garding αi in Definition 4.2 for clarifying the definition of
nested candidates.

Remark 2. In Definition 4.2, αi ends in a non-terminal sym-
bol for i ≥ 1.

This remark is apparent from Definition 4.2 and illustrated
in Fig. 3.

35

A Text-Based Syntax Completion Method using LR Parsing PEPM ’21, January 18–19, 2021, Virtual, Denmark

Figure 3. Definition of a set of nested candidates,
{γ0,γ0γ1, . . . ,γ0 . . .γn−1}

Now let us see the nested candidates for the example in
Section 1.

Example 4.3 (Nested candidates). When the program text
up to the cursor position is

let val add = fn x =>,

users are provided ‘...’ and ‘... in ... end’ obtained by
replacing all non-terminals in the nested candidates with
ellipsis as follows.

exp, exp in exp end

Now, let us describe two nested candidates in the exam-
ple according to the definition. To derive a sentential form
in which the program text is a prefix, we must have the
following derivation.

exp ⇒ appexp ⇒ atexp ⇒ let dec in exp end

⇒ let val ID = exp in exp end

⇒ let val ID = fn ID => exp in exp end

The last sentential form is derived using a production

exp −→ fn ID => exp

such that α0, γ0, and β0 are symbols as in the table:
α0 γ0 β0

let val ID = fn ID => exp in exp end

The second to last sentential form is derived using a produc-
tion

dec −→ val ID = exp

where this sentential form is decomposed into α1, γ1, and β1
as in the table:

α1 γ1 β1
let val ID = exp ϵ in exp end

For the third to last sentential form, let dec in exp end, we
use another production

atexp −→ let dec in exp end

with α2, γ2, and β2 as in the table:
α2 γ2 β2

let dec in exp end ϵ

For the remaining sentential forms, α3

36

PEPM ’21, January 18–19, 2021, Virtual, Denmark Isao Sasano and Kwanghoon Choi

nested candidates for ‘(2+3’. Thus, only finite number of can-
didates should be taken from the infinitely many candidates
represented by the graph in Fig. 4.

In the implementation, we employ a heuristic to compute
only a finite subset of the nested candidates per each user
request, as described in Section 5. We may consider nested
candidates in terms of graph structures, instead of tree struc-
tures, in the future.

We also comment on the relationship between simple and
nested candidates.

Remark 3. Suppose α is a sequence of terminal or non-
terminal symbols. The set of simple candidates with respect
to α is a subset of the set of nested candidates with respect
to α .

4.1 Algorithm for Computing Nested Candidates
In this section, we present an algorithm for computing nested
candidates. The algorithm is the same as that for computing
simple candidates except for case (1-1), which is shown here.
(1-1) When |α | ≥ |α ′ |, create a sequence of picked-up sym-

bols, add it to the candidate list, and go back to (1).
Note that the algorithm may not terminate when there

are infinitely many nested candidates. Let us make an as-
sumption here.

Conjecture 4.5. Given a sequence of terminal or non-
terminal symbols α0, the algorithm computes all nested can-
didates with respect to α0 according to Definition 4.2. More
precisely, γ is a nested candidate according to Definition 4.2
if and only if γ is produced as a candidate during the finite
steps applied by the algorithm.

For the conjecture to hold, the algorithm should be rewrit-
ten in a breadth-first manner, although the algorithm is de-
scribed in a depth-first manner for better readability.

In the implemented system, we compute a finite subset of
nested candidates, as shown in Section 5.

5 Implementation
This section describes an implementation of the two algo-
rithms for computing the syntax completion candidates. Ev-
ery user views our system as an editor to request a syntax
completion and a server to respond with candidates. Note
that we chose Emacs as the editor for evaluation of the imple-
mentation. We implemented the algorithms on a server that
receives a request with a program text from an editor and
responds to the editor with a list of strings for a syntactic
completion candidate of the program text. Emacs displays
the computed lists as indicated in Fig. 5 for the simple mode
and as shown in Fig. 6 for the nested mode. When there
is only one candidate, it is inserted at the cursor position
directly without a selection, as shown in Fig. 5, where the
ellipsis is the candidate.

Figure 5. A screen shot of syntax-completion mode (simple
candidate)

Figure 6. A screen shot of syntax-completion-nested mode
(nested candidate)

The server can also respond to the editor with either
SuccessfullyParsed or LexicalError. The former
response indicates that the program text is successfully
parsed and thus there is nothing left to complete. The latter
suggests that programmers should correct unacceptable lex-
ical symbols in the program text before they ask for syntax
completion.

The source code of our implementation and two example
uses are available at https://github.com/kwanghoon/{yapb,
arith,smllike}.
Internally, the algorithms have been implemented as an

extension of the LALR(1) parser, which is one of the most
popular parsing methods. After the server receives a request
from the editor, the LALR(1) parser is applied to a program
text in the request. When the program text is complete, it is
successfully parsed by the parser. When the program text
contains incorrect lexical symbols, it is stuck in the lexical
analysis. Otherwise, the complete text is parsed but will still
not be in the final accepted state. The automaton stack is
the reverse of the prefix of a sentential form interspersed
with automaton states. At this time, the syntax completion
algorithms is applied.

The input of the algorithm implementation is the state of
the LALR(1) parser (parser stack), and the parsing automaton
(action table, goto table, and production rules). Given the

37

https://github.com/kwanghoon/{yapb,arith,smllike}
https://github.com/kwanghoon/{yapb,arith,smllike}

A Text-Based Syntax Completion Method using LR Parsing PEPM ’21, January 18–19, 2021, Virtual, Denmark

input, the implementation of one of the simple and nested al-
gorithms begins, depending on the simple and nested modes
in the editor set by programmers.

5.1 A Running Example
As a running example of the implementation, let us now see
how the simple syntax candidates for the arithmetic program
text shown in Section 2 are computed.
In the following, we describe how the LALR(1) automa-

ton in our implementation parses the text up to the cursor
position represented by ∧. For notation, each step has a dot
to indicate the point of parsing.

. (2 + 3 ∧ by shift over (
−→ (. 2 + 3 ∧ by shift over num
−→ (2 . + 3 ∧ by reduce A→ num
−→ (A . + 3 ∧ by reduce E → A
−→ (E . + 3 ∧ by shift over (
−→ (E + . 3 ∧ by shift over num
−→ (E + 3 . ∧ by reduce A→ num
−→ (E + A . ∧ by reduce E → E + A
−→ (E . ∧

Immediately after the last step above, the candidate com-
puting algorithm starts working with the automaton stack
that contains E and (, a reverse of the symbols in the step,
interspersed by the automaton states. This state can be de-
scribed as the following set of LR(1) items, each element of
which is a pair of a production with a dot at a certain position
on the right side and a lookahead:

[A → (E.), end]
[A → (E.), +]
[A → (E.), -]
[A → (E.),)]
[E → E.+ A,)]
[E → E.+ A, +]
[E → E.+ A, -]
[E → E.- A,)]
[E → E.- A, +]
[E → E.- A, -]

Recall that simple candidates are defined as a sequence of
symbols up to the point of the first reduce action immediately
after parsing a given program text. The set of LR(1) items as
the current state shows three possible paths to the point of
a reduce action.

• The first four LR(1) items indicate ‘)’ as a simple can-
didate by reducing a production A→ (E).

• The next three LR(1) items represent ‘+ ...’ as the
second simple candidate obtained from replacing a
non-terminal symbol A with the ellipsis in ‘+ A’ by
reducing a production A → E+A.

• For the remaining three LR(1) items, the same argu-
ment produces ‘- ...’ as the third simple candidate.

The implementation of the algorithm actually utilizes an
action table and a goto table in the LALR(1) parser. As shown

in the example, the algorithm collects all simple (and nested)
candidates using backtracking that searches for all next states
that are reachable from a given state through reduces/shifts
in the action table and gotos in the goto table.

5.2 A Heuristic
A naive implementation of the algorithm for syntax com-
pletion candidates may not be terminating whenever the
number of candidates is infinite. In practice, there must be a
way to work around this problem for a user to avoid being
blocked by computing infinite number of candidates and to
be guaranteed to receive only a finite number of candidates
on each request.

We design a heuristic to avoid generating an infinite num-
ber of candidates. The heuristic is simple: the algorithm is
extended to maintain a history of the backtracking. Using
the history, the implementation of the extended algorithms
can detect a cycle while trying to search as many candidates
as possible.

The data structure for the history is a list of triples, namely,
a state, a parsing stack, and a feature of a parsing operation
applied at the state using the stack. The feature is a triple of
a production for a reduce action, a non-terminal for a goto
table, and a terminal for a shift action. It refines a pair of a
state and parsing stack with the features such that the back-
tracking can search over all different goto/shift symbols in
the same state. In the example state, without the inclusion of
such a feature, only the first four LR(1) items are considered
for the search and the remaining items are not searched.

Although this data structure is sufficient to stop our imple-
mentation from entering into an infinite loop, the heuristic
occasionally generates an unbalanced set of candidates. We
discuss this issue later.
As an alternative heuristic to what is implemented, the

breadth-first search (BFS) could be used . A BFS-based al-
gorithm would compute nested candidates within a limit of
levels that programmers set for search. Such a level number
could be provided by a user or by some static analysis of the
parser. Also, different levels might be specified for different
syntactic constructions for better completions.

5.3 YAPB: A Tool for Building a Text-Based Syntax
Completion System from a Parser for Free

We developed a tool that provides a text-based syntax com-
pletion system from a given parser for free. This tool is
known as Yet Another Parser Builder (YAPB). Basically, it is a
programmable parser builder system in which every LALR(1)
parser (specification) is written in Haskell and is immediately
executable. Hence we call it a parser builder rather than a
parser generator that generates an executable parser. Once
a parser is written in YAPB, a syntax completion system
using the proposed algorithms is available without incurring
any cost. Figure 7 shows a list of (abbreviated) Haskell type

38

PEPM ’21, January 18–19, 2021, Virtual, Denmark Isao Sasano and Kwanghoon Choi

{- For parser -}

lexing :: LexerSpec token -> String

->IO[Terminal token]

parsing :: ParserSpec token ast

-> [Terminal token]->IO ast

{- For syntax completion -}

successfullyParsed :: IO[EmacsDataItem]

handleLexError :: IO[EmacsDataItem]

handleParseError :: Bool ->

ParseError token ast -> IO[EmacsDataItem]

Figure 7. List of (abbreviated) type declarations of common
library functions in YAPB for parsing and syntax completion

declarations for a few important library functions provided
by YAPB.
Using the YAPB library, as in the following, a typical

Main module can be written in Haskell for a syntax com-
pletion server. Given the parser and lexer specifications
(parserSpec and lexerSpec), YAPB library functions,
lexing and parsing, are used to conduct a lexical analy-
sis and a syntax analysis over a program text prog. This acts
exactly as a parser for constructing an abstract syntax tree,
ast, from a string using a list of terminals (or tokens). As a
syntax completion server, when it successfully parses the pro-
gram text, another library function successfullyParsed
is used to return an empty list of candidates to the Emacs
editor.

main :: IO ()

main = emacsServer compCand

compCand ::String ->Bool ->IO[EmacsDataItem]

compCand prog mode = ((do

terminals <- lexing lexerSpec prog

ast <- parsing parserSpec terminals

successfullyParsed)`catch `\e ->

case e:: LexError of

_ -> handleLexError) `catch `\e ->

case e:: ParseError Token AST of

_ -> handleParseError mode e

The remaining parts are more interesting. When parsing
an incomplete program text, a parser throws either a lexical
error exception or a parser error exception. Every lexical er-
ror is handled by the YAPB library function handleLexError.

Every parse error occurs for a partially complete program
text. The YAPB library function handleParseError that ul-
timately implements our algorithms handles the parse error
under a specified mode of simple and nested candidates. The
exception e at that moment contains all information neces-
sary for the algorithm to compute the syntax completion
candidates, and is composed of dynamic information, that
is, the current state of the LALR(1) parser and the parsing

stack, as well as static information, that is, the action table,
goto table, and production rules.
Our tool is advantageous in that developers can reuse a

parser specification with no change for building a syntax
completion server, as shown in the Haskell example program
above.

6 Discussions
In this section, we discuss several aspects such as analyzing
the complexity of the algorithms.

6.1 Complexity of the Algorithms
Here, we analyze the complexity of the algorithms. First,
we consider the algorithm for computing simple candidates.
Note that there are only a finite number of simple candidates
because of the length condition in Definition 2.2.
Simple candidates with respect to a sequence of symbols

α constitute a tree structure because we add symbols using
shifts and gotos until reaching the state in which a reduce
is possible, and thus there is no cycle in the structure. A
path from the root to each leaf in the tree is a postfix of the
right-hand side of a production in the grammar. A path from
the root to an internal node corresponds to the same prefix
of some postfixes.

Thus, the number of leaves in the tree is at most the num-
ber of the prefixes on the right-hand side of the productions
in the grammar. The depth of the tree is at most maxrhs,
which is the maximum among the lengths of the right-hand
sides of the productions in the grammar. Let n be the number
of productions in the grammar. Then p is at most n ·maxrhs.
The number of nodes in the tree is at most

p ·maxrhs = n ·maxrhs2.

The time complexity of the algorithm for computing simple
candidates isO(n·maxrhs2). In practice, it is expected that the
number of nodes in the tree will be much less thann·maxhrs2.
The algorithm for computing the nested candidates may

produce infinitely many nested candidates, and thus the
implementation uses certain heuristics. Various heuristics
should be applicable, with the complexity analysis left for
future study.

6.2 Comparison with the Approach Based on
Grammar Transformation

In [29], a given grammar for a (full) language is transformed
into a grammar for the prefixes, the program text is parsed up
to the cursor position to produce a partial parse tree, and the
candidates are computed by traversing this tree, although the
transformation of the grammar is done manually. The author
specifies the syntactic candidates to be completed based on a
grammar similarly to the present work. The specifications in
[29] correspond to the simple candidates without the length
condition. Using the simple candidates, we specify the nested
candidates in the present study. In [29], there is too much

39

A Text-Based Syntax Completion Method using LR Parsing PEPM ’21, January 18–19, 2021, Virtual, Denmark

freedom in selecting a subset from the set of candidates
conforming to the specification, whereas we specified the
candidates more precisely.
There should be a certain relation between the approach

using the grammar transformation and the approach by us-
ing the internal information of the LR parser described in the
present study. The algorithm in [29] refers to the production
for obtaining the sequence of symbols, constituting a part
of a candidate, when visiting each node in the partial parse
tree, which corresponds to a simple candidate obtained by a
sequence of actions consisting of shifts and gotos followed
by a reduce. We leave the exact comparison as a future study.

6.3 Partial Parsers by Derivatives
We may be able to directly write parsers for a program text
up to the cursor based on derivatives, not through a gram-
mar transformation described in Section 6.2. A study [19] on
writing partial parsers using a functional parser combinator
was conducted. This study extends research [4] on the deriva-
tives of regular expressions by utilizing a lazy evaluation
and memoization.
Suppose that L is the language and c is a character (or a

token). In addition, Dc (L) is defined as the derivative of the
language L with respect to c .

Dc (L) = {w | cw ∈ L}

In words, Dc (L) is the set of all cdr values of the strings,
each of which has c as its first character. Suppose a language
L is specified by a partial parser p that is constructed by
the parser combinators. The partial parser, which takes the
remaining string after the cursor position, can then be ob-
tained by recursively computing the derivative of the parser
p with respect to each character in the input up to the cursor
position, individually. We might be able to use the obtained
partial parser for computing candidates at the cursor position.
If implemented, the computational complexity is expected to
be much larger compared with our approach because simply
parsing a string s requires a time exponential to the length
of the string s by computing the derivatives of the parsers
[19].

6.4 A Role of Ellipsis ... on the Editor
In the current implementation, non-terminal symbols are
represented as ellipsis ..., which can be anything that is
not a legal lexeme in the language. Although at present the
ellipsis are not used for any specific purpose, one possible
role of the ellipsis ... in the Emacs editor is that, when a
user presses a key, such as the enter key, over the ellipsis,
some candidates that replace the ellipsis may pop up.

A sequence of symbols shown as a nested candidate, pos-
sibly containing ellipsis, may represent an internal state, and
not a leaf, of the breadth-first search algorithm for comput-
ing the nested candidates presented in Section 4.1, because

the search is cut short by some of the heuristics in the imple-
mentation, as described in Section 5. A special lexeme, such
as a placerholder in the generic framework for syntactic code
completion [2], may be used for representing the truncated
part of a candidate. In this case a possible role of the special
lexeme is that, when the user presses a key, such as the enter
key, over the special lexeme, the remaining portion of the
candidates that was truncated during the previous comple-
tion pops up by communicating with the server. Under this
situation, it may be stated that the candidates are computed
gradually according to the user’s operation on the editor like
structured editing.

6.5 Limitations
This section discusses a few limitations in our approach to
the syntax completion problem. Firstly, this study used only
the program text up to the cursor position; however, pro-
grammers may not necessarily write the code sequentially
from left to right. In the future, we may consider syntax
completion based on the program text before and after the
cursor position.
Secondly, this study did not consider the completion of

identifiers, which is one of important features in editors. It
requires a semantic analysis over the whole program, such
as type checking, rather than the LR-based syntactic analysis
over a prefix of the program. To support the completion of
identifiers, static semantics of the target language should be
considered, which would be challenging [21]. For implicitly-
typed languages with static scope, we could combine the
algorithms in the present work with an algorithm, proposed
by Sasano and Goto [30], for completing identifiers when
the program text up to the cursor position is consistent with
respect to the syntax and types.
Thirdly, the result of the syntax completion in this study

might highly depend on the shape of the grammar. LR gram-
mars must sometimes be expressed in non-intuitive ways
to fit into the LR constraints. This could lead to comple-
tions that do not have any particular semantic meaning. We
need to investigate how the shape of the grammars affects
completion candidates in our approach.

7 Related Work
Several types of methodologies and tools have been pre-
sented for syntax, expression, and identifier completion, and
we describe some of them in this section. Some aspects of
parsing or grammar concern syntax completion, so we also
argue here some studies about program generation, word
(or string) generation, incremental parsing, and grammar
transformation.
A recent study [2] investigated a syntax completion that

has been referred to by the authors as syntactic code com-
pletion. They represent an incomplete program text using
placeholders. On their IDE, users select a placeholder for

40

PEPM ’21, January 18–19, 2021, Virtual, Denmark Isao Sasano and Kwanghoon Choi

various language constructs, e.g., expressions, and syntactic
candidates pop up. The IDE inserts a syntactic component
by selecting one of them. In their approach, an incomplete
program text is (syntactically) complete except for the place-
holders. They also presented placeholder inference, which
infers placeholders corresponding to missing part in the
source code being input. Further, they argued soundness and
completeness of their syntax completion. By contrast, we do
not use placeholders in the same sense and allow an arbitrary
program text to be present after the cursor position. We leave
as a future study to argue soundness or completeness of our
algorithm.
Further, in [32], the authors investigated robust editing

using projectional editors, i.e., editing a well-formed pro-
gram results in a well-formed program. Two DSLs are used
by the authors. One is for specifying whether it is appropri-
ately formed, whereas the other is used to specify the robust
editing patterns. By contrast, we allow a syntactically incom-
plete program text, as well as syntax completion resulting
in such a syntactically incomplete program text.
Kuiper et al. [14, 27] implemented a system called LRC,

which generates graphical language-oriented tools; however,
this LRC system is no longer available. The LRC system takes
a higher order attribute grammar (HAG) [34] that specifies
a language as its input and generates purely functional and
incremental attribute evaluators. For example, the LRC sys-
tem can generate editors. Although the editors generated by
the LRC system allow users to edit the source code either
through a GUI or on a character basis, editors exhibiting a
syntax completion functionality have not been generated
using the LRC.
In 2012, Perelman et al. [22] proposed an algorithm to

complete expressions, but not for completing the syntax
in general, in an object-oriented language. This approach
requires programmers to write an expression with holes,
which is referred to as a partial expression, and subsequently
computes several candidates to fill in the holes with some
ordering. When computing expressions to fill in the holes,
types are taken into account so that the completed expression
type-checks. The Agda language has provided typed holes
since the 1990s; more recently, GHC, a Haskell compiler, has
enabled programmers to use typed holes allowing them to
obtain information that may help in properly filling the holes.
By contrast, our system does not require programmers to
write such expressions using holes, although types are not
considered in the present study.

Several studies have investigated identifier completion. In
2013, Sasano and Goto [30] proposed an algorithm to com-
plete an identifier when the program text up to the cursor
position is consistent with respect to the syntax and types.
Later, Sasano [28] presented an approach to complete the
identifiers by coping with an incomplete program text based
on LR parsing error recovery. In this study, the error recovery
behavior is manually specified using the Yacc specification.

In addition, de Jonge et al. [5] developed a method for deriv-
ing error recovery rules based on the grammar specification.
In the future, these studies may be utilized for syntax com-
pletion in the case of an incomplete program text that may
not necessarily be syntactically complete up to the cursor
position. Rittri [24] developed a method for searching for an
identifier in a program library using types as search keys.
Runciman et al. [26] independently developed a method for
the same problem by considering the types that can be uni-
fied.
Gvero et al. [9] presented an approach for code comple-

tion using languages with a parametrically polymorphic type
system. They developed a solution with respect to the type
inhabitant problem: For a given type environment Γ and a
type τ , an expression e is searched such that the type judg-
ment Γ ▷ e : τ holds. They compute Γ based on the cursor
position and τ by examining the declared types appearing
up to the cursor position. Our system does not use the type
information. Although the authors use the types, their ap-
proach does not cope with the partial terms.
Robbes et al. [25] claim that finding a candidate in the

popup window is cumbersome or even slower than typing
the full name when using a completion engine, such as con-
tent assist in Eclipse. They limited the number of the candi-
dates and developed an algorithm to compute the candidates
based on the program editing history. By contrast, our sys-
tem does not limit the number of candidates so there may be
many candidates when the partial syntax tree is deep, which
should be coped with in some way in the future.

Several studies have investigated generating a portion of
the programs: Hashimoto [10] constructed an ML-style pro-
gramming language with first-class contexts, i.e., expressions
with holes. Our study also uses holes in a certain sense; how-
ever, the language used a construct for filling in the holes.
Other tools have been developed to generate terms under
type constraints. Djinn1 generates a term having a given
type. The tool proposed by Katayama [12] generates a mini-
mum term having a given type. Jeuring et al. [11] published
a technique for generating generic functions, and a previous
study [13] investigated the synthesis of functions matching
a set of input-output pairs. These studies are not directly
related to our problem, however.

Related to program generation, some studies such as [17]
investigated string (or word) generation from context-free
grammars, the motivation of which is for testing parsers.
The study [17] by McKenzie investigates a problem of gen-
erating strings of a given length n at random, with each
string of length n being generated in the same probability,
derivable from a given context-free grammar G. Another
study [7] about string generation investigated a problem of
generating at random strings of some context-free language

1http://www.augustsson.net/Darcs/Djinn/

41

http://www.augustsson.net/Darcs/Djinn/

A Text-Based Syntax Completion Method using LR Parsing PEPM ’21, January 18–19, 2021, Virtual, Denmark

L with respect to a given distribution of the number of occur-
rences of the alphabets of the language L. String generation
at random with some requirements may be a possible way
to be used in generating syntax candidates when reducing
the number of syntax candidates begin generated.
Incremental parsing was investigated in many studies,

such as the study [35] for avoiding reparsing of the whole
program after each modification and, as an application, the
programming tool Merlin [3], as is mentioned in Section 1,
for OCaml uses incremental parsing. In source code editors
supporting syntax completion, duplicated computation nat-
urally occurs in parsing. In usual situations, programmers
edit source code in a few files at once, each of which has
several hundreds of lines or so. LR parsing, fully to the end
or partially up to the cursor, takes time linear to the length
of the input string and actually fast, compared with the com-
putation of syntax candidates. Considering this situation,
we did not pay attention to the incremental parsing, for the
purpose of avoiding reparsing, at this moment.
Several studies have investigated a grammar transforma-

tion. A grammar transformation has been investigated with
respect to various systems, e.g., the TXL system [6], which
the authors refer to as grammar programming. TXL supports
a structural program transformation. A grammar transfor-
mation concerns the syntax completion when candidates are
computed simply by using the program text up to the cursor
position. In this case, we may obtain the grammar for partial
programs up to the cursor by transforming the grammar of
the full language. One way [29] was presented to generate
a completion system through a grammar transformation,
which was discussed in Section 6.

8 Conclusions and Future Work
In this study, we presented a novel approach to generating a
tool for syntax completion. With this approach, we utilize an
LR parser to parse the program text up to the cursor position
and then use the internal information of the LR parser to
compute the candidates. Syntax completion functionality
is generated from a description of the grammar, which is
expected to reduce the cost of implementing one for each
language.We believe that the language need not be restricted
when using our approach as long as the grammar of the
language is LALR(1).

Several additional investigations must be conducted in the
future, some of which are listed as follows.

• We plan to give a proof that the algorithms for com-
puting the candidates conform to the candidate speci-
fications.

• In this study, we do not complete the identifiers. Iden-
tifier completion concerns the scope rule and the type
system of the language, and thus we need to consider
how to incorporate the identifier completion into the
tool presented in this paper.

• Using attribute grammar, we may be able to uniformly
achieve syntax completion and identifier completion.
Additionally, we may consider the use of parsers apart
from LR, such as the ANTLR [20] and GLR [15, 18, 31,
33] parsers.

• We have not compared the approach by using the in-
ternal information of the LR parser presented in the
present study with the approach through a grammar
transformation [29]. Although we gave a rough com-
parison in Section 6, we leave the exact comparison as
a future study.

• We plan to argue the time complexity for computing
nested candidates, which depends on the heuristics.

• Although the current implementation employed a cy-
cle detection heuristic to generate only a finite number
of candidates, it has not been evaluated thoroughly
regarding whether the chosen candidates are useful.
We leave this as a future study.

• We would like to do some evaluation to show more
practical results, such as how many possible comple-
tions are computed for typical languages, how usable
and relevant candidates are produced in practice, and
how scalable the proposed method is in terms of per-
formance as well.

Acknowledgments
We would like to thank the anonymous reviewers of PEPM
2021 for their many helpful comments. This work was par-
tially supported by JSPS KAKENHI under Grant Number
20K11752 and by NRF of Korea funded by the MoE (No.
2019R1I1A3A01058608).

References
[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2007.

Compilers — principles, techniques, and tools, 2nd edition. Addison
Wesley.

[2] Luís Eduardo de Souza Amorim, Sebastian Erdweg, Guido Wachsmuth,
and Eelco Visser. 2016. Principled syntactic code completion using
placeholders. In Proceedings of the 2016 ACM SIGPLAN International
Conference on Software Language Engineering (SLE 2016). ACM, Amster-
dam, Netherlands, 163–175. https://doi.org/10.1145/2997364.2997374

[3] Frédéric Bour, Thomas Refis, and Gabriel Scherer. 2018. Merlin: A
language server for OCaml (Experience report). Proc. ACM Program.
Lang. 2, ICFP, Article 103 (July 2018), 15 pages. https://doi.org/10.
1145/3236798

[4] Janusz A. Brzozowski. 1964. Derivatives of regular expressions. J.
ACM 11, 4 (1964), 481–494. https://doi.org/10.1145/321239.321249

[5] Maartje de Jonge, Lennart C. L. Kats, Eelco Visser, and Emma Söder-
berg. 2012. Natural and flexible error recovery for generated modular
language environments. ACM Trans. Program. Lang. Syst. 34, 4, Article
15 (2012), 15:1–15:50 pages. https://doi.org/10.1145/2400676.2400678

[6] Thomas R. Dean, James R. Cordy, Andrew J. Malton, and Kevin A.
Schneider. 2002. Grammar programming in TXL. In Proceedings of
the Second IEEE International Workshop on Source Code Analysis and
Manipulation (SCAM ’02). IEEE Computer Society, 93. https://doi.org/
10.1109/SCAM.2002.1134109

42

https://doi.org/10.1145/2997364.2997374
https://doi.org/10.1145/3236798
https://doi.org/10.1145/3236798
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/2400676.2400678
https://doi.org/10.1109/SCAM.2002.1134109
https://doi.org/10.1109/SCAM.2002.1134109

PEPM ’21, January 18–19, 2021, Virtual, Denmark Isao Sasano and Kwanghoon Choi

[7] Alain Denise, Olivier Roques, and Michel Termier. 2000. Random gen-
eration of words of context-free languages according to the frequen-
cies of letters. In Mathematics and Computer Science, Danièle Gardy
and Abdelkader Mokkadem (Eds.). Birkhäuser Basel, Basel, 113–125.
https://doi.org/10.1007/978-3-0348-8405-1_10

[8] Veronique Donzeau-Gouge, Gerard Huet, Bernard Lang, and Gilles
Kahn. 1980. Programming environments based on structured editors: the
MENTOR experience. Technical Report RR-0026. INRIA.

[9] Tihomir Gvero, Viktor Kuncak, and Ruzica Piskac. 2011. Code com-
pletion using quantitative type inhabitation. Technical Report EPFL-
REPORT-170040. Ecole Polytechnique Federale de Lausanne.

[10] Masatomo Hashimoto. 1998. First-class contexts in ML. In Asian Com-
puting Science Conference (Lecture Notes in Computer Science, Vol. 1538).
Springer, 206–223. https://doi.org/10.1007/3-540-49366-2_16

[11] Johan Jeuring, Alexey Rodriguez, and Gideon Smeding. 2006. Gen-
erating generic functions. In Proceedings of the 2006 ACM SIGPLAN
Workshop on Generic Programming (WGP ’06). Portland, Oregon, USA,
23–32. https://doi.org/10.1145/1159861.1159865

[12] Susumu Katayama. 2005. Systematic search for lambda expressions.
In Trends in Functional Programming. 111–126.

[13] Pieter W. M. Koopman and Rinus Plasmeijer. 2006. Systematic syn-
thesis of functions. In Trends in Functional Programming (Trends in
Functional Programming, Vol. 7), Henrik Nilsson (Ed.). Intellect, 35–54.

[14] Matthijs F. Kuiper and João Saraiva. 1998. LRC - A generator for incre-
mental language-oriented tools. In Proceedings of the 7th International
Conference on Compiler Construction (CC ’98). Springer-Verlag, London,
UK, 298–301. https://doi.org/10.1007/BFb0026440

[15] Bernard Lang. 1974. Deterministic techniques for efficient non-
deterministic parsers. In Proceedings of the 2nd International Collo-
quium on Automata, Languages and Programming (ICALP ’74) (Lec-
ture Notes in Computer Science, Vol. 14). Springer-Verlag, 255–269.
https://doi.org/10.1007/978-3-662-21545-6_18

[16] Jintaeck Lim, Gayoung Kim, Seunghyun Shin, Kwanghoon Choi,
and Iksoon Kim. 2020. Parser generators sharing LR automaton
generators and accepting general purpose programming language-
based specifications. Journal of KIISE 47, 1 (2020), 52–60. https:
//doi.org/10.5626/JOK.2020.47.1.52 (in Korean).

[17] Bruce McKenzie. 1997. Generating strings at random from a context free
grammar. Technical Report TR-COSC 10/97. University of Canterbury.

[18] Scott McPeak and George C. Necula. 2004. Elkhound: A fast, practical
GLR parser generator. In Compiler Construction, Evelyn Duesterwald
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 73–88. https:
//doi.org/10.1007/978-3-540-24723-4_6

[19] Matthew Might, David Darais, and Daniel Spiewak. 2011. Parsing
with derivatives: A functional pearl. In Proceedings of the 16th ACM
SIGPLAN International Conference on Functional Programming (Tokyo,
Japan) (ICFP ’11). Association for Computing Machinery, New York,
NY, USA, 189–195. https://doi.org/10.1145/2034773.2034801

[20] Terence Parr and Kathleen Fisher. 2011. LL(*): The foundation of the
ANTLR parser generator. In Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (San
Jose, California, USA) (PLDI ’11). 425–436. https://doi.org/10.1145/
1993498.1993548

[21] Daniel A. A. Pelsmaeker, Hendrik van Antwerpen, and Eelco Visser.
2019. Towards language-parametric semantic editor services based
on declarative type system specifications (Brave new idea paper). In
33rd European Conference on Object-Oriented Programming (ECOOP
2019) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 134),
Alastair F. Donaldson (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, 26:1–26:18. https://doi.org/10.1145/
3359061.3362782

[22] Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman.
2012. Type-directed completion of partial expressions. In Proceedings

of the 33rd ACM SIGPLAN conference on Programming Language Design
and Implementation (PLDI ’12). ACM Press, Beijing, China, 275–286.
https://doi.org/10.1145/2254064.2254098

[23] Thomas Reps and Tim Teitelbaum. 1984. The Synthesizer Generator.
In Proceedings of the first ACM SIGSOFT/SIGPLAN software engineering
symposium on Practical software development environments. 42–48.
https://doi.org/10.1145/800020.808247

[24] Mikael Rittri. 1989. Using types as search keys in function libraries.
In Proceedings of the fourth international conference on Functional pro-
gramming languages and computer architecture (FPCA ’89). 174–183.
https://doi.org/10.1145/99370.99384

[25] Romain Robbes and Michele Lanza. 2008. How program history can
improve code completion. In Proceedings of the 2008 23rd IEEE/ACM
International Conference on Automated Software Engineering (ASE ’08).
317–326. https://doi.org/10.1109/ASE.2008.42

[26] Colin Runciman and Ian Toyn. 1989. Retrieving re-usable software
components by polymorphic type. In Proceedings of the fourth interna-
tional conference on Functional programming languages and computer
architecture (FPCA ’89). ACM Press, Imperial College, London, United
Kingdom, 166–173. https://doi.org/10.1145/99370.99383

[27] João Saraiva. 2002. Component-based programming for higher-order
attribute grammars. In Proceedings of the 1st ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and Component Engineering
(GPCE ’02). Springer-Verlag, London, UK, 268–282. https://doi.org/10.
1007/3-540-45821-2_17

[28] Isao Sasano. 2014. Toward modular implementation of practical iden-
tifier completion on incomplete program text. In Proceedings of the 8th
International Conference on Bioinspired Information and Communica-
tions Technologies (BICT ’14). ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), Boston,
Massachusetts, 231–234. https://doi.org/10.4108/icst.bict.2014.257909

[29] Isao Sasano. 2020. An approach to generate text-based IDEs for
syntax completion based on syntax specification. In Proceedings of
the 2020 ACM SIGPLAN Workshop on Partial Evaluation and Pro-
gram Manipulation (New Orleans, LA, USA) (PEPM 2020). Associa-
tion for Computing Machinery, New York, NY, USA, 38–44. https:
//doi.org/10.1145/3372884.3373158

[30] Isao Sasano and Takumi Goto. 2013. An approach to completing
variable names for implicitly typed functional languages. Higher-
Order and Symbolic Computation 25, 1 (2013), 127–163. https://doi.
org/10.1007/s10990-013-9095-x

[31] Maarten P. Sijm. 2019. Incremental scannerless generalized LR parsing.
In Proceedings Companion of the 2019 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications:
Software for Humanity (Athens, Greece) (SPLASH Companion 2019).
Association for Computing Machinery, New York, NY, USA, 54–56.
https://doi.org/10.1145/3359061.3361085

[32] Friedrich Steimann, Marcus Frenkel, and Markus Voelter. 2017. Ro-
bust projectional editing. In Proceedings of the 10th ACM SIGPLAN
International Conference on Software Language Engineering (SLE 2017).
ACM, Vancouver, BC, Canada, 79–90. https://doi.org/10.1145/3136014.
3136034

[33] Masaru Tomita. 1985. Efficient parsing for natural language: A fast
algorithm for practical systems. Kluwer Academic Publishers. https:
//doi.org/10.1007/978-1-4757-1885-0

[34] Harald Vogt, Doaitse Swierstra, and Matthijs Kuiper. 1989. Higher
order attribute grammars. In Proceedings of the ACM SIGPLAN 1989
Conference on Programming Language Design and Implementation (Port-
land, Oregon, USA) (PLDI ’89). ACM, 131–145. https://doi.org/10.1145/
73141.74830

[35] Tim A. Wagner and Susan L. Graham. 1998. Efficient and flexible
incremental parsing. ACM Transactions on Programming Languages
and Systems 20, 5 (1998), 980–1013. https://doi.org/10.1145/293677.
293678

43

https://doi.org/10.1007/978-3-0348-8405-1_10
https://doi.org/10.1007/3-540-49366-2_16
https://doi.org/10.1145/1159861.1159865
https://doi.org/10.1007/BFb0026440
https://doi.org/10.1007/978-3-662-21545-6_18
https://doi.org/10.5626/JOK.2020.47.1.52
https://doi.org/10.5626/JOK.2020.47.1.52
https://doi.org/10.1007/978-3-540-24723-4_6
https://doi.org/10.1007/978-3-540-24723-4_6
https://doi.org/10.1145/2034773.2034801
https://doi.org/10.1145/1993498.1993548
https://doi.org/10.1145/1993498.1993548
https://doi.org/10.1145/3359061.3362782
https://doi.org/10.1145/3359061.3362782
https://doi.org/10.1145/2254064.2254098
https://doi.org/10.1145/800020.808247
https://doi.org/10.1145/99370.99384
https://doi.org/10.1109/ASE.2008.42
https://doi.org/10.1145/99370.99383
https://doi.org/10.1007/3-540-45821-2_17
https://doi.org/10.1007/3-540-45821-2_17
https://doi.org/10.4108/icst.bict.2014.257909
https://doi.org/10.1145/3372884.3373158
https://doi.org/10.1145/3372884.3373158
https://doi.org/10.1007/s10990-013-9095-x
https://doi.org/10.1007/s10990-013-9095-x
https://doi.org/10.1145/3359061.3361085
https://doi.org/10.1145/3136014.3136034
https://doi.org/10.1145/3136014.3136034
https://doi.org/10.1007/978-1-4757-1885-0
https://doi.org/10.1007/978-1-4757-1885-0
https://doi.org/10.1145/73141.74830
https://doi.org/10.1145/73141.74830
https://doi.org/10.1145/293677.293678
https://doi.org/10.1145/293677.293678

	Abstract
	1 Introduction
	2 Specifications of Simple Candidates
	3 Algorithm for Computing Simple Candidates
	4 Nested Syntax Completion
	4.1 Algorithm for Computing Nested Candidates

	5 Implementation
	5.1 A Running Example
	5.2 A Heuristic
	5.3 YAPB: A Tool for Building a Text-Based Syntax Completion System from a Parser for Free

	6 Discussions
	6.1 Complexity of the Algorithms
	6.2 Comparison with the Approach Based on Grammar Transformation
	6.3 Partial Parsers by Derivatives
	6.4 A Role of Ellipsis ... on the Editor
	6.5 Limitations

	7 Related Work
	8 Conclusions and Future Work
	Acknowledgments
	References

