Dr. Kerry O Britton National Program Leader for **Forest Pathology** Research and Development **USDA** Forest Service Arlington, VA

NCEAS Project 12378 Applying population ecology to strategies for eradicating invasive forest insects

Berec, Ludek
Blackwood, Julie
Epanchin-Niell, Rebecca
Haight, Robert
Hastings, Alan
Herms, Dan
Kean, John
Lee, Danny
Liebhold, Andrew
McCullough, Deborah
Suckling, Max
Tobin, Patrick
Yamanaka, Takehiko

Institute of Entomology
University of Michigan
Resrources for the Future
USDA Forest Service
Univ. of California, Davis
Ohio State University
AgResearch
US Forest Service
US Forest Service
Michigan State University

Michigan State University

New Zealand Int. Plant and Food Res.

US Forest Service

Japanese Inst. Agricl. Environ. Sci.

Bioeconomics of Detection / Eradication

Becky Epanchin-Niell, Resources for the Future

Natural Resource Economics: Optimizing effort & funds

Detection (trapping)

Goal: to find newly founded populations

Eradication (i.e., spraying)

Goal: to force a population into extinction

Invasion process:

- Colonies arrive and establish randomly
- Colony area grows

Probability of detecting a colony depends on:

- Size of colony a
- Density of traps T
- Trap sensitivity/effectiveness E

Bioeconomic model

- Probabilistic size (age) class model $s \in (1,2,...S_{max})$
 - Establishment rate
 - Detection effort
- Determine optimal equilibrium trap density

<u>Case study</u>: Gypsy moth (*Lymantria* dispar) eradication in California

State and County Specific Parameterization

Parameter		California C	ounties
same	Colony growth (kr	m^2 / year ²), g	Z
age	20	same	Maximum colony
	\$50,000,000	same	Penalty cost
effectiveness	1	same	Trap sensitivity/
n ($\frac{m^2}{c_e}$	5,000	same	Cost of eradicatio
, A	414,633	7,149 (s.d.=8,187)	Forest area (km²)
(trank c,	47 78	43 <u>15</u> (s d= 68.74)	Cost of search (\$1
shment rate (col/10,000km 2 /yr), b	0.021	0.142 (s.d=0.65)	7) Colony establis

Expected Management Costs - California -

Variation in trapping cost and establishment rate among counties

Optimize trap density across entire state

- Uniform trap density across state
- Allow varying trap densities by county

Budget constraints on trapping

Summary

- Bioeconomic modeling can help inform improved surveillance and eradication
- Specific findings:
 - Allowing for variable trap densities that accommodate heterogeneity in trapping costs and establishment rates increases efficiency
 - Budget constraint on detection increases overall costs
 - Too few traps is worse than too many traps

READ ALL ABOUT IT:

Rebecca Epanchin-Neill, Robert Haight, Ludek Berec, John Kean, & Andrew Liebhold 2012.

Optimal surveillance and eradication of invasive species in heterogeneous landscapes

Ecology Letters 15: 803-812

More good stuff to come from Becky and Sandy!!!