
Being Shallow and Random is (almost) as Good as
Being Deep and Thoughtful

Fei Sha

Joint work with collaborators from IBM and Columbia

Kernel
methodsMotivation Deep neural

networks

Learning
representation

Motivating toy example: face recognition

Dude Lady

Step 1: collect labeled images as training data

Dude Lady

Step 2: represent each image as a point

x1

x2

Step 3: fit a model (decision boundary)

x1

x2 H : wT
x+ b = 0

U. of Texas, Austin, April 12, 2016

Step 2: represent each image as a point

x1

x2

Not so simple: key question unanswered!

How?

Many choices, but which is better ?

Simple: raw image pixel values

Complex: Bag of visual words from SIFT descriptors

[Visual Geometry Group, Oxford]

Hard to get good (or optimal) representation

Past: major bottleneck
An art known as “feature engineering”

Often laborious and manual process

Present: even more so
as intuition and manual inspection fail

facing a large amount of data

modeling high-dimensional data

disentangling many latent factors

“easily the most important factor”
[P. Domingos]

Representation as a learning problem

x1

x2

z1

z2
raw data new representation

Classifier in the old space
can be complex

Classifier in the new space
can be simple

z = �(x;✓)

y = f(z;w)

Representation learning (abstractly)

x1

x2

z = �(x)

z1

z2
f : z ! y

{(xn, yn), n = 1, 2, · · · ,N}

✓

⇤,w⇤ = argmin
1

N

X

n

`(xn, yn, f(�(xn;✓);w))

Training data

Jointly empirical risk minimization

Kernel
methodsMotivation Deep neural

networks

Learning
representation

Deep neural networks for learning representation

�(x;✓)
x

f(z;w)z

x

z

✓1 ✓2
✓0

Hierarchical (deep) transformation

Highly nonlinear mapping
Approximate any smooth function

nonlinear processing units

weighted sum

The success of deep learning/DNN

Automatic speech recognition
The community has heavily used DNN since 2011

Computer vision
Tasks: object recognition, face detection, street number recognition

Attain the best result on ImageNet (a challenging benchmark)

Langauge processing
Tasks: language model, generating captions for images, machine translations

Board games
AlphaGo

Many more and more
….

What is not so ideal about DNN?

Practical concerns
Intensive development cost due to many hidden knobs

Design and architecture: how many layers? how many hidden units in each layer?
what are the types of hidden units?

Algorithm: step size, momentum, step size decay rate, regularization coefficients,
etc

Resources demanding

Data: what if we do not have a lot of data?

Computing: what of we do not have a lot of GPUs and CPUs?

Theoretical concerns
Rely very much on intuition and heuristics and trial-and-error

Gap between rich empirical success and scarce theoretical underpinning

Then, any alternatives?

Kernel
methodsMotivation Deep neural

networks

Learning
representation

Kernel methods

w · �(x)

xi

xj

original feature space kernel feature space

linear discriminant

k(xi, xj)
�(xi) · �(xj)

nonlinear boundaries

�(·) : Rd ! R1

Insights: classifiers use inner products between features

Kernel trick

Definition
A Mercer (or positive definite) kernel function is a bivariate function

Implications
Kernel function implicitly defines a feature mapping, ie, a new representation of
data

Selecting the right kernel will give us the right representation

k(xi,xj) = �(xi)
T
�(xj)

� : x ! k(x, ·) 2 H

Example

Gaussian kernel function

Mapping

k1(xi,xj) = e�kxi�xjk2
2/�

2

� : x ! (
p
�j j(x))j=1,2,3,··· ,1

Z

X
e�kx�x

0k2
2/�

2

 j(x
0)dµ(x0) = �j j(x)

with eigenfunction and
eigenvalues from

Kernel methods are shallow

�(x;✓)
x

f(z;w)z

x

z

Shallow transformation
Highly nonlinear mapping
Infinite-dimension representation
Approximate any smooth function

nonlinear processing units

What is nice about kernel methods?

Extensively studied and well-understood theoretical
properties

Ex: regularization, generalization error bound

Strong computational advantages (at least in theory)
Most time, convex optimization

Not many hidden tuning knobs
Kernel methods are clean

Transparent
It is relatively easier to explain a kernel model

What is not so great about them?

Computational complexity in practice
Kernel trick is a double-bladed sword

Need to evaluate kernel functions: second-order in the number of training
samples

Difficult to handle large-scale datasets: limited often at millions of samples

How to choose the right kernel?
Infinitely many kernel functions

Learning optimal kernel function from data is an open problem

[NB: a large body of work on overcoming this challenge. Eg. Bouttou, Chapelle,
DeCoste, and Weston’ 07 (eds). Das et al, ’14, Huang et al, 14, Le, Sarlos and Smola,
’13, Yen et al’ 14, Hsien, Si and Dhillon, ’13]

Kernel methods

shallow
does not scale

strong theoretical results

Deep neural networks

deep
scale to big data

strong empirical success

No method is perfect

x zx z

✓1 ✓2
✓0

Then, why deep learning is so hot?

Myth #1: being deep is theoretically necessary*
There exists functions that are implementable with d-layer deep
learning, but requires O(ed) nodes for shallow learning.

But, do real tasks we care really need those types of functions?

Myth #2: kernel methods are empirically intractable
Implementing kernel methods exactly does require quadratic-ordered
complexity.

But, can real tasks we care be solved approximately?

[*: Montufar et a’ 14, Montufar and Morton ’14, Telgarsky ‘15]

Shall we try to demystify the myths?

Scientific merits
Reveal the true differences between two paradigms after teasing
the power of data out: eg. are the successes largely attributed to the
volume of data?

Understand the nature of different tasks: eg. are certain tasks
inherently far more difficult than others, thus entailing deep learning?

How: head-on empirical comparison
On large-scale datasets from real-world applications

With task-specific evaluation metrics

Equally enthusiastic in tuning both paradigms
[NB: Huang et al, ICASSP 2013, 2014]

Let us fill the void

Learning
representation

Optimizing
billion-

parameter
models

Scaling up
Kernel

methods

Kernel
Garbage

Compactor

How to scale kernel methods?

w · �̂(x)

xi

xj

original feature space approximate kernel feature space

linear discriminant

k(xi, xj)
�̂(xi) · �̂(xj)

nonlinear boundaries

�̂(·) : Rd ! RD

�(xi)
T
�(xj) ⇡ �̂(xi)

T
�̂(xj)Key ideas: approximate kernel features

Bochner’s Theorem

Implication
We can sample from the (probability) measure

Use the random samples to generate the approximate features

Monte Carlo approximation of kernel
[Rahimi & Recht, NIPS 2007, 2009]

k(x, z) = k(x � z) is a positive definite if and only if k(�) is the Fourier

transform of a non-negative measure. Specifically, the kernel function can be

expanded with harmonic basis, namely

k(x� z) =

Z

Rd

p(!)ej!
T(x�z)d! =

Z

Rd

p(!)ej!
T
xe�j!T

z

= E
!

ej!
T
xe�j!T

z

k(x, z) ⇡ 1

D

DX

i=1,!i⇠p(!)

ej!
T
i xe�j!T

i z =
1

D

DX

i=1,!i⇠p(!)

�̂
!i(x)�̂!i(z)

From kernel to random and shallow features

For i = 1, 2, · · · to D

• Draw !i from the distribution p(!)

• Construct a random feature

�!i =

p
2 cos(!

T
i x+ bi)

where bi is a random number, uniformly sampled from [0, 2⇡]

Make the random feature vector

ˆ�(x) =
1p
D
[�!1 �!2 · · · �!D]

Ex: Gaussian distributed
for Gaussian kernels

1 2 3 i D-1 D

input features
| {z }

cosine
transfer

random fixed bias bi

ˆ�!i(x) =

r
2

D
cos(!

T
i x+ bi)

random numbers !i

………

Unlike DNN, those features are
not adapted to data

How to use those randomly generated features?

Random kitchen sink
Build linear classifiers on top of those features

Ex: multinomial logistic regression

Properties
Computational complexity

No longer depends quadratically on the
number of training samples.

The number of random features provides
speed and accuracy tradeoff.

Optimization

Convex optimization

1 2 3 i D-1 D

input features
| {z }

output targets

cosine
transfer

random fixed numbers !i

random fixed bias bi

ˆ�!i(x) =

r
2

D
cos(!

T
i x+ bi)P (y = k|x) / exp(✓

T
k �(x))

[Rahimi & Recht, NIPS 2007, 2009]

✓k

Flashback: connection between shallow and deep

Kernel machines can be seen
as a neural network

Shallow and infinitely-wide

Simpler to construct and learn

random projection in bottom

optimize only in the top

1 2 3 i D-1 D

input features
| {z }

output targets

cosine
transfer

random fixed numbers !i

random fixed bias bi

ˆ�!i(x) =

r
2

D
cos(!

T
i x+ bi)

[Neal, 1994; Williams, 1996; Cho and Saul, 2009]

Interestingly, kernel machines can be very big!

Number of random features
~200,000

Number of classes
~5000

Total number of parameters
1 billion learnable

72 million random numbers

In many of our experiments, the
kernel machines have

significantly more parameters
than typical DNN systems.

Learning
representation

Optimizing
billion-

parameter
models

Scaling up
Kernel

methods

Kernel
Garbage

Compactor

Kernel Garbage Compactor

Main idea
Inject a linear layer between random
features and outputs

Demand bottleneck: fewer number of
linear units than random features

Properties
Compact random features: not all random
features are equally useful

Prevent overfitting: reduce the
expressiveness of the model

Encourage multi-tasking: reuse outputs of
linear units

bias unitinput features
| {z }

random numbers cosine
transfer

linear units

outputs

[cf. Yen, Lin, Lin, Ravikumar, and
Dhillon, ‘14]

Mathematically, low-rank regularization

bias unitinput features
| {z }

random numbers cosine
transfer

linear units

outputs

bias unitinput features
| {z }

random numbers cosine
transfer

linear units

outputs

✓
✓1

✓2

min `(D;✓ = ✓1✓2)

min `(D;✓) s.t rank(✓)  r

min `(D;✓) + �k✓k⇤
[cf. Yen, Lin, Lin, Ravikumar, and Dhillon, ‘14]

Automatic
speech

recognition

Massive
experimentation

ResultsSetup

Acoustic modeling for ASR

Tasks
Estimate the conditional probability of phone (state) labels at any given time t

Model is optimized for lowest cross-entropy error (or perplexity), proxy to
classification accuracy

Data
2 language packs from IARPA BABEL Program: Bengali & Cantonese

Challenging: bad acoustic conditions, limited language resources

Large-scale: each with 1000 classes, 7-8 million training samples

Broadcast News (50 hours): commonly used in ASR community

 Large-scale: 5000 classes, 16 million training samples

P (y = k|xt)

System details

Kernels
Gaussian, Laplacian kernels and their combinations

of random features: up to 500,000 (model size: > 1 billion params)

hyperparameters: 4 (bandwidth, # features, gradient step size, bottleneck size)

Deep neural networks
Industry: provided by IBM Research Speech Group (using greedily layer-wise
discriminative training), 4 hidden layers, very well tuned

Home-brew: our own training recipe (with unsupervised pre-training)

Evaluation criteria
Follow industry standard: word error rate

Assessed by IBM’s proprietary ASR engine (including decoder)

Automatic
speech

recognition

Massive
experimentation

Setup Results

Sanity check: handwritten digit recognition

Dataset

MNIST-6.7 (a variants of MNIST) with 6.75 million training examples

10 classes

Classification
error (%)

Kernel (150K
features)

DNN (4 hidden
layers)

Augmented
training data no yes no yes

Validation 0.97 0.79 0.71 0.62

Test 1.09 0.85 0.69 0.77

Difference is statistically insignificant
(McNemar test p-value = 0.45)

Performance on real task of ASR

Word error rate (%)

Bengali Cantonese Broadcast

IBM DNN 70.4 67.3 16.7

Our / Columbia)
DNN (1) 69.5 66.3 16.6

Our DNN (2) - - 15.5

Kernel (200K) 70 65.7 16.7

Kernel and DNN are complementary

Word error rate (%)

Best single Combined

MNIST 0.69 0.61

Bengali 69.5 69.1

Cantonese 65.7 64.9

Broadcast 16.6 -

Take-home
messageAnalysis

Summary

Details of our kernel systems

Initial stage
Train a kernel garbage compactor

Take the output of the linear units
as new representations of data

bias unitinput features
| {z }

random numbers cosine
transfer

linear units

outputs

Details of our kernel systems

Final stage
Train another kernel garbage
compactor

Keep stage-1’s representation
unchanged, ie, no back-propagation

Kernel
garbage

compactor

raw inputs

New representation

Kernel
garbage

compactor

outputs

A somewhat shocking (re)discovery

Classic machine learning
recipe works well

Feature extraction: PCA, CCA,
Fisher discriminant analysis, kernel
PCA, kernel CCA, manifold
learning, etc

Model fitting: linear classification,
kernel SVM, boosting, neural
networks, etc Kernel

garbage
compactor

raw inputs

Kernel
garbage

compactor

outputs

analogous
kernelized
canonical

correlation
analysis
(CCA)

[Bach and Jordan, 2012. Fukumizu, Bach and Gretton, 2007]

In a similar spirit

Random feature selection
Train a kernel machine

Delete “weak” features

Add more random features

Retrain the kernel machine

[May et al, ICASSP 2016]

1 2 3 i D-1 D

input features
| {z }

output targets

cosine
transfer

random fixed numbers !i

random fixed bias bi

ˆ�!i(x) =

r
2

D
cos(!

T
i x+ bi)

In the end, the idea of learning kernels!

Optimal kernel needs to be adapted to data
Combine base kernels (cf. Lancrkiet et al JMLR, 2014)

Use neural network to do back propagation (cf Salakhutdinov & Hinton’
08, Wilson et 2015)

Sequential selection (kernel CCA, random feature selection)

Kernel features via random projections are too dirty
Minus: learning from wrong features

Plus: likely more robust

Detailed analysis using MNIST

How random are they?

Bottom weights for
NN w/ cosine activation

Bottom weights for
RBF kernel

Neural network’s has more
interesting (non-Gaussian) structures!!

How robust of using random features?

Neural networks

kernels

Percentage of retained weights

Error rates

How different random vs. non-random features?

Histogram of average
features per category

NN

Kernel

Take-home message: no method is magic or panacea

Kernel methods

shallow
does not scale

strong theoretical results

x z

Deep neural networks

deep
scalable

strong empirical success

x z

✓1 ✓2
✓0

Garbage compactors

not too shallow or deep
scalable

strong theoretical and
empirical results

Kernel
garbage compactor

Kernel
garbage compactor

Details of the work in this talk

[ICASSP 2016]

[Arxiv 2014]

Acknowledgemens

Collaborators
U. of Southern California

Zhiyun Lu, Kuan Liu, Alireza Bagheri Garakani, Dong Guo, Aurelien Bellet
(now at INRIA)

IBM Research Speech Group

Brian Kingsbury, Michael Picheny

Columbia

Michael Collins, Avner May, Linxi Fan

Funding
IARPA BABEL Program, ARO, Google Research Award

