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1. SCIENCE	RATIONALE	FOR	THE	PRODUCT	
	
This	document	describes	the	Visible	Infrared	Imaging	Radiometer	Suite	(VIIRS)	375	
m	active	fire	detection	product.	The	VIIRS	instrument	was	first	launched	on	28	
October	2011	onboard	the	Suomi	National	Polar-orbiting	Partnership	(S-NPP),	
which	was	placed	in	a	sun	synchronous	orbit	at	an	altitude	of	829	km	and	with	
1:30pm/1:30am	equatorial	crossing	times.	That	instrument	will	be	followed	by	
other	similar	sensors	onboard	the	Joint	Polar	Satellite	System	(JPSS)	series	of	
satellites	operated	jointly	by	NASA	and	NOAA.	VIIRS	is	a	whiskbroom	scanning	
radiometer	with	a	swath	width	of	3060	km,	providing	global	wall-to-wall	coverage	
every	12	h	or	less	depending	on	the	latitude.	It	consists	of	a	multispectral	
instrument	including	five	spectral	channels	(0.6	<>	12.4	µm)	at	375	m	(I-bands)	and	
16	spectral	channels	(0.4	<>	12.5	µm)	at	750	m	(M-bands),	in	addition	to	a	light-
sensitive	(0.5	<>	0.9	µm)	day-and-night	band	at	750	m	(DNB).		
	 Compared	to	other	coarser	resolution	(≥1	km)	satellite	fire	detection	
products,	the	VIIRS	375	m	data	provide	greater	response	over	fires	of	relatively	
small	area,	as	well	as	improved	mapping	of	large	fire	perimeters.	Consequently,	the	
data	are	well	suited	for	use	in	support	of	fire	management	(e.g.,	near	real-time	
wildfire	alert	systems),	as	well	as	other	science	applications	requiring	improved	fire	
mapping	fidelity.	This	product	consists	of	a	hybrid	algorithm	combining	qualities	of	
the	375	m	and	750	m	VIIRS	data.	The	higher	resolution	data	(channels	I1-I5)	are	the	
primary	drivers	of	the	fire	detection	component,	whereas	the	750	m	data	
(specifically	the	dual-gain	M13	channel)	are	used	primarily	in	the	sub-pixel	fire	
radiative	power	(FRP)	retrievals.	The	375	m	fire	algorithm	supersedes	the	baseline	
VIIRS	750	m	active	fire	detection	and	characterization	data,	which	was	originally	
designed	to	provide	continuity	to	the	1	km	Earth	Observing	System	Moderate	
Resolution	Imaging	Spectroradiometer	(EOS/MODIS)	active	fire	data	record.		

2. THE	ALGORITHM	
2.1. TECHNICAL	BACKGROUND	AND	HERITAGE	

Actively	burning	fires	often	show	a	wide	range	of	temperatures	spanning	several	
hundred	Kelvin	in	association	with	flaming	and	smoldering	phases	of	combustion.	
Typically,	cooler	smoldering	fires	show	temperatures	between	450	and	850	K,	
whereas	higher	temperatures	ranging	from	800	K	to	upwards	of	1200	K	prevail	
during	the	more	intense	flaming	phase	[Lobert	and	Warnatz,	1993].	Fuel	type	and	
moisture,	and	ambient	conditions	(air	temperature,	wind,	and	relative	humidity)	are	
key	factors	regulating	biomass	combustion.	When	moderate	spatial	resolution	
sensors	are	considered,	mid-infrared	(4	µm)	spectral	channels	are	the	most	
responsive	to	actively	burning	fires	capturing	most	of	the	radiometric	signal	from	
smoldering	and	flaming	phases	of	combustion	during	both	day	and	nighttime	parts	
of	the	orbit.	The	peak	in	emitted	fire	radiant	energy	on	channel	I4	makes	that	
channel	(and	similarly	channel	M13)	responsive	to	small	sub-pixel	fires	occurring	
over	a	cool	(≤	300	K)	background.	Consequently,	intense	active	fires	(>1000	K)	



	

	 3	

occupying	fractional	pixel	areas	as	small	as	10-4	may	be	detected.	In	addition	to	
facilitating	the	detection	of	sub-pixel	active	fires,	the	rate	of	radiative	energy	
released	by	fires	observed	in	the	4	µm	region	is	found	to	be	directly	related	to	the	
biomass	consumed	per	unit	time	[Kaufman	et	al.,	1998;	Wooster	et	al.,	2003].	
	 The	VIIRS	active	fire	detection	data	build	on	the	EOS/MODIS	fire	product	
heritage	using	a	multi-spectral	contextual	algorithm	to	identify	sub-pixel	fire	
activity	and	other	thermal	anomalies	in	the	Level	1	(swath)	input	data	[Kaufman	et	
al.,	1998].	The	baseline	VIIRS	750	m	active	fire	detection	product	was	originally	
designed	mirroring	the	MODIS	Collection	4	Fire	and	Thermal	Anomalies	algorithm	
(MOD14/MYD14),	although	lacking	key	output	science	data	layers	such	as	the	2D	
fire	mask	and	FRP	retrievals	[Csiszar	et	al.,	2014;	Giglio	et	al.,	2003].	That	algorithm	
was	later	replaced	with	the	MODIS	Collection	6	algorithm	equivalent	including	all	
output	science	data	layers	[Giglio	et	al.,	2016].	That	product	is	available	through	
various	VIIRS	data	outlets	providing	direct	readout	(NASA’s	International	Polar	
Orbiter	Processing	Package	[IPOPP]),	near	real-time	(NOAA’s	S-NPP	Data	
Exploitation	[NDE]),	and	science	data	access	(NASA’s	Land	Science	Investigator-led	
Processing	System	[Land	SIPS]).	The	VIIRS	750	m	fire	product	generation	and	
availability	will	continue	until	further	notice.	
	 The	algorithm	described	in	this	document	was	proposed	during	the	early	
post-launch	period	following	the	successful	application	of	the	375	m	data	for	active	
fire	detection.	That	new	application	constituted	a	repurposing	of	the	VIIRS	375	m	(I)	
channels,	as	none	of	those	were	originally	designed	for	active	fire	detection.	Most	
importantly,	abnormal	radiometric	conditions	involving	different	pixel	saturation	
scenarios	are	frequently	observed	in	the	primary	mid-infrared	channel	I4	thereby	
requiring	special	handling	of	the	data.	Building	on	the	MOD14/MYD14	algorithm,	
several	modifications	were	implemented	in	order	to	accommodate	the	unique	
characteristics	associated	with	the	VIIRS	375	m	data.	Detailed	algorithm	description	
is	provided	in	the	following	sections.	The	information	contained	in	this	document	is	
complemented	by	the	original	peer-reviewed	publication	describing	the	initial	
implementation	of	the	VIIRS	375	m	global	algorithm	[Schroeder	et	al.,	2014].	

2.2. ALGORITHM	INPUT	
	 The	VIIRS	375	m	fire	product	uses	input	data	from	all	five	375	m	channels	
(I1-I5)	and	the	dual-gain	750	m	mid-infrared	data	(channel	M13),	in	addition	to	
their	corresponding	quality	flags	(QF1)	(Table	1).	The	product	evolved	from	the	
Schroeder	et	al.	[2014]	VIIRS	375	m	global	fire	algorithm,	incorporating	an	ancillary	
land-water	classification	mask,	FRP	retrievals	based	on	the	methodology	described	
in	Wooster	et	al.	[2003],	among	other	refinements.	The	higher	resolution	VIIRS	375	
m	data	provide	the	basis	for	the	detection	of	active	fires	and	other	thermal	
anomalies,	whereas	the	750	m	data	are	used	in	the	calculation	of	sub-pixel	FRP	as	
well	as	to	discriminate	potential	false	alarms	associated	with	noise	in	the	input	fire-
sensitive	375	m	mid-infrared	(I4)	channel	data.		
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Table	1:	List	of	VIIRS	channels	used	as	input	to	the	375	m	active	fire	detection	algorithm.	The	
corresponding	VIIRS	Level	1B	data	quality	flags,	terrain-corrected	geolocation	and	quarterly	land-
water	mask	data	complement	the	list	of	input	files	used.	

Channel	
Spatial	

Resolution	
(m)	

Spectral	
resolution	
(μm)	

Primary	Use	

I1	 375	 0.60	–	0.68	 Cloud	&	water	classification	
I2	 375	 0.846	–	0.885	 Cloud	&	water	classification	
I3	 375	 1.58	–	1.64	 Water	classification	
I4	 375	 3.55	–	3.93	 Fire	detection	
I5	 375	 10.5	–	12.4	 Fire	detection	&	cloud	classification	

M13*	 750	 3.973	–	4.128	 FRP	retrieval,	fire	detection	over	water	and	across	the	
South	Atlantic	magnetic	anomaly	region	

*	Aggregated	(750×750	m	nominal)	&	un-aggregated	(250×750	m	nominal)	data	are	used	
	
	 The	375	m	data	describe	the	nominal	resolution	after	native	pixels	are	
spatially	aggregated	(Figure	1).	The	aggregation	scheme	changes	across	three	
distinct	image	regions.	In	the	first	region	(nadir	to	31.59o	scan	angle),	three	native	
pixels	are	aggregated	in	the	along	scan	(cross-track)	direction	to	form	one	data	
sample	in	the	Level	1	image.	In	the	second	region	(31.59o	to	44.68o	scan	angle),	two	
native	pixels	are	aggregated	to	form	one	data	sample.	Finally	in	the	third	and	last	
region	(44.68o	to	56.06o	-	edge	of	swath)	one	native	pixel	will	result	in	one	data	
sample.	All	five	375	m	channels	are	aggregated	onboard	the	spacecraft	before	the	
data	are	transmitted	to	the	ground	stations.	The	input	750	m	dual-gain	M13	channel	
data	undergo	a	similar	aggregation	scheme	although	the	data	reduction	is	
performed	after	the	ground	stations	receive	the	native	resolution	data	from	the	
satellite.	In	order	to	maximize	performance,	the	algorithm	uses	both	aggregated	and	
un-aggregated	M13	data.	
	

	
Figure	1:	Spatial	resolution	of	VIIRS	imager	data	(I	bands)	as	a	function	of	scan	angle.	The	three	
distinct	regions	describe	data	aggregation	zones	extending	from	nadir	to	the	edge	of	the	swath.	
	
	 Given	the	unique	spatial	and	spectral	resolution	of	the	data,	the	fire	detection	
algorithm	was	customized	and	tuned	in	order	to	optimize	its	response	over	small	
fires	while	balancing	the	occurrence	of	false	alarms.	Frequent	saturation	of	the	mid-
infrared	I4	channel	driving	the	detection	of	active	fires	demands	additional	tests	and	
procedures	in	order	to	avoid	pixel	classification	errors.	Pixel	saturation	occurs	most	
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often	over	large	and/or	intense	heat	sources	(e.g.,	wildfires)	and	is	typically	
identified	in	the	input	data	with	the	use	of	the	companion	quality	flag.	Under	more	
extreme	conditions,	very	large	active	fires	(e.g.,	crown	fires)	can	greatly	exceed	the	
effective	saturation	temperature	on	channel	I4	leading	to	a	complete	folding	of	the	
digital	number	(DN)	associated	with	the	affected	pixel.	Application	of	the	normal	
calibration	parameters	to	those	anomalous	DN	values	results	in	abnormally	cold	
brightness	temperature	values	equal	to	or	near	the	low	end	of	that	channel’s	
dynamic	range	(208	K).	The	companion	quality	flags	may	also	be	used	to	properly	
identify	and	process	those	pixels.	A	third	and	more	challenging	scenario	describing	
channel	I4	saturation	involves	the	mixing	of	saturated	and	unsaturated	data	during	
onboard	aggregation.	Such	occurrences	result	in	artificially	low	brightness	
temperatures	accompanied	by	nominal	quality	flags	for	the	affected	pixels.	Under	
those	conditions,	complementary	channel	I5	data	may	be	used	to	try	and	identify	
the	corrupted	channel	I4	pixels.	Overall,	the	low	(≈358	K)	effective	saturation	
temperature	on	channel	I4	results	in	≈9%	discernable	fire	pixel	saturation	rate	
associated	with	all	three	scenarios	above	(in	addition	to	a	yet	unknown	percentage	
of	more	subtle	and	therefore	indistinguishable	saturation).	Consequently,	sub-pixel	
fire	characterization	should	be	avoided	in	that	channel.	That	limitation	is	addressed	
in	the	product	with	the	use	of	co-located	M13	dual-gain	channel	data.	The	
combination	of	higher	(≈659	K)	saturation	temperature	and	lower	spatial	resolution	
results	in	extremely	rare	pixel	saturation	occurrence	in	the	M13	data	making	it	
suitable	for	such	application.	
	 Another	anomalous	condition	affecting	the	I4	channel	involves	the	
occurrence	of	spurious	brightness	temperature	data	as	a	result	of	the	South	Atlantic	
magnetic	anomaly.	The	geographic	area	where	the	problem	is	most	commonly	
found	extends	from	110°W	<>	11°E	and	7°N	<>	55°S	(Cabrera	et	al.,	2005;	Casadio	
et	al.,	2012).	The	impact	of	the	magnetic	anomaly	is	evidenced	by	artificially	high	
brightness	temperature	values	occurring	predominantly	in	the	nighttime	I4	channel	
data.	These	occurrences	are	typically	associated	with	nominal	data	quality	and	
therefore	cannot	be	readily	identified	using	the	available	quality	flags.	On	average,	
individual	channel	I4	pixels	affected	by	the	anomaly	may	depart	from	the	
background	by	15–30	K	thereby	creating	similar	radiometric	responses	associated	
with	actual	nighttime	fire-affected	pixels	at	both	absolute	and	contextual	levels.	No	
discernable	impact	on	nighttime	I5	channel	data	quality	was	found	associated	with	
the	magnetic	anomaly.	
	 Currently,	processing	of	the	fire	algorithm	is	limited	to	the	Level	2	(swath)	
product	output,	which	has	similar	data	structure	and	format	to	MODIS	Level	2	
(MOD14/MYD14)	fire	product.	It	includes	a	two-dimensional	fire	mask	and	quality	
assurance	science	data	sets,	plus	sparse	arrays	describing	individual	fire	pixel	
information	(e.g.,	FRP)	and	additional	granule	attributes.	Alternative	text	(ASCII)	
files	are	generated	for	each	Level	2	granule	containing	basic	fire	detection	
information	in	a	Geographic	Information	System	(GIS)-friendly	format.	
Supplementary	Level	3	(tiled)	and	4	(Climate	Modeling	Grid)	product	outputs	will	
be	added	in	the	future.	
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2.3. 	ALGORITHM	DESCRIPTION	
The	VIIRS	fire	algorithm	uses	a	combination	of	fixed	and	contextual	tests	to	detect	
active	fires	and	other	thermal	anomalies	in	both	daytime	and	nighttime	(solar	zenith	
angle	≥90o)	parts	of	the	orbit.	The	current	implementation	evolved	from	the	work	of	
Schroeder	et	al.	(2014),	incorporating	new	elements	in	response	to	users’	
requirements	(e.g.,	sub-pixel	FRP	retrievals).		The	detection	criteria	are	based	on	
multi-spectral	tests	using	primarily	the	mid-infrared	(channel	I4)	and	long	wave-
infrared	(channel	I5)	data,	complemented	by	cloud	and	water	classification	schemes	
as	described	below.	
	

2.3.1. CLOUD	AND	WATER	PIXEL	CLASSIFICATION	
The	cloud	classification	scheme	builds	on	the	MODIS	fire	product	[Giglio	et	al.,	2003;	
2016]	and	is	designed	to	mask	optically	thick	clouds.	The	resulting	cloud	mask	is	
made	intentionally	liberal	in	order	to	minimize	fire	detection	omission	errors	under	
translucent	clouds	(e.g.,	cirrus)	and	in	partially	covered	pixels.	Cloud-covered	pixels	
are	identified	in	the	daytime	data	using	the	following	criteria:	
	
BT5	<	265	K	
OR	
ρ1+ρ2	>	0.9	AND	BT5	<	295	K	
OR	
ρ1+ρ2	>	0.7	AND	BT5	<	285	K	
	
where	ρi	and	BTi	are	the	top-of-atmosphere	reflectance	and	brightness	temperature	
in	VIIRS	375	m	channel	i,	respectively.	Nighttime	cloud	pixels	are	identified	using:	
	
BT5	<	265	K	AND	BT4	<	295	K	
	
Pixels	identified	as	clouds	skip	any	subsequent	fire	detection	processing	and	are	
also	excluded	from	background	characterization.	Complementing	the	cloud	
masking,	water	pixels	are	classified	using:	
	
ρ1	>	ρ2	>	ρ3	
	
The	test	above	can	successfully	mask	most	water	bodies	in	the	daytime	data	
although	it	tends	to	omit	sediment-filled	water	pixels	along	shorelines,	and	cause	
commission	errors	over	burn	scars.	Those	limitations	have	no	observable	impact	on	
the	overall	fire	pixel	detection	and	characterization	performance.	The	internal	water	
mask	complements	the	available	VIIRS	land-water	mask	which	builds	on	the	MODIS	
250	m	water	classification	product	[Carroll	et	al.,	2009].	All	water	pixels	undergo	
subsequent	processing	to	allow	detection	of	gas	flares	and	other	thermal	anomalies.	
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2.3.2. FIXED	THRESHOLD	TESTS		
Fire	pixels	are	first	identified	in	the	day	and	nighttime	data	using	a	combination	of	
fixed	threshold	tests	based	on	the	observation	scenario.	Fire	pixels	detected	using	
these	tests	show	a	stronger	radiometric	signature	in	either	channel	I4	or	I5	data,	
and	tend	to	be	unequivocally	associated	with	active	fires	or	high	intensity	thermal	
anomalies.	Fire	pixels	detected	using	these	tests	are	initially	assigned	a	‘high	
confidence’	class.	In	case	of	unsaturated	nighttime	data,	the	following	test	is	used:	
	
BT4	>	320	K	AND	QF4	=	0	 	 	 	 (nighttime	only)	
	
Where	QF4	is	the	VIIRS	channel	I4	quality	flag	value.	Saturated	daytime	and	
nighttime	fire	pixels	are	identified	using	the	following	criteria:	
	
BT4	=	367	K	AND	QF4	=	9	AND	QF5	=	0	 		 (daytime	or	nighttime)	
AND	
BT5	>	290	K	AND	ρ1	+	ρ2	<	0.7		 	 	 (daytime	only)	
	
Finally,	cases	involving	folding	of	channel	I4	data	are	identified	using:	
	
ΔBT45	<	0	AND	BT5	>	325	K	AND	QF5	=	0	 	 (daytime	only)	
OR		
ΔBT45	<	0	AND	BT5	>	310	K	AND	QF5	=	0	 	 (nighttime	only)	
OR	
BT4	=	208	K	AND	BT5	>	335	K	 	 	 (nighttime	only)	
	
Where	ΔBT45	is	the	brightness	temperature	difference	between	channels	I4	and	I5.	
	

2.3.3. POTENTIAL	BACKGROUND	FIRES	
Potential	background	fire	pixels	can	affect	the	detection	and	characterization	of	
individual	fire	pixels	and	therefore	must	be	identified	and	masked	out	accordingly.	
The	following	tests	are	used	to	identify	those	pixels:	
	
BT4		>	335	K	AND	ΔBT45	>	30	K	 	 	 (daytime	only)	
OR	
BT4		>	300	K	AND	ΔBT45	>	10	K	 	 	 (nighttime	only)	
	
In	addition	to	the	tests	above,	pixels	associated	with	folding	of	channel	I4	data	
(typically	characterized	by	artificially	low	BT4)	are	also	considered	background	
pixels.	
	

2.3.4. AVOIDING	BRIGHT	REFLECTIVE	TARGETS	
Solar	reflection	over	bright	surfaces	(e.g.,	sand	banks	along	riverbeds)	can	induce	
high	brightness	temperatures	on	channel	I4	daytime	data,	causing	potential	
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confusion	with	active	fires.	Those	areas	are	identified	and	avoided	using	the	
following	criteria:	
		
ρ3	>	0.3	AND	ρ3	>	ρ2	AND	ρ2	>	0.25	BT4	≤	335	K	
	
	 Sun	glint	is	a	form	of	recurring	observation	phenomenon	also	known	to	lead	
to	false	alarms	in	satellite	fire	detection	products.	Examples	of	false	alarm-prone	
areas	associated	with	solar	reflection	include	large	metallic	rooftops	in	industrial	
parks,	small/undetected	water	bodies,	and	other	bright	surfaces	in	urban	areas.	In	
order	to	reduce	the	frequency	of	those	occurrences,	pixels	identified	with	the	
following	tests	are	assigned	a	‘sun	glint’	class	and	not	considered	for	candidate	fire	
pixel	selection	(Section	2.3.5):	
	
cosθg	=	cosθv×cosθs−sinθv×sinθs×cosϕ		
	
θg	<	15o	AND	ρ1+ρ2	>	0.35	
OR	
θg	<	25o	AND	ρ1+ρ2	>	0.4	
	
Where	θv	and	θs	are	the	view	and	solar	zenith	angles,	respectively,	and	ϕ	is	the	
relative	azimuth	angle.		
	

2.3.5. CANDIDATE	FIRE	PIXELS	
Candidate	fire	pixels	are	selected	using	relatively	liberal	tests	in	order	to	include	all	
potential	pixels	showing	thermal	anomalies	on	channel	I4	according	to:	
	
BT4	>	BT4S	AND	ΔBT45	>	25	K	 	 	 (daytime	only)	
OR	
BT4	>	295	K	AND	ΔBT45	>	10	K	 	 	 (nighttime	only)	
	
Where	BT4S	is	a	dynamically-adjusted	background	value	calculated	using	channel	I4	
brightness	temperature	data	based	on	a	501×501	sampling	window	centered	on	the	
candidate	fire	pixel.	This	initial	large-area	sampling	accommodates	variations	in	
background	conditions,	adding	flexibility	to	candidate	fire	pixel	selection.	It	is	
intended	to	improve	algorithm	sensitivity	to	fires	occurring	in	colder	high	latitude	
regions,	while	reducing	false	alarm	rates	in	lower	latitudes	consisting	of	warmer	
background.	The	large	area	background	sampling	excludes	all	pixels	previously	
classified	as	cloud,	water	bodies,	and	potential	background	fire	pixels,	as	well	as	any	
pixel	with	non-zero	quality	flag	including	fill	values	associated	with	bowtie	deletion	
samples	[Wolfe	et	al.,	2013].	BT4S	is	defined	as:	
	
BT4M	=	MAX[325,	M+25]	K	
BT4S		=	MIN[330,	BT4M]	K	
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Where	M	is	the	BT4	median	value	calculated	for	the	501×501	window.	The	sampling	
window	must	contain	a	minimum	of	10	valid	observations	otherwise	BT4S	is	set	to	
330	K.	Furthermore,	BT4S	is	only	derived	for	daytime	data	allowing	the	candidate	
fire	pixel	brightness	temperature	on	channel	I4	to	vary	between	a	minimum	of	325	
K	to	a	maximum	of	330	K	in	order	to	accommodate	scene-dependent	changes	in	
background	conditions.	Nighttime	background	conditions	are	found	to	be	less	
variable,	therefore	the	algorithm	uses	a	single	fixed	value	to	define	candidate	fire	
pixels	at	night.		
	

2.3.6. CONTEXTUAL	FIRE	DETECTION	TESTS	
The	contextual	tests	use	a	dynamic	sampling	window	to	characterize	the	
background	conditions	around	each	individual	candidate	fire	pixel.	The	sampling	
window	is	allowed	to	vary	from	a	minimum	of	11×11	elements	centered	on	the	
candidate	pixel,	to	a	maximum	of	31×31	elements	until	≥25%	or	≥10	valid	pixels	are	
encountered.	Valid	pixels	exclude	clouds,	background	fire	pixels,	non-nominal	
quality	data,	and	are	limited	to	same-class	pixels	(i.e.,	candidate	fire	pixels	over	land	
(water)	use	land	(water)	background	pixels	only).	Candidate	fire	pixels	lacking	
proper	background	characterization	are	assigned	the	“unclassified”	class.	Daytime	
candidate	fire	pixels	having	≥4	background	fire	pixels	in	the	sampling	window,	or	
having	background	fire	pixels	in	excess	of	10%	of	the	valid	background	pixels	must	
go	through	the	following	test:	
	
ρ2	>	0.15	AND	BT’4B	<	345	K	AND	δ’4B	<	3	K	AND	BT4	<	BT’4B	+6×δ’4B		
	
Where	BT’4B	and	δ’4B	are	the	mean	brightness	temperature	and	mean	absolute	
deviation,	respectively,	calculated	using	the	potential	background	fire	pixels.	
Candidate	fire	pixels	that	satisfy	the	criteria	above	are	excluded	from	further	
processing	and	assigned	a	fire-free	(water	or	land)	pixel	class.	The	tests	below	
describe	the	subsequent	daytime	and	nighttime	data	processing	criteria	applied	to	
the	remaining	candidate	fire	pixels:		
	
Daytime:	
ΔBT45	>	ΔBT45B	+2×δ45B	
AND	
ΔBT45	>	ΔBT45B	+10	K	
AND	
BT4	>	BT4B	+3.5×δ4B	
AND	
BT5	>	BT5B	+δ5B	–	4	K	OR	δ’4B	>	5	K	
	
Nighttime:	
ΔBT45	>	ΔBT45B	+3×δ45B	
AND	
ΔBT45	>	ΔBT45B	+9	K	
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AND		
BT4	>	BT4B	+3×δ4B	
	
Where	ΔBT45B	and	BTiB	denote	the	mean	channel	I4-I5	brightness	temperature	
difference	and	the	mean	brightness	temperature	on	channel	i,	respectively,	
calculated	using	the	valid	background	pixels;	δ45B	and	δ4B	are	the	mean	absolute	
deviation	calculated	for	channel	I4-I5	brightness	temperature	difference	and	
channel	I4,	respectively,	also	using	the	valid	background	pixel	data.	Candidate	fire	
pixels	meeting	the	criteria	above	are	assigned	a	‘nominal’	confidence	fire	pixel	class.	
	

2.3.7. SECONDARY	TESTS	
Two	additional	tests	are	applied	to	the	data	in	order	to	(i)	identify	residual	fire	
pixels	not	detected	with	the	criteria	above,	and	(ii)	mark	down	potential	low	
confidence	fire	pixels.		
	 The	first	test	targets	less	common	pixel	saturation	and	folding	scenarios	
using	the	following	criteria:	
	
BT5	≥	325	K	OR	BT4	=	355	K	OR	ΔBT45	<	0	K	
	
	 Pixels	that	meet	such	criteria	and	have	one	or	more	adjacent	fire	pixels	of	
‘nominal’	or	‘high’	confidence	(among	the	eight	immediate	neighbors)	are	assigned	a	
‘low’	confidence	fire	class.	
	
	 The	second	test	targets	residual	false	alarms	occurring	along	Sun	glint	areas.	
The	following	test	is	applied	to	all	‘nominal	confidence’	fire	pixels:	
	
ΔBT45	≤	30	K	OR	θg	<	15o	
	
	 Pixels	meeting	the	above	criteria	will	be	assigned	a	‘low	confidence’	fire	pixel	
class	if	one	of	the	following	conditions	apply:	

(i) two	or	more	adjacent	‘Sun	glint’	pixels	are	found	
(ii) no	adjacent	‘high	confidence’	pixels	are	found	and	BT4	is	less	than	15	K	

higher	than	adjacent	pixels	
	

2.3.8. NIGHTTIME	SOUTH	ATLANTIC	MAGNETIC	ANOMALY	FILTER	
Noise	associated	with	the	South	Atlantic	magnetic	anomaly	is	particularly	
pronounced	in	the	mid-infrared	channel	I4	data	driving	the	detection	of	fires	and	
thermal	anomalies.	The	noise	condition	is	found	predominantly	at	night,	with	only	
few	and	sparse	occurrences	during	the	day.	Given	the	random	nature	and	
radiometric	signal	characteristics	of	the	resulting	channel	I4	noise,	which	often	
mimic	those	of	actual	fires,	several	spurious	fire	pixels	are	normally	produced	over	
the	affected	region	(Figure	2).	Data	artifacts	are	often	linked	to	single,	stand-alone	
pixels	showing	abnormally	high	brightness	temperature	on	channel	I4.	In	order	to	
address	the	problem,	the	algorithm	uses	co-located	un-aggregated	M13	brightness	
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temperature	data	to	independently	verify	nighttime	fire	pixels.	Despite	their	similar	
spectral	characteristics,	channel	M13	shows	significantly	lower	rates	of	data	
contamination	compared	to	channel	I4.	In	addition	to	that,	channel	I4	and	M13	
occurrences	are	found	to	be	predominantly	independent	from	each	other.		
	 The	filter	first	creates	a	modified	aggregated	M13	data	array	by	replacing	the	
mean	value	aggregation	scheme	with	a	maximum	value	method.	This	approach	
minimizes	fire	signal	loss	as	a	result	of	the	normal	aggregation	scheme.	The	
suspicious	375	m	fire	pixel	is	subsequently	co-located	to	the	modified	M13	data	
array,	after	which	the	coincident	M13	aggregated	pixel	is	selected	for	further	
analysis.	In	order	to	be	confirmed	as	a	‘nominal’	or	‘high’	confidence	fire	pixel,	the	
coincident	M13	pixel	brightness	temperature	must	be	≥	2	K	than	all	of	the	adjacent	
M13	pixels.	Pixels	that	failed	that	test	are	downgraded	to	a	fire-free	(‘water’	or	
‘land’)	class	and	marked	with	a	unique	quality	flag	(see	Table	3).	
	 	
	

	
Figure	2:	Spurious	VIIRS	375	m	fire	detections	associated	with	the	South	Atlantic	magnetic	anomaly	
during	01-30	August	2013	(adapted	from	Schroeder	et	al.	[2014]).	
	

2.3.9. PERSISTENCE	TEST	
Some	residual	noise	in	the	input	data	may	propagate	through	the	algorithm	leading	
to	few	and	isolated	spurious	detections	most	easily	found	over	ocean	waters.	Such	
cases	are	typically	associated	with	random	sensor	noise	or	with	infrequent	
manifestation	of	South	Atlantic	magnetic	anomaly	on	daytime	data.	In	order	to	
improve	handling	of	those	cases,	the	algorithm	includes	a	persistence	test	applied	to	
fire	pixels	detected	over	water.	Based	on	that	test,	‘low’,	‘nominal’	and	‘high’	
confidence	fire	pixels	detected	over	water	must	show	distinguishable	heat	signature	
on	channel	M13.	The	test	uses	the	same	approach	and	modified	M13	aggregated	
data	array	described	in	Section	2.3.8,	requiring	a	slightly	higher	brightness	
temperature	difference	of	2.5	K	between	the	target	M13	pixel	and	the	adjacent	ones.	
Pixels	failing	that	initial	test	must	show	temporal	persistence	consisting	of	a	
minimum	of	3	co-located	detections	in	the	previous	30	days	in	order	to	be	
confirmed.	Pixels	lacking	M13	channel	heat	signature	or	persistence	indication	are	
downgraded	to	fire-free	(‘water’	or	‘land’)	pixels	and	marked	up	with	unique	quality	
flags	(bits	19-21	on	Table	3).	
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2.3.10. FIRE	RADIATIVE	POWER	RETRIEVAL	
Because	of	the	frequent	fire	pixel	saturation	in	the	mid-infrared	I4	channel,	fire	
radiative	power	retrievals	are	calculated	using	co-located	M13	channel	data.	The	
approach	utilizes	375	m	data	to	identify	fire	pixels	and	to	assist	in	the	selection	of	
valid	background	pixels.	Co-located	M13	aggregated	radiances	coinciding	with	the	
fire-affected	and	background	pixels	are	used	in	the	FRP	retrieval	following	Wooster	
et	al.	[2003],	which	is	represented	by	(assuming	unit	atmospheric	transmittance	
and	surface	emissivity):	
	

!"# = !" !!" − !!"!
! 	

	
Where	A	is	the	pixel	area	which	varies	as	a	function	of	scan	angle,	σ	is	the	Stefan-
Boltzmann	constant	(5.67×10-8	Wm-2K-4),	a	is	a	channel-specific	constant	(VIIRS	
M13	=	2.88×10-9	Wm-2sr-1µm-1K-4),	and	L13	and	L13B	are	the	M13	channel	fire	pixel	
and	mean	background	radiances,	respectively.	Despite	being	extremely	rare,	M13	
pixel	saturation	may	occur	over	very	large	and	intense	active	fires.	Normally,	that	
condition	will	trigger	the	appropriate	quality	flag	for	the	affected	pixel	in	the	input	
data,	which	may	carry	a	fill	(non-usable)	radiance	value.	In	that	event,	the	fire	pixel	
may	still	be	detected	(granted	that	the	algorithm	is	able	to	resolve	it	using	the	
available	data)	whereas	the	FRP	retrieval	will	be	set	to	zero.	Other	situations	
involving	challenging	FRP	retrieval	(e.g.,	insufficient	background	data)	may	also	
result	in	fire	pixels	accompanied	by	null	FRP	values.	We	note	that	such	cases	are	
rather	infrequent.	A	single	pixel	750	m	FRP	retrieval	is	divided	among	the	number	
of	coincident	375	m	fire	pixels,	with	each	sub-pixel	receiving	the	same	resulting	
value	in	MW	(Figure	3).	
	

	
Figure	3	FRP	calculation	using	a	combination	of	VIIRS	375	m	and	750	m	data.	The	former	is	used	to	
identify	fire-affected	(solid	and	dashed	red),	cloud	(solid	blue),	water	pixels	(dashed	blue),	and	valid	
background	pixels	(gray;	in	this	case	representing	fire-free	land	surface).	Co-located	M13	channel	
radiance	data	(750	m;	black	dashed	outline)	coinciding	with	fire	pixel	(red	shade)	and	valid	
background	pixels	(gray-only)	are	used	in	the	FRP	calculation.	In	scenario	1,	the	single	750	m	
retrieval	(center	pixel;	FRP)	is	assigned	to	the	single	coincident	375	m	fire	pixel	(solid	red;	FRPi,	
where	i	is	the	375	m	fire-affected	sub-pixel	index).	In	scenario	2,	the	single	750	m	FRP	retrieval	is	
split	between	the	two	coincident	375	m	fire-affected	sub-pixels,	so	that	FRPi	=	FRP÷2.	
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3. PRODUCT	DESCRIPTION	
The	VIIRS	land	product	suite	is	composed	of	Level	2	(swath	projection),	Level	3	
(tiled,	with	some	multi-temporal	data),	and	Level	4	(gridded	data	meeting	climate	
modeling	community	requirements)	data	sets.	Currently,	the	active	fire	data	set	is	
restricted	to	Level	2	processing	carrying	similar	characteristics	as	the	input	L1B	
data	ingested	by	the	algorithm.	The	data	are	stored	in	swath	projection	with	
individual	granules	comprising	an	orbit	segment	of	approximately	6	min.	VIIRS	
Level	3	&	4	fire	data	products	should	become	available	in	the	near	future.	

3.1. LEVEL	2	ACTIVE	FIRE	DATA		
3.1.1. FILE	FORMAT	

VIIRS	active	fire	data	are	output	in	NetCDF4.2	file	format.	Level	2	files	also	share	
several	of	the	L1B	global	attributes	(including	nomenclature);	files	can	be	
manipulated	using	standard	NetCDF-enabled	software.	Filename	convention	is	as	
follows:	
	
VNP14IMG.AYYYYDDD.HHMM.VVV.yyyydddhhmmss.nc	
Where:	
VNP14IMG	=	VIIRS	375	m	active	fire	product	identifier	
YYYY	=	year	of	data	acquisition	
DDD	=	Julian	day	of	data	acquisition	
HHMM	=	hour	and	minute	of	data	acquisition	
yyyydddhhmmss	=	data	processing	time	(year,	Julian	day,	hour,	minute,	second)	
	

3.1.2. DATA	CONTENT		
The	VIIRS	active	fire	algorithm	output	contains	25	primary	science	data	sets,	in	
addition	to	the	algorithm’s	quality	flag	(see	Section	3.2).	The	individual	science	data	
sets	(SDSs)	are	named	as	follows:	
	
‘fire	mask’		 =	image	classification	array	(2D)	
‘FP_line’		 =	granule	line	of	fire	pixel	
‘FP_sample’		 =	granule	sample	of	fire	pixel	
‘FP_latitude’		 =	latitude	of	fire	pixel	(degrees)	
‘FP_longitude’=	longitude	of	fire	pixel	(degrees)	
‘FP_T4’		 =	channel	I4	brightness	temperature	of	fire	pixel	(kelvin)	
‘FP_T5’		 =	channel	I5	brightness	temperature	of	fire	pixel	(kelvin)	
‘FP_MeanT4’		 =	channel	I4	mean	background	brightness	temperature	(kelvin)	
‘FP_MeanT5’		 =	channel	I5	mean	background	brightness	temperature	(kelvin)	
‘FP_MeanDT’		 =	mean	background	I4-I5	brightness	temperature	difference	(kelvin)	
‘FP_MAD_T4’		 =	background	channel	I4	brightness	temperature	mean	absolute		
	 	 deviation	(kelvin)	
‘FP_MAD_T5’		 =	background	channel	I5	brightness	temperature	mean	absolute		
	 	 deviation	(kelvin)	
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‘FP_MAD_DT’		=	background	I4-I5	brightness	temperature	difference	mean	absolute		
	 	 deviation	(kelvin)	
‘FP_power’		 =	fire	radiative	power	(MW)	
‘FP_M13’	 =	channel	M13	radiance	of	fire	pixel	(W.m-2.sr-1.µm-1)	
‘FP_MeanM13’=	channel	M13	mean	background	radiance	(W.m-2.sr-1.µm-1)	
‘FP_AdjCloud’	=	number	of	adjacent	cloud	pixels		
‘FP_AdjWater’=	number	of	adjacent	water	pixels		
‘FP_WinSize’		 =	number	of	adjacent	water	pixels		
‘FP_confidence’=	detection	confidence	(7=low,	8=nominal,	9=high)	
‘FP_day’	 =	day	flag	for	fire	pixel	(0=night,	1=day)	
‘FP_SolZenAng’=	solar	zenith	angle	of	fire	pixel	(degrees)	
‘FP_SolAzAng’=	solar	azimuth	angle	of	fire	pixel	(degrees)	
‘FP_ViewZenAng’=	view	zenith	angle	of	fire	pixel	(degrees)	
‘FP_ViewAzAng’	=	view	azimuth	angle	of	fire	pixel	(degrees)	
	
	 	The	‘fire	mask’	SDS	consists	of	an	8-bit	integer	two-dimensional	array	with	
the	same	number	of	elements	as	the	input	L1B	data	array	(Figure	4).	Fire	masks	
generated	from	the	standard	6-minute	files	have	6,400	samples	(constant)	and	202	
<>	203	scans	totaling	6,464	<>	6,496	rows	(variable	number	of	scans	per	granule	is	
designed	to	accommodate	≈6	minute	data	segments).	Distinct	pixel	classes	are	used	
for	land,	water,	cloud	and	fire	pixels,	plus	additional	classes	indicating	non-
processed	pixels	and	pixels	with	undefined	classification	(‘unclassified’)	(Table	2).	
The	latter	describes	those	cases	when	background	statistics	cannot	be	retrieved	
preventing	proper	pixel	classification.	Fire	pixel	confidence	classes	(‘low’,	‘nominal’	
and	‘high’)	are	representative	of	the	observation	conditions	associated	with	each	
detection	(see	Section	2).	The	additional	data	sets	output	by	the	algorithm	consist	of	
individual	sparse	arrays	containing	image	line,	column,	longitude,	latitude,	FRP,	
detection	confidence,	among	other	parameters	for	all	fire	pixels	detected.	
	
	

	
Figure	4:	S-NPP/VIIRS	375	m	active	fire	detection	classification	product	(mask)	derived	for	a	
granule	acquired	on	22	November	2015	at	1035UTC	over	parts	of	northern	Madagascar	and	
southeast	Africa	(left).	Right	panel	shows	magnified	subset	containing	land	(green),	water	(blue),	
clouds	(white)	and	fire	(red)	pixels.	Glint	(cyan)	and	bowtie	deletion	(black)	pixels	are	also	visible	in	
the	large	image.	
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Table	2:	VIIRS	375	m	‘fire	mask’	data	set	classes.	
Pixel	Class	 Definition	
0	 Not	processed	
1	 Bowtie	deletion	
2	 Sun	glint	
3	 Water	
4	 Clouds	
5	 Land	
6	 Unclassified	
7	 Low	confidence	fire	pixel	
8	 Nominal	confidence	fire	pixel	
9	 High	confidence	fire	pixel	

	

3.2. 	QA/METADATA	
A	two-dimensional	array	complements	the	fire	mask	output	providing	quality	
assurance	(QA)	information	for	every	pixel	processed.	The	QA	data	are	stored	in	32-
bit	unsigned	integer	format	populated	with	several	fields	that	together	can	be	used	
to	reconstruct	some	of	the	key	observation	conditions	pertinent	to	each	pixel	
analyzed.	Bits	0-6	describe	the	overall	(nominal/non-nominal)	quality	of	all	input	
files	used,	followed	by	bits	7-18	describing	primary	and	secondary	fire	detection	
tests.		Bits	19-22	are	used	to	mark	pixels	associated	with	detection	over	water	
(persistence	test)	and/or	bowtie	conditions,	whereas	bit	23-31	are	reserved	for	
future	use.	
	
Table	3:	VIIRS	375	m	fire	detection	‘algorithm	QA’	data	set	bits	and	definition.		

Bit	 Description	
0	 Channel	I1	quality	(0	=	nominal	(or	nighttime),	1	=	non-nominal)	
1	 Channel	I2	quality	(0	=	nominal	(or	nighttime),	1	=	non-nominal)	
2	 Channel	I3	quality	(0	=	nominal	(or	nighttime),	1	=	non-nominal)	
3	 Channel	I4	quality	(0	=	nominal,	1	=	non-nominal)	
4	 Channel	I5	quality	(0	=	nominal,	1	=	non-nominal)	
5	 Geolocation	data	quality	(0	=	nominal,	1	=	non-nominal)	
6	 Channel	M13	quality	(0	=	nominal,	1	=	non-nominal)	
7	 Unambiguous	fire	(0	=	false,	1	=	true	[night	only])	
8	 Background	pixel	(0	=	false,	1	=	true)	

BT4	>	335	K	AND	ΔBT45	>	30	K	OR	saturation/folding	(day)	
BT4	>	300	K	AND	ΔBT45	>	10	K	OR	saturation/folding	(night)	

9	 Bright	pixel	rejection	(0	=	false,	1	=	true)	
ρ3	>	30%	AND	ρ3	>	ρ2	AND	ρ2	>	25%	AND	BT4	≤	335K	

10	 Candidate	pixel	(0	=	false,	1	=	true)	
BT4	>	325	K	AND	ΔBT45	>	25	K	(daytime)	
BT4	>	295	K	AND	ΔBT45	>	10	K	(nighttime)	

11	 Scene	background	(0	=	false,	1	=	true)	
BT4	>	MIN([330,	BT4M])	(day)	

12	 Test	1	(0	=	false,	1	=	true)	
ΔBT45	>	ΔBT45B	+2×δ45B	(day)	
ΔBT45	>	ΔBT45B	+3×δ45B	(night)	

13	 Test	2	(0	=	false,	1	=	true)	
ΔBT45	>	ΔBT45B	+10	K	(day)	
ΔBT45	>	ΔBT45B	+9	K	(night)	
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14	 Test	3	(0	=	false,	1	=	true)	
BT4	>	BT4B	+3.5×δ4B	(day)	
BT4	>	BT4B	+3×δ4B	(night)	

15	 Test	4	(0	=	false,	1	=	true)	(day)	
BT5	>	BT5B	+δ5B	–	4	K	OR	δ’4B	>	5	K	

16	 Pixel	saturation	condition	(0	=	false,	1	=	true)	(day)	
BT5	≥	325	K	OR	BT4	=	367	K	OR	ΔBT45	<	0	

17	 Glint	condition	(0	=	false,	1	=	true)	(day)	
ΔBT45	≤	30	K	OR	Glint	(θg)	<	15o		

18	 Potential	South	Atlantic	magnetic	anomaly	pixel	(0	=	false,	1	=	true)	
19	 Fire	pixel	over	water	(0	=	false,	1	=	true)	
20	 Persistence	test	(0	=	false,	1	=	true)	

BT13-MAX[BT13B]	<	2.5	K	
21	 Persistence	test	(0	=	false,	1	=	true)	

Number	of	previous	co-located	detections	<	3	
22	 Residual	bowtie	pixel	(0	=	false,	1	=	true)	
23-31	 Reserved	for	future	use	

4. PRODUCT	ASSESSMENT	
4.1. 	THEORETICAL	FIRE	DETECTION	CURVES	

A	theoretical	fire	detection	envelope	was	calculated	by	simulating	different	fire	
scenarios	applied	to	actual	VIIRS	375	m	global	imagery.	Fires	were	simulated	
assuming	areas	ranging	from	2	to	250	m2,	and	temperatures	ranging	from	400	to	
1200	K.	Fire	radiances	were	derived	at	2	m2	and	10	K	intervals	for	both	I4	and	I5	
channels	using	the	instrument's	spectral	response	functions,	and	assuming	
blackbody	emission.	A	total	of	10	daytime	and	10	nighttime	VIIRS	L1B	granules	
acquired	during	August	2013	were	randomly	selected	covering	different	geographic	
areas,	including	low	and	high	latitude	regions,	with	variable	levels	of	fire	activity.	
For	every	image,	10	pixels	were	selected	along	nadir	and	apart	from	each	other,	and	
when	possible,	near	areas	of	fire	activity	in	order	to	best	represent	regional	fire-
prone	conditions.	Simulated	fire	radiances	and	actual	background	radiances	were	
area-weighted	to	provide	realistic	BT4	and	BT5	pixel	values	representative	of	actual	
observation	conditions.	The	active	fire	detection	algorithm	was	then	applied	to	the	
data	containing	simulated	active	fire	pixel	surrounded	by	genuinely	observed	
background	pixels.	Figure	5	shows	the	50%	probability	of	detection	curves	derived	
for	the	algorithm	using	the	global	daytime	and	nighttime	data	sample.	Improved	
nighttime	performance	resulted	from	the	more	homogeneous	background	
conditions,	which	tends	to	enhance	the	algorithm's	response	to	relatively	small	heat	
sources.	
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Figure	5:	Theoretical	50%	probability	of	fire	detection	curves	derived	for	the	VIIRS	algorithm	as	a	
function	of	fire	area	and	temperature	using	daytime	and	nighttime	data	(adapted	from	Schroeder	et	
al.	[2014]).		
	

4.2. 	VALIDATION	APPROACH	
The	validation	approach	adopted	for	the	VIIRS	active	fire	data	builds	on	the	heritage	
EOS/MODIS	methodology,	which	consisted	on	the	use	of	coincident	reference	fire	
data	derived	from	higher	spatial	resolution	sensors	[Morisette	et	al.,	2005;	
Schroeder	et	al.,	2008].	However,	the	early	afternoon	orbit	described	by	VIIRS	is	a	
major	impediment	limiting	the	use	of	available	Landsat-class	sensors	(typically	on	
≈10am	orbits)	due	to	prohibitively	large	temporal	separation	between	same-day	
data	acquisitions	[Csiszar	and	Schroeder,	2008].	As	an	alternative,	reference	data	
sets	derived	from	airborne	mapping	instruments	are	used,	complemented	by	field	
campaigns	and	other	qualitative	information	originated	from	fire	activity	reports.	
Additionally,	expert	image	analysts	provide	valuable	input	for	the	calculation	of	
commission	error	rates	associated	with	the	occurrence	of	fire	detection	pixels	in	
urban	areas	using	available	high-resolution	visible	imagery	(e.g.,	Google	Earth).	
	

4.3. VALIDATION	RESULTS	
Data	verification	and	validation	was	performed	for	selected	sites	across	the	globe,	
including	dedicated	field	campaigns	exploring	small-to-medium	size	(<500	ha)	
prescribed	fires	(see	for	example:	Dickinson	et	al.	[2015]).		Use	of	near-coincident	
airborne	reference	fire	data	shows	good	overall	correspondence	with	VIIRS	daytime	
and	nighttime	fire	data	generated	for	medium-to-large	size	wildfires	as	depicted	in	
Figure	6.		
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Figure	6:	Airborne	reference	fire	data	(USDA/National	Infrared	Operations	[NIROPs])	overlaid	on	
near-coincident	VIIRS	daytime	(left)	and	nighttime	(right)	375	m	fire	detection	data	acquired	on	06	
and	07	August	2013,	respectively.	Outline	of	VIIRS	750	m	baseline	fire	detection	product	is	shown	for	
reference	(adapted	from	Schroeder	et	al.	[2014]).	
	
	 The	occurrence	of	fire	detection	over	urban	areas	(potential	commission	
errors)	was	assessed	by	Schroeder	et	al.	[2014]	and	was	lower	than	1.2%	for	
nominal/high	confidence	pixels	for	all	sites	analyzed.	Low	confidence	pixels	
responded	for	approximately	10%	of	all	global	fire	pixels	produced	and	showed	
higher	occurrence	of	urban	detections,	peaking	at	40%	over	eastern	China	where	
numerous	industrial	parks	are	found.	
	 Comparison	analyses	of	FRP	retrievals	derived	using	the	approach	above	and	
those	obtained	from	the	VIIRS	750	m	fire	product	(after	reconciliation	of	the	two	
data	sets)	shows	good	agreement	(R2=0.99)	albeit	with	slightly	(≈1%)	lower	values	
calculated	for	the	latter.	This	difference	is	attributed	to	improved	sampling	of	the	
background,	which	often	results	in	cleaner	data	and	higher	FRP	estimates.	Given	the	
spectral	resolution	of	the	M13	channel,	in	particular	concerning	the	partial	overlap	
with	a	CO2	absorption	band	in	the	4	µm	region,	atmospheric	attenuation	effects	may	
double	compared,	for	example,	to	the	corresponding	MODIS	mid-infrared	data	
(channels	21/22)	used	in	the	MOD14/MYD14	products	(Figure	7).	While	this	
characteristic	could	lead	to	systematic	underestimation	of	VIIRS	FRP	values	
compared	to	coincident	MODIS	data,	other	factors	such	as	pixel	size/geometry,	data	
aggregation	and	point	spread	function	combine	to	create	variable	effects	on	FRP	
retrievals	and	the	resulting	correlation	among	products	(Figure	8).	Detailed	
assessment	of	FRP	retrievals	is	currently	limited	to	field	validation	campaigns	that	
are	few	and	sparse.	Data	verification	and	validation	analyses	shall	expand	as	new	
reference	data	become	available.	
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Figure	7:	Spectral	response	functions	for	VIIRS	I4	and	M13,	and	MODIS	B21/22	mid-infrared	
channels,	and	the	corresponding	atmospheric	transmittance	calculated	using	MODTRAN	assuming	
U.S.	standard	atmospheric	conditions	(top	panel).	Bottom	panel	shows	the	corresponding	net	
atmospheric	transmittance	as	a	function	of	the	applicable	VIIRS	and	MODIS	sensor	zenith	angles.	

	
Figure	8:	VIIRS	M13	radiance-based	FRP	retrievals	plotted	against	near-coincident	Aqua/MODIS	
FRP	(MYD14).	Left	panel	shows	top-of-atmosphere	(TOA)	data;	right	panel	shows	same	data	after	
atmospheric	correction	using	MODTRAN®	and	MERRA	0.5o	global	analysis	data.	

0.0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1.0	

0.0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1.0	

3.45	 3.55	 3.65	 3.75	 3.85	 3.95	 4.05	 4.15	 4.25	

Sp
ec
tr
al
	R
es
po

ns
e	

At
m
	T
ra
ns
m
i=
an
ce
	

Wavelength	(um)	

Atm	Transmi=ance	

VIIRS	(I4)	

VIIRS	(M13)	

MODIS	(B21)	



	

	 20	

5. USER	GUIDANCE	
VIIRS	fire	data	users	are	encouraged	to	consult	the	data	users	guide	for	additional	
information	on	data	accessibility	and	handling,	and	frequently	asked	questions.	
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