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Motivating toy example: face recognition

Dude Lady



Step 1: collect labeled images as training data

Dude Lady



Step 2: represent each image as a point

x1

x2



Step 3: fit a model (decision boundary)

x1

x2 H : wT
x+ b = 0
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Step 2: represent each image as a point

x1

x2

Not so simple: key question unanswered!

How?



Many choices, but which is better ?

Simple: raw image pixel values 

Complex: Bag of visual words from SIFT descriptors 

[Visual Geometry Group, Oxford]



Hard to get good (or optimal) representation

Past:  major bottleneck 
An art known as “feature engineering” 

Often laborious and manual process 

Present:  even more so 
as intuition and manual inspection fail 

facing a large amount of data 

modeling high-dimensional data 

disentangling many latent factors

“easily the most important factor” 
[P. Domingos]



Representation as a learning problem

x1

x2

z1

z2
raw data new representation

Classifier in the old space 
can be complex

Classifier in the new space 
can be simple

z = �(x;✓)

y = f(z;w)



Representation learning ( abstractly )

x1

x2

z = �(x)

z1

z2
f : z ! y

{(xn, yn), n = 1, 2, · · · ,N}

✓

⇤,w⇤ = argmin
1

N

X

n

`(xn, yn, f(�(xn;✓);w))

Training data

Jointly empirical risk minimization
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Deep neural networks for learning representation

�(x;✓)
x

f(z;w)z

x

z

✓1 ✓2
✓0

Hierarchical (deep) transformation

Highly nonlinear mapping 
Approximate any smooth function

nonlinear processing units

weighted sum



The success of deep learning/DNN

Automatic speech recognition 
The community has heavily used DNN since 2011 

Computer vision 
Tasks: object recognition, face detection,  street number recognition 

Attain the best result on ImageNet (a challenging benchmark) 

Langauge processing 
Tasks:  language model, generating captions for images, machine translations 

Board games 
AlphaGo 

Many more and more 
….



What is not so ideal about DNN?

Practical concerns 
Intensive development cost due to many hidden knobs 

Design and architecture: how many layers? how many hidden units in each layer?  
what are the types of hidden units? 

Algorithm:  step size, momentum,  step size decay rate,  regularization coefficients, 
etc 

Resources demanding 

Data:  what if we do not have a lot of data?  

Computing: what of we do not have a lot of GPUs and CPUs? 

Theoretical concerns 
Rely  very much on intuition and heuristics and trial-and-error 

Gap between rich empirical success and scarce theoretical underpinning



Then, any alternatives?
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Kernel methods

w · �(x)

xi

xj

original feature space kernel feature space

linear discriminant

k(xi, xj)
�(xi) · �(xj)

nonlinear boundaries

�(·) : Rd ! R1

Insights: classifiers use inner products between features



Kernel trick

Definition 
A Mercer (or positive definite ) kernel function is a bivariate function 

Implications 
Kernel function implicitly defines a feature mapping, ie, a new representation of 
data 

Selecting the right kernel will give us the right representation 

k(xi,xj) = �(xi)
T
�(xj)

� : x ! k(x, ·) 2 H



Example

Gaussian kernel function 

Mapping 

k1(xi,xj) = e�kxi�xjk2
2/�

2

� : x ! (
p
�j j(x))j=1,2,3,··· ,1

Z

X
e�kx�x

0k2
2/�

2

 j(x
0)dµ(x0) = �j j(x)

with eigenfunction and 
eigenvalues from 



Kernel methods are shallow

�(x;✓)
x

f(z;w)z

x

z

Shallow transformation
Highly nonlinear mapping
Infinite-dimension representation
Approximate any smooth function

nonlinear processing units



What is nice about kernel methods?

Extensively studied and well-understood theoretical 
properties 

Ex: regularization, generalization error bound 

Strong computational advantages (at least in theory) 
Most time, convex optimization 

Not many hidden tuning knobs 
Kernel methods are clean 

Transparent 
It is relatively easier to explain a kernel model



What is not so great about them?

Computational complexity in practice 
Kernel trick is a double-bladed sword 

Need to evaluate kernel functions: second-order in the number of training 
samples  

Difficult to handle large-scale datasets: limited often at millions of samples 

How to choose the right kernel? 
Infinitely many kernel functions 

Learning optimal kernel function from data is an open problem 

[NB: a large body of work on overcoming this challenge. Eg. Bouttou, Chapelle, 
DeCoste, and Weston’ 07 (eds). Das et al, ’14,  Huang et al, 14, Le, Sarlos and Smola, 
’13, Yen et al’ 14,  Hsien, Si and Dhillon, ’13]



Kernel methods 

shallow 
does not scale 

strong theoretical results 

Deep neural networks 

deep 
scale to big data 

strong empirical success 

No method is perfect

x zx z

✓1 ✓2
✓0



Then, why deep learning is so hot?

Myth #1:  being deep is theoretically necessary* 
There exists functions that are implementable with d-layer deep 
learning,  but requires O(ed ) nodes for shallow learning. 

But, do real tasks we care really need those types of functions? 

Myth #2:  kernel methods are empirically intractable 
Implementing kernel methods exactly does require quadratic-ordered 
complexity. 

But, can real tasks we care be solved approximately?

[*:  Montufar et a’ 14,  Montufar and Morton ’14,  Telgarsky ‘15]



Shall we try to demystify the myths?

Scientific merits  
Reveal the true differences between two paradigms after teasing 
the power of data out: eg. are the successes largely attributed to the 
volume of data? 

Understand the nature of different tasks: eg. are certain tasks 
inherently far more difficult than others, thus entailing deep learning? 

How: head-on empirical comparison  
On  large-scale datasets from real-world applications 

With task-specific evaluation metrics 

Equally enthusiastic in tuning both paradigms
[NB: Huang et al, ICASSP 2013, 2014]



Let us fill the void
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How to scale kernel methods?

w · �̂(x)

xi

xj

original feature space approximate kernel feature space

linear discriminant

k(xi, xj)
�̂(xi) · �̂(xj)

nonlinear boundaries

�̂(·) : Rd ! RD

�(xi)
T
�(xj) ⇡ �̂(xi)

T
�̂(xj)Key ideas: approximate kernel features



Bochner’s Theorem  

Implication 
We can sample from the (probability ) measure  

Use the random samples to generate the approximate features 

Monte Carlo approximation of kernel
[Rahimi & Recht, NIPS 2007, 2009]

k(x, z) = k(x � z) is a positive definite if and only if k(�) is the Fourier

transform of a non-negative measure. Specifically, the kernel function can be

expanded with harmonic basis, namely

k(x� z) =

Z
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p(!)ej!
T(x�z)d! =

Z

Rd

p(!)ej!
T
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D

DX

i=1,!i⇠p(!)

ej!
T
i xe�j!T

i z =
1

D

DX

i=1,!i⇠p(!)

�̂
!i(x)�̂!i(z)



From kernel to random and shallow features

For i = 1, 2, · · · to D

• Draw !i from the distribution p(!)

• Construct a random feature

�!i =

p
2 cos(!

T
i x+ bi)

where bi is a random number, uniformly sampled from [0, 2⇡]

Make the random feature vector

ˆ�(x) =
1p
D
[�!1 �!2 · · · �!D ]

Ex: Gaussian distributed 
for Gaussian kernels

1 2 3 i D-1 D

input features
| {z }

cosine
transfer

random fixed bias bi

ˆ�!i(x) =

r
2

D
cos(!

T
i x+ bi)

random numbers !i

………

Unlike DNN, those features are 
not adapted to data



How to use those randomly generated features?

Random kitchen sink 
Build linear classifiers on top of those features 

Ex: multinomial logistic regression 

Properties 
Computational complexity 

No longer depends quadratically on the 
number of training samples. 

The number of random features provides 
speed and accuracy tradeoff. 

Optimization 

Convex optimization

1 2 3 i D-1 D

input features
| {z }

output targets

cosine
transfer

random fixed numbers !i

random fixed bias bi

ˆ�!i(x) =

r
2

D
cos(!

T
i x+ bi)P (y = k|x) / exp(✓

T
k �(x))

[Rahimi & Recht, NIPS 2007, 2009]

✓k



Flashback: connection between shallow and deep

Kernel machines can be seen 
as a neural network 

Shallow and infinitely-wide 

Simpler to construct and learn 

random projection in bottom 

optimize only in the top

1 2 3 i D-1 D

input features
| {z }

output targets

cosine
transfer

random fixed numbers !i

random fixed bias bi

ˆ�!i(x) =

r
2

D
cos(!

T
i x+ bi)

[Neal, 1994; Williams, 1996;  Cho and Saul, 2009]



Interestingly, kernel machines can be very big!

Number of random features 
~200,000 

Number of classes 
~5000 

Total number of parameters 
1 billion learnable 

72 million random numbers

In many of our experiments, the 
kernel machines have 

significantly more parameters 
than typical DNN systems.
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Kernel Garbage Compactor

Main idea 
Inject a linear layer between random 
features and outputs 

Demand bottleneck:  fewer number of 
linear units than random features 

Properties 
Compact random features: not all random 
features are equally useful 

Prevent overfitting:  reduce the 
expressiveness of the model 

Encourage multi-tasking: reuse outputs of 
linear units 

bias unitinput features
| {z }

random numbers cosine
transfer

linear units

outputs

[cf. Yen, Lin, Lin, Ravikumar, and 
Dhillon, ‘14]



Mathematically, low-rank regularization

bias unitinput features
| {z }

random numbers cosine
transfer

linear units

outputs

bias unitinput features
| {z }

random numbers cosine
transfer

linear units

outputs

✓
✓1

✓2

min `(D;✓ = ✓1✓2)

min `(D;✓) s.t rank(✓)  r

min `(D;✓) + �k✓k⇤
[cf. Yen, Lin, Lin, Ravikumar, and Dhillon, ‘14]
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Acoustic modeling for ASR

Tasks 
Estimate  the conditional probability of phone (state) labels at any given time t 

Model is optimized for lowest cross-entropy error (or perplexity), proxy to 
classification accuracy 

Data 
2 language packs from IARPA BABEL Program: Bengali & Cantonese 

Challenging:  bad acoustic conditions, limited language resources 

Large-scale:  each with 1000 classes, 7-8 million training samples 

Broadcast News (50 hours): commonly used in ASR community 

 Large-scale:  5000 classes, 16 million training samples

P (y = k|xt)



System details

Kernels 
Gaussian, Laplacian kernels and their combinations 

# of random features:  up to 500,000 (model size:  > 1 billion params) 

# hyperparameters:  4 (bandwidth, # features, gradient step size, bottleneck size ) 

Deep neural networks 
Industry:  provided by IBM Research Speech Group (using greedily layer-wise 
discriminative training), 4 hidden layers, very well tuned 

Home-brew:  our own training recipe (with unsupervised pre-training ) 

Evaluation criteria 
Follow industry standard: word error rate 

Assessed by IBM’s proprietary ASR engine (including decoder)



Automatic 
speech 

recognition

Massive 
experimentation

Setup Results



Sanity check: handwritten digit recognition

Dataset 

MNIST-6.7 (a variants of MNIST) with 6.75 million training examples 

10 classes

Classification 
error (%)

Kernel (150K 
features)

DNN (4 hidden 
layers)

Augmented 
training data no yes no yes

Validation 0.97 0.79 0.71 0.62

Test 1.09 0.85 0.69 0.77

Difference is statistically insignificant 
(McNemar test p-value  = 0.45)



Performance on real task of ASR

Word error rate (%)

Bengali Cantonese Broadcast

IBM DNN 70.4 67.3 16.7

Our / Columbia) 
DNN (1) 69.5 66.3 16.6

Our DNN (2) - - 15.5

Kernel (200K) 70 65.7 16.7



Kernel and DNN are complementary

Word error rate (%)

Best single Combined

MNIST 0.69 0.61

Bengali 69.5 69.1

Cantonese 65.7 64.9

Broadcast 16.6 -



Take-home 
messageAnalysis

Summary



Details of our kernel systems

Initial stage   
Train a kernel garbage compactor 

Take the output of the linear units 
as new representations of data

bias unitinput features
| {z }

random numbers cosine
transfer

linear units

outputs



Details of our kernel systems

Final stage  
Train another kernel garbage 
compactor 

Keep stage-1’s representation 
unchanged, ie, no back-propagation

Kernel 
garbage 

compactor

raw inputs

New representation

Kernel 
garbage 

compactor

outputs



A somewhat shocking (re)discovery

Classic machine learning 
recipe works well 

Feature extraction: PCA, CCA, 
Fisher discriminant analysis, kernel 
PCA, kernel CCA, manifold 
learning, etc 

Model fitting:  linear classification, 
kernel SVM, boosting, neural 
networks, etc Kernel 

garbage 
compactor

raw inputs

Kernel 
garbage 

compactor

outputs

analogous  
kernelized 
canonical 

correlation 
analysis 
(CCA)

[Bach and Jordan, 2012. Fukumizu, Bach and Gretton, 2007]



In a similar spirit

Random feature selection 
Train a kernel machine 

Delete “weak” features 

Add more random features 

Retrain the kernel machine 

[May et al, ICASSP 2016]

1 2 3 i D-1 D

input features
| {z }

output targets

cosine
transfer

random fixed numbers !i

random fixed bias bi

ˆ�!i(x) =

r
2

D
cos(!

T
i x+ bi)



In the end, the idea of learning kernels!

Optimal kernel needs to be adapted to data 
Combine base kernels (cf. Lancrkiet et al JMLR, 2014) 

Use neural network to do back propagation (cf Salakhutdinov & Hinton’ 
08, Wilson et 2015) 

Sequential selection (kernel CCA, random feature selection) 

Kernel features via random projections are too dirty 
Minus:  learning from wrong features 

Plus:     likely more robust 



Detailed analysis using MNIST



How random are they?

Bottom weights for  
NN w/ cosine activation

Bottom weights for  
RBF kernel

Neural network’s has more  
interesting (non-Gaussian) structures!!



How robust of using random features?

Neural networks

kernels

Percentage of retained weights

Error rates



How different random vs. non-random features?

Histogram of average 
features per category

NN

Kernel



Take-home message: no method is magic or panacea 

Kernel methods 

shallow 
does not scale 

strong theoretical results 

x z

Deep neural networks 

deep 
scalable 

strong empirical success 

x z

✓1 ✓2
✓0

Garbage compactors 

not too shallow or deep 
scalable 

strong theoretical and 
empirical results 

Kernel 
garbage compactor

Kernel 
garbage compactor



Details of the work in this talk

[ICASSP 2016]

[Arxiv 2014]
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