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Abstract. Biomass burning (BB) is the second largest source
of trace gases and the largest source of primary fine carbona-
ceous particles in the global troposphere. Many recent BB
studies have provided new emission factor (EF) measure-
ments. This is especially true for non-methane organic com-
pounds (NMOC), which influence secondary organic aerosol
(SOA) and ozone formation. New EF should improve re-
gional to global BB emissions estimates and therefore, the
input for atmospheric models. In this work we present an
up-to-date, comprehensive tabulation of EF for known pyro-
genic species based on measurements made in smoke that has
cooled to ambient temperature, but not yet undergone signif-
icant photochemical processing. All EFs are converted to
one standard form (g compound emitted per kg dry biomass
burned) using the carbon mass balance method and they are
categorized into 14 fuel or vegetation types. Biomass burn-
ing terminology is defined to promote consistency. We com-
pile a large number of measurements of biomass consump-
tion per unit area for important fire types and summarize
several recent estimates of global biomass consumption by
the major types of biomass burning. Post emission pro-
cesses are discussed to provide a context for the emission
factor concept within overall atmospheric chemistry and also
highlight the potential for rapid changes relative to the scale
of some models or remote sensing products. Recent work
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shows that individual biomass fires emit significantly more
gas-phase NMOC than previously thought and that including
additional NMOC can improve photochemical model perfor-
mance. A detailed global estimate suggests that BB emits
at least 400 Tg yr−1 of gas-phase NMOC, which is almost 3
times larger than most previous estimates. Selected recent re-
sults (e.g. measurements of HONO and the BB tracers HCN
and CH3CN) are highlighted and key areas requiring future
research are briefly discussed.

1 Introduction

Biomass burning (BB) can be broadly defined as open or
quasi-open combustion of any non-fossilized vegetative or
organic fuel. Examples range from open fires in forests, sa-
vannas, crop residues, semi-fossilized peatlands, etc. to bio-
fuel burning (e.g. cooking fires, dung burning, charcoal or
brick making, etc.). Savanna fires, domestic and industrial
biofuel use, tropical forest fires, extratropical (mostly bo-
real) forest fires, and crop residue burning are thought to ac-
count for the most global biomass consumption (in the order
given). Overall, BB is the largest source of primary fine car-
bonaceous particles and the second largest source of trace
gases in the global atmosphere (Bond et al., 2004; Andreae
and Merlet, 2001; Forster et al., 2007; Guenther et al., 2006).
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Particles emitted and formed in BB plumes have major
direct and indirect effects on climate (Hobbs et al., 1997;
Rosenfeld, 1999) and contribute to dense continental-scale
haze layers that occupy much of the tropical boundary layer
(and sometimes large parts of the boreal boundary layer) dur-
ing the dry season (Andreae et al., 1988; Reid et al., 1998;
Wofsy et al., 1992; Eck et al., 2003). A multipart review
by Reid et al. (2005a, b) focused on the physical and op-
tical properties of biomass burning particles and their im-
pacts. These topics have been the subject of much ongo-
ing research (e.g. Andreae et al., 2004; Ramanathan and
Carmichael, 2008; Grieshop et al., 2009).

The trace gases emitted by biomass burning have a signif-
icant influence on the atmosphere, which includes a major
contribution to the formation of global tropospheric ozone
(O3), an important greenhouse gas (Sudo and Akimoto,
2007). The O3 formed can also affect air quality: e.g. Pfister
et al. (2007) show that BB emissions from California wild-
fires in 2007 increased downwind ozone concentrations in
rural regions. Trace gases from BB can contribute to the
secondary formation of aerosol particles (Reid et al., 1998;
Alvarado and Prinn, 2009; Yokelson et al., 2009). The effect
of BB trace gases on the oxidizing power of the troposphere
is an important, complex issue. The hydroxyl radical (OH)
is a key oxidant in the global troposphere and is mostly pro-
duced in the tropics, which is also where∼70–80% of BB is
thought to occur (Crutzen and Andreae, 1990; van der Werf
et al., 2010). The carbon monoxide (CO) and NMOC pro-
duced by BB are continually removed via reaction with OH
while photolysis of some of the oxygenated NMOC and the
O3 formed in BB plumes can be an OH source (Crutzen and
Andreae, 1990; Singh et al., 1995). Coupled with this picture
are large tropical biogenic emissions of isoprene, which has
a complex oxidation scheme that is still under investigation,
but results in some OH regeneration and significant CO pro-
duction (Lelieveld et al., 2008; Paulot et al., 2009; Archibald
et al., 2010; Peeters et al., 2009)

Among the earliest studies to point out the importance of
biomass burning on the global scale are the seminal work of
Crutzen et al. (1979) and Seiler and Crutzen (1980). Ma-
jor field campaigns in the 1980’s and 1990’s resulted in
a boom in BB related publications. These are well sum-
marized in a number of review and compilation papers,
such as Haywood and Boucher (2000), Andreae and Mer-
let (2001), Simoneit (2002), Lemieux et al. (2004), and Reid
et al. (2005a, b). The work of Andreae and Merlet (2001),
in particular, continues to have widespread use in the atmo-
spheric modeling community. For example, the emission
factors (EF or EFs, the grams of a compound emitted per
kg of dry biomass burned) reported therein can be combined
with databases that provide estimates of global biomass con-
sumption such as Global Fire Emissions Database (GFED,
van der Werf et al., 2006, 2010) and Fire Locating and Mod-
eling of Burning Emissions (FLAMBE, Reid et al., 2009),
to produce emission estimates for atmospheric models. De-

spite the continued utility of previous reviews, a large num-
ber of studies have been carried out since∼2000 that benefit-
ted from advances in instrumentation and the understanding
of BB plume chemistry. The results of these studies have
not been conveniently compiled in one work. Thus, to aid in
the assessment of biomass burning impacts in model simula-
tions, we present an updated compilation with the following
rationale:

1. In recent years, the ability has been developed to quan-
tify a wide range of emitted species that were previously
unmeasured and thus, often ignored in modeling appli-
cations.

2. The effect of rapid plume chemistry on measured emis-
sion ratios is better understood. This has led to recogni-
tion of the need to compare or combine data from smoke
samples of a similar well-defined age in a standardized
way. Our compilation of “initial” EF is based on mea-
surements made in smoke that has cooled to ambient
temperature, but not yet undergone significant photo-
chemical processing.

3. Many of the studies compiled in this work sampled
smoke meeting the “freshness” criteria aboveandmea-
sured a wide range of species from a large number
of fires. Studies that are more comprehensive and of
fresher smoke may better represent the true regional ini-
tial emissions. These EF measurements need to be com-
piled for convenient use in atmospheric models to pro-
mote improved modeling results and assessments.

4. With computational capacity increasing and to promote
a wide variety of applications, the link between the fire
emissions and the fire type needs to be available at a
high level of detail, but still allow straightforward im-
plementation of less detailed schemes. The difference
between fire types is small for the EF of some species,
but can be quite large for others.

5. Methods need to be developed for dealing with
the abundant, but as yet unidentified NMOC, which
strongly impact plume chemistry.

6. The calculation of emission rates requires emission fac-
tors to be linked to estimates of biomass consumption.
Thus we also compile a large number of measurements
of biomass consumption per unit burned area for major
fire types and several estimates of global biomass con-
sumption by the main fire types.

7. The emission factor tables will be updated when war-
ranted and available at:http://bai.acd.ucar.edu/Data/
fire/.

In this paper we assess the literature on BB emission fac-
tors to address the above issues. We organized the available
data into 14 different categories based on the type of fuel
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burned and then analyzed each study considering the differ-
ent properties of the sampled fires (e.g. amount of flaming
and smoldering), the attributes of the measuring platforms,
instrument sensitivity, and the number of fires sampled. We
carefully selected measurements in smoke roughly 5–20 min
old, after immediate condensational processes on smoke par-
ticles yet prior to most of the photochemistry that can alter
the composition of a plume. The age of the smoke sam-
ple is important, since current photochemical plume mod-
els and larger-scale global atmospheric chemistry models
(GACMs) use the emissions as direct inputs before chemi-
cal changes occur. Despite the difficulty of modeling rapid
changes occurring after emission, initial emission measure-
ments obtained in fresh smoke, as described above, may pro-
vide the only clearly defined point in smoke evolution for a
bottom-up approach. We also briefly discuss measurements
in aged smoke separately to summarize our knowledge of
post-emission chemistry, which is both complex and so vari-
able that a single EF for an advanced smoke age would be
highly uncertain for most species emitted by BB. This work
presents a comprehensive effort tying together recent mea-
surements of emission factors, fuel loadings, plume chem-
istry, and global BB estimates for the main types of biomass
fires to facilitate improved understanding of regional/global
tropospheric chemistry.

2 Methods and results

2.1 Terminology and the scope of this compilation

2.1.1 Emission ratios, emission factors and combustion
efficiency

An excess mixing ratio (EMR) is defined as the mixing ra-
tio of species X in smoke minus its mixing ratio in back-
ground air. The EMR of X is often denoted by “1X,” where
the measured value reflects the degree of plume dilution and
the instrument response time (Andreae et al., 1988; Yokel-
son et al., 1999). As a standardization measure,1X is of-
ten divided by an EMR of a fairly non-reactive co-emitted
smoke tracer (1Y), such as CO or CO2; this molar ratio is de-
fined as the normalized excess mixing ratio (NEMR), which
can be measured anywhere within a plume. A special case
of the NEMR is the “emission ratio” (ER); the molar ratio
between two emitted compounds (also written as1X/1Y),
which should be reserved for emission measurements taken
at the source (fresh smoke). The NEMR is highly variable
for reactive gases and some aerosol species downwind from
fires, and is dependent on the details of the post-emission
processing (see Sect. 3.5). Thus for a reactive compound, a
NEMR measured downwind may not be equal to the emis-
sion ratio even though it is expressed in similar fashion. A
simpler alternative term sometimes used to refer to down-
wind NEMR is the “enhancement ratio” (Lefer et al., 1994),

but since it would have the same abbreviation as “emission
ratio” and some species are “depleted” downwind, we do not
use this term in this work.

We use ERs to derive EFs in units of grams of X emit-
ted per kilogram of dry biomass burned using the carbon
mass balance method (Ward and Radke, 1993) with ex-
plicit equations shown elsewhere (e.g. Yokelson et al., 1999).
The method assumes that all burned carbon is volatilized or
contained in the emitted aerosol and that all major carbon-
containing species have been measured. The inability to de-
tect all carbon species can inflate emission factors by 1–2%
when using the carbon mass balance method (Andreae and
Merlet, 2001). The carbon content in the fuel must also be
measured or estimated. In this study we assume a 50% car-
bon content by mass (dry weight) when a measured value
is not available. Except for organic soils and dung, the car-
bon content of biomass normally ranges between 45 and 55%
(Susott et al., 1996; Yokelson et al., 1997; McMeeking et al.,
2009). EF scale linearly in proportion to the assumed fuel
carbon fraction. Our calculation of EF from charcoal kilns
(in units of g X per kg charcoal made) reflects the chang-
ing carbon content during the kiln lifetime, as detailed by
Bertschi et al. (2003a) and briefly discussed in Sect. 2.3.9.

Combustion efficiency (CE) – the fraction of fuel carbon
converted to carbon as CO2 – can be estimated from mea-
sured emission ratios with the detailed equation given else-
where (e.g. Sinha et al., 2003). The CE at any point in time
during a fire, or for the fire as a whole, depends strongly on
the relative contribution of flaming and smoldering combus-
tion, with a higher CE indicating more flaming (Ward and
Radke, 1993; Yokelson et al., 1996). Flaming combustion
involves rapid reaction of O2 with gases evolved from the
solid biomass fuel and is common in foliage or dry, small
diameter aboveground biomass. Flaming combustion con-
verts the C, H, N, and S in the fuel into highly oxidized
gases such as CO2, H2O, NOx, and SO2, respectively, and
produces most of the black (or elemental) carbon particles.
As a fire progresses, smoldering combustion tends to play a
more dominant role via both surface oxidation (also known
as “glowing” or gasification) and pyrolysis (mostly the ther-
mal breakdown of solid fuel into gases and particles), often
affecting large-diameter aboveground biomass and below-
ground biomass. Smoldering produces most of the CO, CH4,
NMOC, and primary organic aerosol. Smoldering and flam-
ing frequently occur simultaneously during a fire, and dis-
tinct combustion phases may not occur. Flaming (∼1400 K)
and glowing (∼800–1000 K) are the two heat sources driv-
ing pyrolysis and fuel temperatures can range from unheated
to that of a nearby heat source. The widely used term “fire
temperature” is based on the amount of 4-micron radiation
emitted by a geographic area containing a fire and may not
reflect the relative amount of flaming and smoldering (Kauf-
man et al., 1998). We also note that smoldering is not caused
by a deficiency of O2; rather chemisorption of O2 on char is
exothermic and helps drive glowing combustion (Yokelson

www.atmos-chem-phys.net/11/4039/2011/ Atmos. Chem. Phys., 11, 4039–4072, 2011



4042 S. K. Akagi et al.: Emission factors for open and domestic biomass burning

et al., 1996). Depletion of O2 was measured at only a few
percent or less within intense, open fires and O2 levels may
not have a large affect on the gas-phase species emitted by
fires (Susott et al., 1991). Large natural variability in fuel
geometry, growth stage, moisture, windspeed, etc. causes
large natural variability in the relative amount of biomass
consumption by flaming and smoldering combustion; even
within a single fire type category. This, coupled with varia-
tion in fuel chemistry, leads to a large range in the naturally
occurring EF for most species for any fire type as discussed
more below.

The combustion efficiency, as stated above, can be use-
ful in indicating the relative abundance of flaming and smol-
dering combustion. Since CE is hard to measure, the mod-
ified combustion efficiency (MCE), which is defined as
1CO2/(1CO2+1CO), is commonly reported as an estimate
of CE accurate within a few percent (Ferek et al., 1998).
Pure flaming has an MCE near 0.99 while the MCE of smol-
dering varies over a larger range (∼0.65–0.85), but is most
often near 0.8. Thus an overall fire-integrated MCE near
0.9 suggests roughly equal amounts of biomass consump-
tion by flaming and smoldering. Since both CE and MCE
indicate the relative amount of flaming and smoldering com-
bustion, both parameters often correlate reasonably well with
EF (Fig. 4.3 in Ward and Radke, 1993; Fig. 3 in Yokelson et
al., 2003). For example, in Fig. 3 of Yokelson et al. (2003)
airborne measurements of EF(CH4) for individual fires range
from∼0.5 g kg−1 to∼3.5 g kg−1 (a factor of 7) with decreas-
ing MCE. Additional variation in EF and MCE would result
from considering the unlofted emissions from residual smol-
dering combustion (RSC) (see, e.g., Bertschi et al., 2003b;
Christian et al., 2007; Yokelson et al., 2008). In general, the
MCE dependence of “EF(X)” for a fire type allows calcula-
tion of a specific EF(X) for any known MCE. However, we
do not yet have good data on how regional average MCE may
evolve with time over the course of the biomass burning sea-
son for the major types of burning. Thus, in this work we
only report average EF for each fire type and (where possi-
ble) a very rough estimate of the expected naturally occur-
ring range in the average EF appropriate for a typical group
of fires. The calculation of these values is described in detail
in Sect. 2.3.

2.1.2 NMOC, OVOC, and NMHC

Non-methane hydrocarbons (NMHC) are defined as organic
compounds excluding methane (CH4) that contain only C
and H; examples include alkanes, alkenes, alkynes, aromat-
ics, and terpenes. Oxygenated volatile organic compounds
(OVOC) contain C, H, and O; examples include alcohols,
aldehydes, ketones, and organic acids. NMHC and OVOC
together account for nearly all the gas-phase non-methane
organic compounds (NMOC) emitted by fires. The distinc-
tion is important when discussing the role of NMOCs in post-
emission chemistry. All of the organic compounds are impor-

tant in secondary processes such as ozone and aerosol forma-
tion, but the OVOC are more abundant (60–80% of NMOC
on a molar basis, Yokelson et al., 2008), and the OVOC and
NMHC tend to have different atmospheric chemistry (Singh
et al., 1995; Finlayson-Pitts and Pitts, 2000). It is also impor-
tant to note that only on the order of 50% (by mass) of the
observed gas-phase NMOC can be assigned to specific com-
pounds (Christian et al., 2003; Karl et al., 2007). The remain-
ing unidentified species are mostly high molecular weight
NMOC. The unidentified species evidently play a large role
in plume chemistry (Sect. 3.4, Trentmann et al., 2005; Al-
varado and Prinn, 2009). We discuss NMOC in detail and
estimate total global NMOC considering the large percent-
age of compounds that remain unidentified in Sect. 3.4.

2.1.3 Common terminology used in computing
regional/global emission estimates

We briefly define common terms used in quantifying biomass
for emission estimates. Biomass is described as primar-
ily live (phytomass) or dead (necromass) plant material and
can be discussed as total aboveground biomass (TAGB) –
referring to the litter layer and everything above – or to-
tal belowground biomass (TBGB), referring to duff, peat,
organic soils, and roots (Seiler and Crutzen, 1980). Both
terms are normally expressed on a dry weight basis. Fuel
moisture can be calculated as (wet weight-dry weight)/dry
weight, and along with fuel geometry affects what biomass
is likely to burn. The term “fuel” in the forestry literature
refers to only that portion of the total available biomass that
normally burns under specified fire conditions (Neary et al.,
2005). Thus, “fuel” and “biomass” are not equivalent terms
in forestry, although they are sometimes used interchange-
ably by atmospheric chemists. Both fuel and biomassload-
ing are typically expressed as the mass of fuel or biomass
per unit area on a dry weight basis. A combustion factor
is the fraction of biomass exposed to a fire that was actu-
ally consumed or volatilized. The biomass loading is often
multiplied by a combustion factor to derive an estimate of
how much biomass was consumed, otherwise known as the
biomass consumption (per unit area). An estimate of the to-
tal combusted biomass can be obtained given biomass con-
sumption per unit area and an estimate of the area burned.
Measurements of biomass consumption per unit area burned
have been published and we compile these values for several
main fire types (e.g. savanna, boreal and tropical forest) in
Sect. 2.4.

2.1.4 Sampling considerations and study selection
criteria for this compilation

Smoke contains numerous species with atmospheric life-
times ranging from micro-seconds to years. Other than a few
continuously regenerated intermediates, current technology
can only measure atmospheric species that are abundant and
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stable enough to have lifetimes of a few minutes or longer.
In practice this means that measurements show the effects
of aging for some detected species unless samples are taken
within 10s of meters above lab fires or within 1–2 km of
fires in the field. Under these conditions, smoke typically
has CO concentrations in the range 5–1500 ppmv in the lab
or on the ground, and 2–30 ppmv in airborne studies. Fig-
ure 3 in Christian et al. (2003) or Figs. 2–4 in Yokelson et
al. (2008) show that field samples meeting the above “fresh-
ness criteria” can often return similar emission factors for
trace gases when compared to lab studies at the same MCE.
Laboratory fires sometimes tend to burn with a different av-
erage MCE than fires in similar fuels burning in the natural
environment, but this can be accounted for as described in
Yokelson et al. (2008).

For particles and semi-volatile organic compounds
(SVOC) the picture is less clear. Particulate matter (PM,
solid or liquid particles suspended in air) is directly emitted
from fires, but can also be formed through secondary pro-
cesses that may involve SVOC. The lab EF(PM) vs. MCE can
be quite consistent with low-level airborne measurements of
EF(PM) vs. MCE (e.g., Fig. 5 of Yokelson et al., 2008). On
the other hand, Babbitt et al. (1996) compared EF(PM2.5)

(particles with aerodynamic diameter<2.5 microns) mea-
sured from 30 m towers above Brazilian fires to EF(PM2.5)

measured using identical gravimetric methods from an air-
craft flying over the same fires. Except for the lowest MCE
fire (perhaps the coolest smoke) the ground-based EF(PM2.5)

were only about one-half those measured from the air, while
the agreement for volatile trace gases vs. MCE from both
platforms was excellent. In order to prevent highly sensi-
tive particle instruments from saturating, some lab BB stud-
ies employ rapid dilution with room temperature air. This
could possibly differ from the dilution/cooling regime asso-
ciated with injection of emissions into the atmosphere dur-
ing some real fires. Thus, for now, we favored the data from
low-level airborne smoke samples (taken after any rapid ini-
tial cooling, but before most of the photochemistry) to de-
rive our “initial emissions” of particles (and SVOC if avail-
able). Our compilation does include lab-measured EF for
two scenarios: (1) when the fuel burns entirely by smoldering
combustion in the natural environment (e.g. peat, duff), and
(2) when the fuel burns by both flaming and smoldering, but
the authors took special care to realistically replicate the nat-
ural fuel complex and they report data for compounds not yet
measured in the field. For example, the lab study of Goode
et al. (1999) was the first to use FTIR on grass fires, but none
of the results are included because they are superseded by
the FTIR-based field study of savanna fires by Yokelson et
al. (2003). On the other hand, we include the lab study of
Christian et al. (2003), which carefully replicated savanna
fires and also features the only proton-transfer mass spec-
trometer (PTR-MS) measurements of the emissions from this
fire type. Finally, we point out that a lot of important work
has characterized particle emissions from lab fires recently

(e.g. Chen et al., 2006; Engling et al., 2006; Hopkins et al.,
2007; Mazzoleni et al., 2007; Chakrabarty et al., 2010), but
did not report the results as EF. Thus, it was not always clear
how to incorporate these results into initial particle charac-
teristics for models that would be analogous to the trace gas
and particle EF we report.

Another important consideration for field studies is that
smoldering combustion can produce unlofted smoke with
low MCE that is not amenable to airborne sampling. Ground-
based sampling can measure these sometimes substantial
emissions, but realistic estimates of the biomass consumption
contributing to the two different types of smoke are needed
to properly weight the ground-based and airborne measure-
ments (Christian et al., 2007).

In order to present a compilation that is as up to date as
possible, we include some EF values from papers under re-
view and a few preliminary EF values that are believed to be
“final” from papers on the verge of submission. These values
are clearly indicated in the Supplement Tables and the reader
using these values should locate the forthcoming publica-
tions, check for updates, and cite those publications directly.
In general we encourage the reader to examine and cite the
original work that we compile and also consider modifying
our averaging schemes to better suit their specific needs.

2.2 Fire-type categories

2.2.1 Vegetation

We organize the selected EF for landscape-scale fires into six
broad types of vegetation susceptible to burning: savanna,
tropical forest, boreal forest, temperate forest, peatlands, and
chaparral. We split the category “extratropical forest” used
by Andreae and Merlet (2001) into “boreal” (high latitude
∼50–70◦ forested regions) and “temperate” forest. We also
derive EF for “extratropical” forest fires using a weighted
average of boreal and temperate emission factors (86.5% and
13.5%, respectively) based on GFED3 biomass consumption
estimates (van der Werf et al., 2010) to preserve the option of
using this category. We present a specific category for cha-
parral (a type of temperate shrubland) since the emissions
from chaparral fires are important in the southwestern US
and shrublands are widespread globally (Friedl et al., 2002).
(Some of the temperate forest and chaparral EF we include
are flagged as preliminary in the Supplement Tables.) Our
category “tropical forest” includes tropical evergreen forest
deforestation fires, tropical dry forest deforestation fires, and
tropical dry forest understory fires. Tropical dry forest is also
called “seasonal” or “monsoon” forest. Tropical dry forests
(TDF) differ from “woody” savanna regions in that TDF are
characterized by a significant (>60%) canopy coverage or
closed canopies (Mooney et al., 1995; Friedl et al., 2002).
Savanna regions are qualitatively described as grassland with
an “open” canopy of trees (if any). Our savanna category in-
cludes the savanna, woody savanna, and grassland categories
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in the detailed MODIS land cover products (Friedl et al.,
2002). Our savanna and tropical forest categories contribute
the most open burning emissions globally (Andreae and Mer-
let, 2001). While peatlands represent 3% of terrestrial cover,
they hold about one third of the world’s soil carbon (Rein et
al., 2009; Yu et al., 2010) and can be a significant contributor
to annual carbon emissions (Page et al., 2002).

2.2.2 Biofuel

We use “biofuel” as a specific term denoting biomass used as
a domestic or industrial energy source. In assessing the im-
pacts of biofuel it is worth recalling that, in principle, it could
be regrown so is potentially “renewable” unlike fossil fuel.
Rural populations in developing countries rely heavily on
biomass burning as a primary source of energy (Smil, 1979;
Cecelski et al., 1979; Yevich and Logan, 2003). The amount
of biofuel use in urban areas of the developing world is not
known, but may be significant (Christian et al., 2010). Over
the 50-yr period from 1950–2000, Fernandes et al. (2007)
estimated a 70% growth in global annual biofuel consump-
tion making it now the second largest type of global biomass
burning after savanna fires (Andreae and Merlet, 2001), but
future trends are hard to predict. In this work we present bio-
fuel emission factors for open cooking fires, dung burning,
Patsari cooking stoves, charcoal making, and charcoal burn-
ing. Open cooking fires are the single largest contributor to
global biofuel emissions accounting for roughly 80% of cur-
rent biofuel use worldwide (Dherani et al., 2008). Various
stove designs are available, but the most complete emissions
measurements have been made for Patsari stoves; therefore,
we selected them to represent emissions from all types of
biofuel stoves. Patsari stoves are used in Mexico and incor-
porate an insulated fire box that vents emissions outdoors via
a metal chimney (Christian et al., 2010). The stoves are de-
signed to replace traditional open three-stone fires and can
reduce indoor air pollution by 70%. Stoves in general require
less fuel per cooking task than open cooking fires, which re-
duces emissions and pressure on biofuel sources (Johnson et
al., 2008; Masera et al., 2005; Zuk et al., 2007). For the
above reasons there is considerable international activity to
encourage switching from open cooking fires to stoves. In
addition, the Patsari stove emissions were found to have dif-
ferent chemistry than open cooking fire emissions (Johnson
et al., 2008; Christian et al., 2010), further justifying a sep-
arate category in this study. While not fully representative
of all cooking stoves, the Patsari stove EF likely represent
most stove emissions better than EF for open cooking fires
and might be used to help assess the impact of changes in
how biofuel is used.

Dung as a biofuel is mainly of note in Asia, dominated by
use in India and China (Yevich and Logan, 2003). Its use in
most other rural areas globally is less common than that of
woodfuel (though sometimes still significant), and overall it
comprises approximately 5% of the total dry matter burned

as biofuel (Yevich and Logan, 2003). Charcoal is mainly
produced in rural areas and often consumed in urban areas,
accounting for∼10% of global biofuel use (Bertschi et al.,
2003a).

2.2.3 Agricultural/waste burning

Crop residue and pasture maintenance fires and open burn-
ing of garbage can be common both in rural agricultural re-
gions and peri-urban areas. For instance, sugarcane burning
is the main source of PM in some Brazilian cities (Lara et al.,
2005; Cançado et al., 2006). Crop residue burning has been
estimated as the fourth largest type of biomass burning (An-
dreae and Merlet, 2001), but these emissions could be greatly
underestimated given the difficulty of detecting these often
short-lived, relatively small fires from space (Hawbaker et
al., 2008; Smith et al., 2007; Chang and Song, 2010a; van
der Werf et al., 2010). Crop residue may be burned 1–3
times a year on a single site depending on the rate of an-
nual harvest. Some crop residue is utilized as biofuel (espe-
cially in China), blurring the distinction between these cate-
gories (Yevich and Logan, 2003). A recent increase in crop
residue burning is likely in large areas of the Amazon con-
current with a shift in land use from cattle ranching to crop
production (Cardille and Foley, 2003; Morton et al., 2006).
Pasture maintenance burning is performed every 2–3 yr to
prevent reconversion of pasture to forest. These fires fre-
quently include residual smoldering combustion of large logs
that can burn for weeks after the flames have ceased (Kauff-
man et al., 1998). Garbage burning is normally overlooked
as an emissions source. However, Christian et al. (2010) es-
timate that∼2000 Tg yr−1 of garbage are generated globally
and roughly half may be burned in open fires or incinerators.
Partly because open garbage burning is often illegal, it is un-
mentioned in most inventories. We compile the few available
EF for open burning of garbage as a separate category.

2.3 Assessment, calculation, and application of emission
factors for specific fire types

This section provides the details of how we analyzed the
emission factors. We classify biomass burning into 14 cat-
egories. For each of these categories, we organize the infor-
mation by study in Supplement Tables S1–S14 for all stud-
ies meeting our selection criteria (updates at:http://bai.acd.
ucar.edu/Data/fire/). For each included study we show the
study-average emission factors and any additional specifics
considered in calculating an overall average and estimate of
the natural variation for the whole category. The rationale
supporting the calculation of the category average and vari-
ation is summarized in the following sections. We present
just the category average emission factors and category vari-
ability for all 14 BB categories in Tables 1 and 2. Our clas-
sification scheme allows consideration/assessment of fairly
specific emission types while retaining the option of merging
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Table 1. Emission factors (g kg−1) for species emitted from different types of biomass burninga.

Tropical Forest Savanna Crop Pasture Boreal Temperate Extratropical
Residue Maintenance Forest Forest Forestb

Carbon Dioxide (CO2) 1643 (58) 1686 (38) 1585 (100) 1548 (142) 1489 (121) 1637 (71) 1509 (98)
Carbon Monoxide (CO) 93 (27) 63 (17) 102 (33) 135 (38) 127 (45) 89 (32) 122 (44)
Methane (CH4) 5.07 (1.98) 1.94 (0.85) 5.82 (3.56) 8.71 (4.97) 5.96 (3.14) 3.92 (2.39) 5.68 (3.24)
Acetylene (C2H2) 0.44 (0.35) 0.24 (0.10) 0.27 (0.08) 0.21 (0.29) 0.18 (0.10) 0.29 (0.10) 0.19 (0.090)
Ethylene (C2H4) 1.06 (0.37) 0.82 (0.35) 1.46 (0.59) 1.28 (0.71) 1.42 (0.43) 1.12 (0.35) 1.38 (0.42)
Ethane (C2H6) 0.71 (0.28) 0.66 (0.41) 0.91 (0.49) 0.95 (0.43) 1.79 (1.14) 1.12 (0.67) 1.70 (1.05)
Propadiene (C3H4) 0.016 (0.0066) 0.012 (0.005) – 0.020 (0.009) – – –
Propylene (C3H6) 0.64 (0.43) 0.79 (0.56) 0.68 (0.37) 0.85 (0.66) 1.13 (0.60) 0.95 (0.54) 1.11 (0.61)
Propyne (C3H4) – – – – 0.059 – 0.059
Propane (C3H8) 0.126 (0.060) 0.10 (0.067) 0.28 (0.15) 0.22 (0.10) 0.44 0.26 (0.11) 0.42 (0.18)
n-Butane (C4H10) 0.038 (0.023) 0.016 (0.013) 0.072 (0.036) 0.040 (0.018) 0.12 0.083 (0.10) 0.12 (0.14)
i-Butane (C4H10) 0.011 (0.009) 0.0043 (0.0027) 0.025 (0.013) 0.014 (0.0063) 0.042 – 0.042
1-Butene (C4H8) 0.079 (0.024) 0.043 (0.022) 0.134 (0.060) 0.17 (0.077) 0.16 – 0.16
i-Butene (C4H8) 0.11 (0.051) 0.024 (0.0051) 0.117 (0.060) 0.11 (0.05) 0.11 – 0.11
1,3-Butadiene (C4H6) 0.039 0.052 (0.028) 0.151 (0.072) – 0.14 – 0.14
trans-2-Butene (C4H8) 0.029 (0.013) 0.011 (0.0055) 0.057 (0.030) 0.050 (0.023) 0.040 – 0.040
cis-2-Butene (C4H8) 0.024 (0.010) 0.0084 (0.0043) 0.043 (0.023) 0.040 (0.018) 0.030 – 0.030
n-Pentane (C5H12) 8.03×10−3 (8.03×10−3) 0.0032 (0.0032) 0.025 (0.012) 0.0056 (0.0025) 0.085 – 0.085
i-Pentane (C5H12) 0.010 (0.010) 0.0022 (0.0032) 0.020 (0.012) 0.0074 (0.0033) 0.038 – 0.038
trans-2-Pentene (C5H10) 3.30×10−3 0.0045 (0.0028) – – – – –
cis-2-Pentene (C5H10) 1.90×10−3 0.0025 (0.0018) – – – – –
3-Methyl-1-Butene (C5H10) 3.80×10−3 0.0051 (0.0034) – – – – –
2-Methyl-2-Butene (C5H10) 4.00×10−3 0.0048 (0.0035) – – – – –
2-Methyl-1-Butene (C5H10) 4.40×10−3 0.0059 (0.0037) – – – – –
Isoprene (C5H8) 0.13 (0.056) 0.039 (0.027) 0.38 (0.16) 0.12 (0.055) 0.15 – 0.15
Cyclopentane (C5H10) – – 0.0019 (0.0012) – – – –
2+3-Methylpentane (C6H14) – – – – 0.036 – 0.036
2-Methyl-1-Pentene (C6H12) 2.80×10−3 0.0035 (0.0021) – – – – –
n-Hexane (C6H14) 0.010 0.013 (0.0074) – – 0.055 – 0.055
Heptane (C7H16) 5.60×10−3 0.0070 (0.0072) – – 0.048 – 0.048
Benzene (C6H6) 0.39 (0.16) 0.20 (0.084) 0.15 (0.04) 0.70 (0.32) 1.11 – 1.11
Toluene (C6H5CH3) 0.26 (0.13) 0.080 (0.058) 0.19 (0.06) 0.34 (0.15) 0.48 – 0.48
Xylenes (C8H10) 0.11 (0.082) 0.014 (0.024) – 0.11 (0.050) 0.18 – 0.18
Ethylbenzene (C8H10) 0.050 (0.036) 0.006 (0.010) – 0.067 (0.030) 0.051 – 0.051
n-Propylbenzene (C9H12) – – – – 0.018 – 0.018
α-Pinene (C10H16) – – – – 1.64 – 1.64
β-Pinene (C10H16) – – – – 1.45 – 1.45
Ethanol (CH3CH2OH) – – – – 0.055 – 0.055
Methanol (CH3OH) 2.43 (0.80) 1.18 (0.41) 3.29 (1.38) 5.84 (3.42) 2.82 (1.62) 1.93 (1.38) 2.70 (1.75)
Phenol (C6H5OH) 0.45 (0.088) 0.52 (0.36) 0.52 (0.14) 1.68 (3.34) 2.96 0.33 (0.38) 2.60 (3.00)
Formaldehyde (HCHO) 1.73 (1.22) 0.73 (0.62) 2.08 (0.84) 1.90 (1.11) 1.86 (1.26) 2.27 (1.13) 1.92 (1.14)
Glycolaldehyde (C2H4O2) 2.84 0.81 (0.38) 2.01 (0.38) – 0.77 0.25 (0.45) 0.70 (1.26)
Acetaldehyde (CH3CHO) 1.55 (0.75) 0.57 (0.30) 1.24 (0.28) 2.40 (1.08) – – –
Acrolein (C3H4O) 0.65 (0.23) – – – – – –
Furaldehydes 0.29 (0.0010) – – – – – –
Propanal (C3H6O) 0.10 (0.026) – – 0.16 (0.074) – – –
Methyl Propanal (C4H8O) 0.18 (0.075) – – 0.33 (0.15) – – –
Hexanal (C6H12O) 0.01 (0.005) – – 0.034 (0.015) – – –
Acetone (C3H6O) 0.63 (0.17) 0.16 (0.13) 0.45 (0.07) 1.05 (0.47) 0.75 – 0.75
Methyl Vinyl Ether (C3H6O) – 0.16 (0.045) 0.08 (0.01) – – – –
Methacrolein (C4H6O) 0.15 (0.045) – – 0.40 (0.18) 0.087 – 0.087
Crotonaldehyde (C4H6O) 0.24 (0.068) – – 0.60 (0.27) – – –
2,3-Butanedione (C4H6O2) 0.73 (0.22) – – 1.58 (0.71) – – –
Methyl Vinyl Ketone (C4H6O) 0.39 (0.11) – – 1.00 (0.45) 0.20 – 0.20
Methyl Ethyl Ketone (C4H8O) 0.50 (0.21) – – 0.94 (0.42) 0.22 – 0.22
2-Pentanone (C5H10O) 0.08 (0.024) – – 0.17 (0.077) – – –
3-Pentanone (C5H10O) 0.03 (0.011) – – 0.08 (0.034) – – –
Furan (C4H4O) 0.41 (0.10) 0.17 (0.058) 0.11 (0.04) 1.02 (0.43) 0.80 (0.50) 0.20 (0.21) 0.72 (0.62)
3-Methylfuran (C5H6O) 0.59 (0.20) – – 1.41 (0.64) – – –
2-Methylfuran (C5H6O) 0.08 (0.028) – – 0.20 (0.091) – – –
Other substituted furans 1.21 (0.016) – – – – – –
C6 Carbonyls 0.24 (0.11) – – 0.61 (0.28) – – –
Acetol (C3H6O2) 1.13 (0.12) 0.45 (0.24) 3.77 (0.91) 6.18 (5.60) – – –
Acetonitrile (CH3CN) 0.41 (0.10) 0.11 (0.058) 0.21 (0.06) 0.55 (0.25) 0.61 – 0.61
Propenenitrile (C3H3N) 0.04 (0.01) 0.051 (0.022) 0.03 (0.002) – – – –
Propanenitrile (C3H5N) 0.090 0.031 (0.014) 0.06 (0.002) – – – –
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Table 1. Continued.

Tropical Forest Savanna Crop Pasture Boreal Temperate Extratropical
Residue Maintenance Forest Forest Forestb

Pyrrole (C4H5N) 0.12 (0.038) – – – – – –
Formic Acid (HCOOH) 0.79 (0.66) 0.21 (0.096) 1.00 (0.49) 0.20 (0.64) 0.57 (0.46) 0.35 (0.33) 0.54 (0.47)
Acetic Acid (CH3COOH) 3.05 (0.90) 3.55 (1.47) 5.59 (2.55) 10.4 (6.8) 4.41 (2.66) 1.97 (1.66) 4.08 (2.99)
Hydrogen Cyanide (HCN) 0.42 (0.26) 0.41 (0.15) 0.29 (0.38) 0.46 (0.45) 1.52 (0.82) 0.73 (0.19) 1.41 (0.60)
Dimethyl Sulfide (C2H6S) 1.35×10−3 (1.71×10−3) 0.0013 (0.0011) – – 4.65×10−3 – 4.65×10−3

Carbonyl Sulfide (OCS) 0.025 – – – 0.46 (0.47) – 0.46 (0.47)
Chloromethane(CH3Cl) 0.053 (0.038) 0.055 (0.036) – 0.29 (0.13) 0.059 – 0.059
Dibromomethane (CH2Br2) – – – – 8.28×10−5 – 8.28×10−5

1,2-Dichloroethane (C2H4Cl2) – – – – 1.29×10−3 – 1.29×10−3

Methyl Bromide (CH3Br) 2.83×10−3 (2.38×10−3) 8.53×10−4 (8.62×10−4) – 5.71×10−3 (2.57×10−3) 3.64×10−3 – 3.64×10−3

Methyl Iodide (CH3I) 2.50×10−3 (3.45×10−3) 5.06×10−4 (3.88×10−4) – 3.48×10−3 (1.56×10−3) 7.88×10−4 – 7.88×10−4

Trichloromethane (CHCl3) 2.94×10−4 (6.75×10−3) 0.012 (0.020) – 6.32×10−4 (2.84×10−4) – – –
Dichlorodifluoromethane (CCl2F2) 2.80×10−3 – – – – – –
Ethylchloride (C2H5Cl) – – – – 7.47×10−4 – 7.47×10−4

Ammonia (NH3) 1.33 (1.21) 0.52 (0.35) 2.17 (1.27) 1.47 (1.29) 2.72 (2.32) 0.78 (0.82) 2.46 (2.35)
Methyl Nitrate (CH3ONO2) 8.29×10−3 (1.60×10−2) 5.1×10−4 (3.7×10−4) – – 2.83×10−3 – 2.83×10−3

Ethyl Nitrate (C2H5NO3) 5.70×10−3 – – – 1.78×10−3 – 1.78×10−3

n-Propyl Nitrate (C3H7NO3) 0.0003 – – – 3.23×10−4 – 3.23×10−4

i-Propyl Nitrate (C3H7NO3) 0.001 – – – 3.23×10−3 – 3.23×10−3

2-Butyl Nitrate (C4H9NO3) 0.0006 – – – 3.84×10−3 – 3.84×10−3

3-Pentyl Nitrate (C5H11NO3) – – – – 7.27×10−4 – 7.27×10−4

2-Pentyl Nitrate (C5H11NO3) – – – – 9.70×10−4 – 9.70×10−4

3-Methyl-2-Butyl Nitrate (C5H11NO3) – – – – 1.15×10−3 – 1.15×10−3

3-Ethyltoluene (C9H12) – – – – 0.024 – 0.024
2-Ethyltoluene (C9H12) – – – – 0.011 – 0.011
4-Ethyltoluene (C9H12) – – – – 0.015 – 0.015
1,2,3-Trimethylbenzene (C9H12) – – – – 0.051 – 0.051
1,2,4-Trimethylbenzene (C9H12) – – – – 0.030 – 0.030
1,3,5-Trimethylbenzene (C9H12) – – – – 5.86×10−3 – 5.86×10−3

Hydrogen (H2) 3.36 (1.30) 1.70 (0.64) 2.59 (1.78) – – 2.03 (1.79) 2.03 (1.79)
Sulfur Dioxide (SO2) 0.40 (0.19) 0.48 (0.27) – 0.32 (0.14) – – –
Nitrous Acid (HONO) 1.18 0.20 – 0.16 (0.07) – 0.52 (0.15) 0.52 (0.15)
Nitrogen Oxides (NOx as NO) 2.55 (1.40) 3.9 (0.80) 3.11 (1.57) 0.75 (0.59) 0.90 (0.69) 2.51 (1.02) 1.12 (0.69)
Nitrous Oxide (N2O) – – – – 0.41 0.16 (0.21) 0.38 (0.35)
NMOC (identified) 26.0 (8.8) 12.4 (6.2) 25.7 (9.8) 44.8 (30.1) 29.3 (10.1) 11.9 (7.6) 27.0 (13.8)
NMOC (identified + unidentified)c 51.9 24.7 51.4 89.6 58.7 23.7 54.0
Total Particulate Carbon 5.24 (2.91) 3.00 (1.43) – 10.6 (4.8) – – –
Total Suspended Particulate (TSP) 13 – – – – – –
CN (particles 0.003–3 µm diameter)d 5.90×1016 – – – – – –
PMe

2.5 9.1 (3.5) 7.17 (3.42) 6.26 (2.36) 14.8 (6.7) 15.3 (5.9) 12.7 (7.5) 15.0 (7.5)
PM10 18.5 (4.1) – – 28.9 (13.0) – – –
Black Carbon (BC) 0.52 (0.28) 0.37 (0.20) 0.75 0.91 (0.41) – – 0.56 (0.19)f

Organic Carbon (OC) 4.71 (2.73) 2.62 (1.24) 2.30 9.64 (4.34) – – 8.6–9.7f

Oxylate (C2O4) 0.04 (0.034) 0.0055 (0.0055) – 0.040 (0.018) – – –
Nitrate (NO3) 0.11 (0.050) 0.016 (0.013) – 0.14 (0.063) – – –
Phosphate (PO4) 5.56×10−3 (8.99×10−3) 0.0045 (0.0060) – 1.07×10−3 (4.80×10−4) – – –
Sulfate (SO4) 0.13 (0.088) 0.018 (0.009) – 0.19 (0.086) – – –
Ammonium (NH4) 5.64×10−3 (1.72×10−2) 0.0035 (0.0035) – 3.97×10−3 (1.79×10−3) – – –
Cl 0.15 (0.16) 0.23 (0.055) – 0.24 (0.11) – – –
Ca 0.085 (0.089) 0.021 (0.018) – 0.020 (0.009) – – –
Mg 0.040 (0.034) 0.016 (0.007) – 0.030 (0.014) – – –
Na 6.37×10−3 (5.46×10−3) 0.0055 (0.0045) – 0.030 (0.014) – – –
K 0.29 (0.28) 0.23 (0.053) – 0.34 (0.15) – – –

a See Sect. 2.3 for guidance in use. Emission factors are shown with an estimate of the natural variation in parenthesis, when available.
b EF calculated from a weighted average of boreal and temperate forest EF based on GFED3 biomass consumption estimates.
c Estimated (see Sect. 3.4).
d Number of particles per kg of fuel burned.
e PM1–PM5 categorized as PM2.5.
f Source is Andreae and Merlet (2001).

categories at the user’s discretion. As an example, we also
derive values for an “extratropical forest” category (shown
in Table 1) by merging the boreal and temperate forest EF
with the formula described in Sect. 2.2.1. Some users may
instead desire EF in more detail than is provided by our 14
categories in Tables 1–2 and this can often be retrieved by

consulting the Supplement Tables. For instance, the EF for
smoldering combustion of hand-piled crop residue (common
in much of Asia) are very different from the EF for flaming
combustion of crop residue produced by mechanized agricul-
ture and they can be found separately in Table S13.
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Table 2. Emission factors (g kg−1) for species emitted from different types of biomass burninga.

Compound Peatlandb Chaparral Open Patsari Charcoal Charcoal Dung Garbage
Cooking Stoves Makingc Burningd Burning Burning

Carbon Dioxide (CO2) 1563 (65) 1710 (39) 1548 (125) 1610 (114) 1626 (244) 2385 859 (15) 1453 (69)
Carbon Monoxide (CO) 182 (60) 67 (13) 77 (26) 42 (19) 255 (52) 189 (36) 105 (10) 38 (19)
Methane (CH4) 11.8 (7.8) 2.51 (0.72) 4.86 (2.73) 2.32 (1.38) 39.6 (11.4) 5.29 (2.42) 11.0 (3.3) 3.66 (4.39)
Acetylene (C2H2) 0.14 (0.093) 0.20 (0.08) 0.97 (0.50) 0.28 (0.01) 0.21 (0.02) 0.42 – 0.40 (0.28)
Ethylene (C2H4) 1.79 (0.72) 0.75 (0.18) 1.53 (0.66) 0.46 (0.12) 3.80 (1.15) 0.44 (0.23) 1.12 (0.23) 1.26 (1.04)
Ethane (C2H6) – 0.36 (0.11) 1.50 (0.50) – 12.2 (9.3) 0.41 (0.13) – –
Propylene (C3H6) 2.3 (0.74) 0.38 (0.13) 0.57 (0.34) 0.03 4.12 (1.89) – 1.89 (0.42) 1.26 (1.42)
Propane (C3H8) – 0.19 (0.09) – – – – – –
Butane (C4H10) – 0.14 (0.07) – – – – – –
Isoprene (C5H8) 1.07 (0.44) – – – – – – –
Toluene (C6H5CH3) 1.21 (0.69) – – – – – – –
Benzene (C6H6) 2.46 (1.21) – – – – – – –
Methanol (CH3OH) 5.36 (3.27) 0.80 (0.28) 2.26 (1.27) 0.39 (0.39) 54.9 (27.9) 1.01 4.14 (0.88) 0.94 (1.25)
Acetol (C3H6O2) 1.92 (0.20) – – – 21.6 (35.3) – 9.60 (2.38) –
Phenol (C6H5OH) 4.36 (5.06) 0.45 (0.21) 3.32 – 10.4 (6.6) – 2.16 (0.36) –
Furan (C4H4O) 1.51 (0.37) 0.18 (0.10) 0.40 – 3.94 (2.30) – 0.95 (0.22) –
Formaldehyde (HCHO) 1.69 (1.62) 0.83 (0.25) 2.08 (0.86) 0.37 (0.40) 3.62 (2.42) 0.60 – 0.62 (0.13)
Glycolaldehyde (C2H4O2) 2.62 (4.18) 0.23 (0.20) 1.42 – – – – –
Acetaldehyde (CH3CHO) 2.81 (1.36) – – – – – – –
Carbonyl Sulfide (OCS) 1.20 (2.21) – – – – – – –
Acetic Acid (CH3COOH) 7.08 (3.40) 1.10 (0.50) 4.97 (3.32) 0.34 44.8 (27.3) 2.62 11.7 (5.08) 2.42 (3.32)
Formic Acid (HCOOH) 0.54 (0.71) 0.06 (0.04) 0.22 (0.17) 0.0048 0.68 (0.20) 0.063 0.46 (0.31) 0.18 (0.12)
Acetone (C3H6O) 1.08 (0.29) – – – – – – –
Hydrogen Cyanide (HCN) 5.00 (4.93) 0.38 (0.12) – – 0.21 (0.17) – 0.53 (0.30) 0.47
Methyl Ethyl Ketone (C4H8O) – – – – – – – –
Hydrogen Chloride (HCl) – 0.17 (0.14) – – – – – 3.61 (3.27)
Methyl Vinyl Ether (C3H6O) 0.85 – – – – – – –
Acetonitrile (CH3CN) 3.70 (0.90) – – – – – – –
Sulfur Dioxide (SO2) – 0.68 (0.13) – – – – 0.06 0.5
Hydrogen (H2) – – – – – – – 0.091
Ammonia (NH3) 10.8 (12.4) 1.03 (0.66) 0.87 (0.40) 0.03 1.24 (1.44) 0.79 4.75 (1.00) 0.94 (1.02)
Nitrogen Oxides (NOx as NO) 0.80 (0.57) 3.26 (0.95) 1.42 (0.72) – 0.22 (0.22) 1.41 0.5 3.74 (1.48)
Nitrous Oxide (N2O) – 0.25 (0.18) – – – 0.24 – –
Nitrous Acid (HONO) – 0.41 (0.15) – – – – – –
TNMHC as CH4 – – 2.89 (1.21) 3.76 (4.53) – – – –
TNMHC as g C – – 2.27 (2.07) – – – – –
NMOC (identified) 48.7 (32.4) 6.0 (2.4) 19.2 (7.6) 1.87 (0.92) 161 (115) 5.56 32.6 (10.2) 7.5 (7.6)
NMOC (identified + unidentified)e 97.3 12.1 57.7 5.62 321 11.1 97.7 22.6
Total Suspended Particulate (TSP) – 15.4 (7.2) 4.55 (1.53) 3.34 (1.68) 0.7–4.2 2.38 – –
Total Particulate C – – – – – – 22.9 –
PMf

2.5 – 11.9 (5.8) 6.64 (1.66) – – – – 9.8 (5.7)
Black Carbon (BC) 0.20 (0.11) 1.3 0.83 (0.45) 0.74 (0.37) 0.02 (0.02) 1.0g 0.53g 0.65 (0.27)
Organic Carbon (OC) 6.23 (3.60) 3.7 2.89 (1.23) 1.92 (0.90) 0.74 (0.72) 1.3g 1.8g 5.27 (4.89)

a See Sect. 2.3 for guidance in use. Emission factors are shown with an estimate of the natural variation in parenthesis, when available.
b EF include an assumed tropical forest overstory.
c EF reported in units of g of compound emitted per kg of charcoal produced.
d EF reported in units of g of compound emitted per kg of charcoal burned.
e Estimated (see Sect. 3.4).
f PM1–PM5 categorized as PM2.5.
g Source is Bond et al. (2004).

2.3.1 Savanna

The emission factors from one laboratory study and four air-
borne studies of savanna fires are presented and averaged
in Table S1. The savanna fire average and variation is also
reported in Table 1. We make several points about three
of the included studies next. During the Smoke, Clouds,

and Radiation-Brazil (SCAR-B) campaign, airborne EF mea-
surements were made of fresh smoke from several different
fire types. However, the EF were originally published as
the overall regional average emission factors for the com-
bination of all the different fire types observed (Ferek et al.,
1998). We broke out the original fire-specific SCAR-B EF
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into the appropriate fire-type categories in our classification
scheme based primarily on the recorded visual observations
from the aircraft. However, the delineation between TDF
and “wooded” or “humid” savanna fires was difficult from
the aircraft and the distinction is often unclear in the litera-
ture as well. We categorized three of the SCAR-B fires as
savanna fires because the Advanced Very High Resolution
Radiometer (AVHRR) Continuous Fields Tree Cover prod-
uct (DeFries et al., 2000) showed that the area burned had
a pre-fire canopy coverage less than 40% (Matthews, 1983;
Hansen et al., 2000). We used the AVHRR product because
the fires burned prior to coverage by the MODIS VCF prod-
uct (Hansen et al., 2003). The gas and particle emissions data
from the SCAR-B fires are also converted to units of g com-
pound per kg fuel. “Xylenes” are calculated from the sum of
p-xylene, m-xylene, and o-xylene. Since NO and NO2 are
rapidly interconverted in the atmosphere, we also calculate
and report an EF for “NOx as NO”. The estimate of the vari-
ation in the EF is taken as the standard deviation of the EF.
The volume distribution for BB particles by aerodynamic di-
ameter shows a minimum from about 1 to 5 microns (Ward
and Radke, 1993). Thus, in all our tables, measurements of
PM1.0–PM5.0 are grouped together as PM2.5 to allow aver-
aging data from more studies. We also note that PM2.5 is
usually close to 80% of PM10 or TPM when measured on
the same BB sample (e.g. Artaxo et al., 1998). Finally, we
group EF reported for elemental carbon (EC) or black car-
bon (BC) in a single “BC” category. If there are thermal and
thermal-optical measurements of EC we take the results from
the latter more advanced technique. Differences between the
measurement techniques used for these species are the sub-
ject of ongoing research (Reid et al., 2005a, b; Bond and
Bergstrom, 2006; Schwarz et al., 2008).

We include early dry season EF measured by Yokelson
et al. (2011) in Mexico that may help our average EFs (Ta-
bles S1 and 1) better represent the full dry season. In addi-
tion, these early dry season EFs could be taken from Table S1
for an application targeted at that time of year.

We include EF from Christian et al. (2003) who measured
emissions from burning grass and/or twig/leaf-litter fuels
from Zambian humid savannas in 16 laboratory fires. Their
reported uncertainty is±37% factoring in 31% naturally oc-
curring variability in NMOC (Yokelson et al., 2003), 15%
prediction error (reflecting the uncertainty in using lab data
to predict field emission factors for this fire type), and 5%
error in measurement. Alang-alang (Imperata cylindrica) is
a widespread fire-maintained grass subject to frequent burn-
ing in Indonesia (Jacobs, 1988; Seavoy, 1975; Pickford et al.,
1992) that was burned in five fires by Christian et al. (2003)
and we categorize it as a savanna-type fuel. Most of the
data reported by Christian et al. (2003) were collected using
open path FTIR (OP-FTIR) and PTR-MS. For this study and
other studies with EFs measured by both FTIR and PTR-MS,
the FTIR could sometimes quantify individual species when
multiple species appeared on the same mass in the PTR-MS.

In these cases, we select the FTIR data with a notable excep-
tion for acetol. The coupling and/or selection of data from
various instruments is described in more detail in the original
papers and by Christian et al. (2004) and Karl et al. (2007).
The EF for HCOOH and glycolaldehyde published prior to
2011 in FTIR-based studies have been rescaled to be consis-
tent with new reference spectra (Rothman et al., 2009; John-
son et al., 2010).

For this category and for the other categories, when suffi-
cient data are available, we provide a conservative estimate
of the “naturally-occurring variation” in the average EF for a
group of fires within the classification. It is common to report
variability as “uncertainty,” but the measurement uncertain-
ties associated with calculating individual EF are generally
quite low for the studies we include in this compilation. We
adopted a relatively simple approach to estimate the variabil-
ity, which is described next in order of increasing complex-
ity:

The case when only one study is available:

1. If there is only one EF value available, we do not esti-
mate variability.

2. If there are only two EF values available, we estimate
variability as the range.

3. If two or more EF values are given and both provide
an estimate of variation, we average them to estimate
variability.

4. If three or more EF values are given in just one study,
we estimate variability as the standard deviation of the
EF.

The case when two or more studies are available:

1. If more than one study reports EF, but only one study
provides an estimate of variability, we estimate variabil-
ity using the fractional variability from the one study
provided.

2. If more than one study reports EF and an estimate of
the variability, we took the average variability as our
estimate of variability (we find that the range or standard
deviation of study means can sometimes significantly
underestimate natural variability).

3. When more than one study was available and there was
a large difference in the amount of sampling between
studies, we weighted the EF by the amount of sampling
to derive a final average EF value reported in our tables,
but our estimates of variation were obtained as above
(without weighting).

4. Variability in total NMOC was taken as the sum of the
variability of each individual NMOC (we find that equa-
tions propagating fractional uncertainties overempha-
size the impact of compounds measured in low abun-
dance on total variation).
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Users preferring an alternate calculation of averages or vari-
ation can implement their scheme using the original data,
which can be found in Supplement Tables S1–S14.

2.3.2 Boreal forest

Boreal forest fires can consume large amounts of both above-
ground and below-ground biomass (Ottmar and Sandberg,
2003; French et al., 2004). We include lab or ground-
based measurements of EF for burning organic soils, peat,
and woody/down/dead vegetation; the latter term including
stumps, logs, and downed branches (Tables 1, S2). Such fu-
els are likely to burn by RSC, which can continue long af-
ter flaming and strong convection from a fire have ceased
(Bertschi et al., 2003b). We computed the average for five
common components of the fuel in boreal organic soils that
were burned individually by Bertschi et al. (2003b) (identi-
fied as Lolo1, 2, 3, NWT 1, 2 in original work) and took the
standard deviation as the variability. Emissions from burn-
ing organic soil from Alaska (identified as sedge, sphagnum
moss, feather moss, white spruce, and forest floor duff) were
reported by Yokelson et al. (1997), for which we compute
EF using the reported C content. Yokelson et al. (1997)
also reported emissions measurements for boreal peat from
Alaska and Minnesota. Given that the %C was not mea-
sured for Alaskan peat, we used the measured %C for MN
peat (49.4%) in all of the boreal peat EF calculations. We
also include Alaskan duff EF measured in a laboratory by
Burling et al. (2010). Bertschi et al. (2003b) reported EF
for woody/down/dead fuels (identified as Stump and Cwd 2),
which are also included here. We are unaware of any mea-
surements of the relative consumption of the different or-
ganic soil and woody fuel components for “typical boreal
fires” so a straight average of the EF for the organic soil/duff
and dead and down component in these lab/ground studies
was used for a ground-based average (as shown in Table S2).

Four studies reported airborne measurements of boreal for-
est fire EF in fresh smoke for an extensive number of com-
pounds. We include the average of the emission factors from
three fires (B280, B349, and B309) sampled by Goode et
al. (2000) (fire B320 was not included since the fuels were
not representative of a boreal forest; see original work).
Nance et al. (1993) and Radke et al. (1991) also reported
boreal airborne EF measurements for one wildfire and four
prescribed fires, respectively. These are included in this com-
pilation. We include airborne EF measurements for boreal
wildfires from the Arctic Research of the Composition of the
Troposphere from Aircraft and Satellites (ARCTAS) cam-
paign (Simpson et al., 2011). Whole air samples (canisters)
were collected in smoke plumes over Saskatchewan, Canada.
Emission factors for long-lived species were based on all
the canisters collected in 5 plumes. EFs of “short-lived”
(kOH ≥ 8.52×10−12 cm3 molecule−1 s−1) species were cal-
culated using only samples of fresh smoke collected<7.3 km
from the source.

Due to slow decomposition, large amounts of carbon are
stored in boreal soils and dead/down woody fuels that burn
by smoldering combustion and thus account for much of the
total fuel consumption. To take this into consideration, we
calculate the overall boreal forest fire EF in Table 1 (and Ta-
ble S2) from a straight average of the airborne and ground-
based EF averages, which is roughly equivalent to assuming
∼70% of the fuel consumption is by smoldering combustion.
In fact, data in Table 4 of van der Werf et al. (2010) suggest
that an even larger weighting of the ground-based “smolder-
ing” EF could be appropriate. Using Table S2, EF can be cal-
culated based on other relative contributions of flaming and
smoldering. Some smoldering compounds were measured
only from the air. For these compounds we multiply the air-
borne EF by the average ratio of the “50-50” average to the
airborne average (2.02±0.070). A similar approach is used
for smoldering compounds measured only from the ground;
they were multiplied 0.70±0.11 to obtain the 50-50 average.
Finally, we point out that the flaming and smoldering emis-
sions can have different injection altitudes, which could be
important to recognize in some applications. For instance,
the boreal airborne average in Table S2 would likely agree
well on average with airborne measurements of fresh smoke
from boreal forest fires, but the overall boreal average shown
in Tables 1 and S2 may better represent the true average re-
gional fire emissions.

2.3.3 Tropical forest

Our emission factors for tropical forest fires are in Table 1.
We derive the EFs by averaging over several types of tropical
forest fires in Table S3. For tropical evergreen forest defor-
estation fires we include EFs cited in Yokelson et al. (2008)
and EFs retrieved from the original SCAR-B data of Ferek
et al. (1998). The EFs in Yokelson et al. (2008) (all from
the Tropical Forest and Fire Emissions Experiment – TROF-
FEE) were derived using a 0.05/0.95 weighted average of the
Christian et al. (2007) ground-based measurements (domi-
nated by residual smoldering combustion) and the Yokelson
et al. (2007a) airborne measurements (dominated by flaming
combustion). For these types of fires, available evidence sug-
gests that approximately 5% of biomass consumption is by
residual smoldering combustion and 95% of consumption is
during the convective plume forming phase of the fire (Chris-
tian et al., 2007). The average of the EF for residual smolder-
ing and the EF for initially lofted emissions, weighted by the
above fuel consumption, gives fire-average EF for smolder-
ing compounds that were 1.12±0.11 times higher than the
EF from just the airborne data. Thus, since some smolder-
ing compounds were measured only in the air, their emission
factors are computed from 1.12 times the airborne average
in both this work and Yokelson et al. (2008). The EF and
variation for pyrrole can be found in the discussion version
of Yokelson et al. (2007a). The variation for all the other
species is taken as the standard deviation in the airborne EF
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in Table 2 of Yokelson et al. (2007a). We also average EF
from 12 airborne samples of fires from the SCAR-B cam-
paign (Ferek et al., 1998) that represented emissions from
six flaming and six smoldering fires classified as tropical ev-
ergreen deforestation fires. We do not make the small adjust-
ment to the smoldering compounds for RSC in the SCAR-
B data (Ferek et al., 1998). Average EF for the “subcate-
gory” tropical evergreen deforestation fires are included in
Table S3.

For tropical dry forest (TDF) fires we consider both de-
forestation and understory fire emissions. The studies we in-
clude are Yokelson et al. (2009, 2011), Ferek et al. (1998),
and Sinha et al. (2004). Yokelson et al. (2011) report EFs for
nine TDF fires sampled in Mexico (six of which were origi-
nally published in Yokelson et al., 2009). These were early
dry season fires, which should help the average EF we de-
rive for this category reflect the entire dry season since the
other studies measured EF later in the dry season. We cal-
culate an EF for nitrous acid (HONO) from the mass emis-
sion ratio1HONO/1NOx measured on one tropical dry de-
forestation fire (Fire #2 on 23 March 2006 from Yokelson
et al., 2009) times our average EF(NOx) for TDF. We clas-
sify three SCAR-B fires from Ferek et al. (1998) as TDF
fires and estimate the variation as the standard deviation of
these EF. Sinha et al. (2004) measured numerous emissions
from one African tropical dry forest (Miombo) understory
fire. That work includes an EF for condensation nuclei in the
diameter range 0.003–3 µm expressed as number of particles
per kg fuel burned. Finally, in theory, to derive average EF
for tropical dry forest fires from the available measurements
we would need to know the relative importance of under-
story and deforestation burns in this ecosystem globally (De-
sanker et al., 1997). Since this information is not available to
our knowledge, we weight them equally here to obtain aver-
age EF for TDF. We then weight all the studies in Table S3
equally to obtain the tropical forest fire average EF that we
carry over to Table 1.

2.3.4 Temperate forest

We include the average and standard deviation of EFs from
three temperate evergreen forest fires (two wild and one pre-
scribed) from Radke et al. (1991) and seven pine-oak forest
fires sampled in remote mountain areas of Mexico by Yokel-
son et al. (2011), as seen in Table S4. We do not include the
EFs for pine-oak forest fires measured in the Mexico City
area by Yokelson et al. (2007b), since they were likely at
least partially affected by nitrogen deposition from the ur-
ban area. We also include the average and standard devi-
ation of the preliminary EFs from a recent study that sam-
pled two prescribed understory fires in coniferous forest in
the Sierra Nevada Mountains of California and six prescribed
understory fires in coniferous forest in coastal North Carolina
(Burling et al., 2011).

2.3.5 Peatland

Peat burns almost entirely by smoldering combustion. Chris-
tian et al. (2003) made laboratory measurements on a single
Indonesian peat fire. We provide no estimate of variation for
EF from Christian et al. (2003) as only one fire was mea-
sured, though a general range of at least 20–40% uncertainty
could be assumed. The boreal peat EF reported in Yokelson
et al. (1997) and considered in calculating the boreal forest
EF (Table S2) are also used in computing our global peatland
EF in Table S5. The Indonesian peat sample had a 54.7%
carbon content, which contributed to a significantly higher
EF(CO2) compared with boreal peat, but we do not imply
that tropical peat always has higher C content. We calculated
the average peat EF in Table S5 by averaging the studies of
boreal (Yokelson et al., 1997) and Indonesian (Christian et
al., 2003) peat and estimate an average variability from the
fractional variation in EF in Yokelson et al. (1997). Smol-
dering peat accounts for the bulk of the emissions from most
fires in peatlands and our average peat EFs in Table S5 are
based only on the smoldering peat measurements. How-
ever, Page et al. (2002) estimated that 0.19–0.23 Gt of car-
bon was released into the atmosphere through peat combus-
tion in tropical peat swamp forests, while 0.05 Gt of carbon
was released from overlying vegetation during the 1997 El
Niño year in central Borneo. From these estimates we took a
weighted average of the peat EFs (73%) in Table S5 with the
tropical evergreen forest deforestation fire EFs (27%) in Ta-
ble S3 to derive a peatland average shown in Table 2 that ac-
counts for consumption of a (tropical) forest overstory. The
user can apply the average EFs most suited to their applica-
tion.

2.3.6 Chaparral

We include the average EF from three studies that measured
emissions from California chaparral fires. The average EF
from three fires sampled by Radke et al. (1991) was taken
(Eagle, Lodi 1, and Lodi 2). We converted their EF(NOx),
which assumes a 50/50 mix to an EF for “NOx as NO” by
multiplying their original EF by a mass factor of (30/38).
We include the emission factors from a laboratory study that
sampled∼40 carefully replicated fires in six types of cha-
parral fuels (Burling et al., 2010). We also include the av-
erage EF from five chaparral fires measured during a recent
field campaign (Burling et al., 2011). The emission factors
from the latter campaign are flagged as preliminary, but sub-
ject to only minor changes by the time of publication.

2.3.7 Open cooking

Christian et al. (2010) reported the average EF of eight open
cooking fires sampled in Mexico. Brocard et al. (1996)
and Brocard and Lacaux (1998) reported the average emis-
sion factors for 43 open cooking fires in Ivory Coast. We
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multiply their EF and variation by MWX /MWC to convert
from g C kg−1 dry fuel to g X kg−1 dry fuel. Some updated
EF reported by Brocard and Lacaux (1998) supersede those
found in Brocard et al. (1996). Smith et al. (2000) sampled
six open cooking fires in a lab using Indian fuels: varia-
tion was taken as the fractional variation in ER as seen in
Bertschi et al. (2003a). We include the EF measured by
Zhang et al. (2000) for wood burning in open stove types
in China and EF measurements made in Honduras for tradi-
tional open “stoves” (designated as “no chimney”) from Ro-
den et al. (2006, 2009). CO2 data were not included in the
published work of the latter, but were graciously provided
by Tami Bond and Christoph Roden. Johnson et al. (2008)
included EF for 8 open cooking fires in Mexico, which we
convert from g C kg−1 fuel to g X kg−1 fuel. Bertschi et
al. (2003a) report the average EF for three open wood cook-
ing fires in Zambia and we estimate variation from the frac-
tional variation in their ER. We weight all 8 included studies
equally to obtain the average EF shown in Tables 2 and S7.

2.3.8 Patsari cooking stoves

We assume a fuel C content of 50% when converting all cook
stove ER to EF. Christian et al. (2010) analyzed 26 samples
collected from chimney outlets of two Patsari stoves in Mex-
ico. Our estimate of variation is the range in the two EF mea-
surements. We also include Patsari stove EF measurements
from Johnson et al. (2008) made in 13 homes in Mexico. We
report the overall Patsari stove average emission factors and
variation in Tables 2 and S8.

2.3.9 Charcoal making

Most of the global charcoal production is carried out in tem-
porary kilns constructed mainly from dirt (Bertschi et al.,
2003a). Charcoal making EF have been reported in the lit-
erature in at least four types of units: g compound or g C
emitted, referenced to either kg of wood used or kg of char-
coal made. We convert as needed and report all EF here in
units of g compound per kg charcoal produced. In Bertschi
et al. (2003a), the kiln was charged with a tree species with a
known carbon content of 48% (Susott et al., 1996). Coupling
several other studies they concluded that∼45% of the wood
carbon is given off as gases so that approximately 216 g C is
volatilized per kg of dry wood used. Dividing up those 216 g
according to their measured ER (which included the major
emissions CO2, CO, and CH4) then allowed straightforward
calculation of the reported EF per kg wood used. Conver-
sion to EF per kg charcoal produced was based on assuming
an average charcoal yield per mass of dry wood of 28%, a
factor that varies little between the many reported measure-
ments (Bertschi et al., 2003a; Chidumayo, 1994; Pennise et
al., 2001; Lacaux et al., 1994; Smith et al., 1999). Bertschi
et al. (2003a) obtained their ER from averaging three 1–
2 h measurements made on one kiln on three different days

spread over the 4 days required to produce a batch of char-
coal. They then derived EF as just described. Christian et
al. (2010) made 36 spot measurements of ER (with∼1 min
sampling time) during days 2–5 from three kilns that had 8-
day “lifetimes”; they then converted to EF with the proce-
dure of Bertschi et al. (2003a). Our estimate of variation for
Bertschi et al. (2003a) and Christian et al. (2010) is the frac-
tional uncertainty in ER. Christian et al. (2007) made three
spot measurements (1 min sampling time) from a single kiln
in Brazil; however, measurements were made only in the
last stage of the kiln lifetime and may not be representative
of emissions occurring throughout the charcoal making pro-
cess. The FTIR-based studies of Bertschi et al. (2003a) and
Christian et al. (2007, 2010) measured a substantially differ-
ent suite of NMOC than the other available studies and also
differed in sampling approach so data from these 3 studies
was averaged together separately using the weighting factors
described next. Since Christian et al. (2007) collected only
three 1 min spot measurements, we employed a weighting
factor (4%) based on the minutes of actual sampling. The
kiln measurements of Christian et al. (2010) and Bertschi et
al. (2003a) were roughly equivalent in the extent of sampling
and were weighted equally at 48%. The FTIR-based aver-
age values were then averaged with 4 other studies to ob-
tain the overall charcoal making EF shown in Tables 2 and
S9. The four additional studies are described next. Lacaux
et al. (1994) continuously monitored the emissions from a
charcoal kiln in the Ivory Coast over its whole “lifetime”.
We assume that any differing EF found in a later paper that
discusses that project (Brocard and Lacaux, 1998) supersede
those found in Lacaux et al. (1994). We also include EF from
Smith et al. (1999) and Pennise et al. (2001) measured in
Thailand and Kenya, respectively.

2.3.10 Charcoal burning

We report all EF in units of g compound per kg charcoal
burned (Tables 2 and S10). Unless otherwise stated, the char-
coal fuel carbon content was assumed to be 72± 3% (La-
caux et al., 1994; Chidumayo, 1994; Ishengoma et al., 1997;
Smith et al., 1999). We recalculate the EF from the ER re-
ported in Bertschi et al. (2003a) and a few of our EF values
differ slightly from those originally reported in their work.
No variation was reported for the Bertschi et al. (2003a)
study as emissions were measured from only one fire. Bro-
card et al. (1998) reported ER and fractional variation in
those ER for charcoal burning, which we converted to EF.
For the compounds they reported relative to CO2, we esti-
mate variation from the fractional variation in the ER. To es-
timate variation for the compounds they reported relative to
CO, we also consider their uncertainty in1CO/1CO2. We
include Smith et al. (2000) and Kituyi et al. (2001) EF mea-
sured in India and Kenya, respectively.
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2.3.11 Dung

Keene et al. (2006) reported the median EF of gases and to-
tal particulate carbon from two laboratory fires that burned
dung collected in India. Christian et al. (2007) measured the
emissions from three burning cattle dung piles encountered
on a subsistence farm in Brazil. We calculate all EF assum-
ing a 32.6% fuel carbon content on a dry weight basis, as
reported by Keene et al. (2006). We compute a weighted
average based on the number of samples from each study
(Tables 2 and S11).

2.3.12 Pasture maintenance

In Brazil many cattle ranches have been established in ar-
eas that were previously tropical forest. Pasture maintenance
fires are used to prevent the re-establishment of the forest
and they burn both grass and residual wood from the orig-
inal forest. Within Brazil, these fires are estimated to con-
sume as much biomass annually as primary deforestation
fires (Kauffman et al., 1998). Pasture maintenance fires are
thought to be much less abundant in most other tropical forest
areas. Yokelson et al. (2007a) sampled one Brazilian pasture
fire from an airborne platform (Table S12). We include no
estimate of variation as only one fire was measured. The EF
for pyrrole for that fire was reported in the discussion ver-
sion of Yokelson et al. (2007a). The SCAR-B study of Ferek
et al. (1998) included airborne samples of six pasture fires.
We use the standard deviation in EF from their pasture fire
measurements to estimate the variability in EF and we com-
pute a weighted airborne average EF based on the number
of fires sampled in these two studies. A significant fraction
of the fuel consumption in pasture fires produces unlofted
emissions via residual smoldering combustion of the residual
woody debris (RWD) from the former forest (Barbosa and
Fearnside, 1996; Guild et al., 1998; Kauffman et al., 1998).
These emissions must be sampled from the ground. We are
aware of one ground-based study (Christian et al., 2007) that
reported EF for RSC of RWD in pastures, and we also ob-
tained originally unpublished EF from that study for “NOx
as NO,” NO, and NO2. For all species with both airborne
and ground-based data we obtained a “EF(total)” for pasture
fires from a weighted average based on the assumption that
40% of the fuel consumption was by RSC and 60% generated
lofted emissions that could be sampled from the air (Chris-
tian et al., 2007).

Some compounds were measured only from the air. The
EF(total) for the smoldering compounds that were mea-
sured only from an aircraft is estimated by multiplying
the average EF(air) by 2.00± 0.90, which was the aver-
age value of the ratio EF(total)/EF(air) for smoldering com-
pounds not containing N that were measured from both plat-
forms (Yokelson et al., 2008). Two flaming compounds
were measured only from the air. EF(total) for SO2 is es-
timated by multiplying EF(air) for SO2 by EF(air)/EF(total)

for NOx which was measured from both platforms. Our
estimate of EF(HONO) is obtained by multiplying the
1HONO/1NOx mass ER in Yokelson et al. (2007a) times
our final EF(NOx). Two smoldering compounds were
measured only on the ground. EF(total) for acetol (1-
hydroxy-2-propanone, C3H6O2) and phenol (C6H6O) are
estimated by multiplying the EF(ground) times the aver-
age EF(total)/EF(ground) for the (non-N) smoldering com-
pounds measured from both ground and air. We use the
fractional variation in the ground-based EF to estimate the
variation in species with ground or both ground and airborne
data, since ground-based data appear to have greater vari-
ability than airborne data (see Figs. 2 and 4 in Yokelson et
al., 2008). For species with only airborne data we estimate
the uncertainty as 45% (Yokelson et al., 2008) (Table 1).

2.3.13 Crop residue

Post harvest crop residue is a fine fuel that burns directly in
the field and mostly by flaming in many mechanized agricul-
tural systems. In contrast, when crops are harvested by hand
the residue is often burned in large piles that may smolder
for weeks. Yokelson et al. (2009) reported emission factors
from airborne measurements of six crop residue fires asso-
ciated with mechanized agriculture in the Yucatan, Mexico.
Christian et al. (2010) made ground-based measurements of
EF from mostly smoldering combustion during two similar
burns in Central Mexico. Yokelson et al. (2011) made air-
borne measurements of the EFs for 6 additional crop residue
fires associated with mechanized agriculture in central Mex-
ico and derived overall averages that included their EFs and
those from Yokelson et al. (2009) and Christian et al. (2010).
We use the overall averages for mechanized agriculture from
Yokelson et al. (2011) in Table S13. Christian et al. (2003)
measured the mostly smoldering emissions from three lab-
oratory fires burning manually piled Indonesian rice straw.
Because of the significantly different EFs for these agricul-
tural burning types it would be preferable to apply the spe-
cific EFs for each type of agriculture, when possible, by re-
ferring to Table S13 and the original papers. Because some
users may require or prefer a global average for this category
we present an estimate of this in Tables 1 and S13. In our
overall average for crop residue fires, the EFs from the man-
ual and mechanical agriculture subcategories are weighted
based on the number of fires sampled, which is equivalent to
assuming a 3:14 ratio of manual to mechanized harvesting on
the global scale. The actual value of this ratio is not known
to us and the reader can adjust the weighting if they prefer.
In addition, because of the very large difference in EFs for
these two types of burning, for this category only, we calcu-
lated the overall average by assuming a value of zero for the
EF of 13 species that were not detected from fires associated
with mechanical agriculture, but very high from smoldering
rice straw (see Table S13). This procedure gives a weighted
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EF value for these 13 compounds that is more consistent with
the overall average values for the other compounds.

2.3.14 Garbage burning

We consider field and laboratory measurements from Chris-
tian et al. (2010) and Lemieux et al. (2000), respectively.
Christian et al. (2010) made 72 spot measurements at four
Mexican landfills using a rolling, land-based FTIR and filter
sampling apparatus. Emission factors were computed assum-
ing the landfill waste was 40% C by mass. Their estimate of
EF(PM2.5) is the sum of particle components measured on
quartz filters with a small allowance for unmeasured species
(Christian et al., 2010). We report the average EF(PM2.5)

and EF(HCl) from Lemieux et al. (2000) for the burning of
recycled and non-recycled waste in barrels. We obtain the
average from four “runs” – emissions from two avid recy-
clers and two non-recyclers – with PM2.5 emissions from
non-recyclers notably higher than those of avid recyclers (see
Table 1 in Lemieux et al., 2000 for study details and garbage
composition). We include airborne EF measurements from a
garbage burning fire in Mexico (Yokelson et al., 2011). We
also include the few available USEPA (1995) AP-42 EF for
open burning of municipal waste.

2.4 Estimates of biomass loading and biomass
consumption

To project total emissions from a fire or region the EF pre-
sented above must be multiplied by the mass of biomass con-
sumed in the fire or region. For open burning the total mass
of biomass consumed is usually estimated from the prod-
uct of two other estimates: (1) the mass of biomass con-
sumed per unit area, and (2) the area burned. Airborne or
ground-based measurements of the area of individual burn
scars can be fairly accurate, but they are usually not avail-
able for the tropics and space-based measurements of burned
area are still highly uncertain (Korontzi et al., 2004; Roy and
Boschetti, 2009; Giglio et al., 2006, 2010). The biomass
consumption per unit area has been measured for examples
of most major types of open burning. Another approach
involves calculating the fraction of the total biomass that
was exposed to a fire that actually burned to determine a
combustion factor (sometimes called “combustion complete-
ness”). The combustion factor (CF) can then be multiplied
by spatially varying estimates of biomass loading (Brown
and Lugo, 1992; Brown, 1997) to estimate the biomass con-
sumption per unit area for any burned location. The CF
need not be a constant for an ecosystem. The small diameter
biomass components in a “fuel complex” tend to have larger
CFs than the larger diameter biomass components (Table 2 in
Kauffman et al., 2003). Considering the season of CF mea-
surements (available in the references for Table 3) reveals
that CF tend to increase strongly as periods of dry weather
lengthen and dry out the larger diameter fuels (van der Werf

et al., 2006). Additional variation in CF results from nat-
ural variation at burn time in any of numerous factors that
affect fire behavior such as relative humidity, temperature,
winds, fuel geometry, etc. (Kauffman et al., 2003). For ex-
ample, CF for Brazilian pasture fires ranged from 21–83%
due mainly to variable consumption of the large diameter
residual woody debris (Kauffman et al., 1998; Guild et al.,
1998). In southern Africa the percentage of available fuel
that burned in understory fires in June (at the beginning of
the dry season) in the Miombo tropical dry forest was 1%
and 22% (n = 2, Hoffa et al., 1999), while Shea et al. (1996)
observed that 74% and 88% (n = 2) of the understory fu-
els burned in Miombo fires in late August-early September
(their Table 4). We have compiled many of the literature data
for biomass loading, combustion factor, and biomass con-
sumption sorted by vegetation/fire type in Table 3. GFED3
estimates for biomass consumption are also shown in Ta-
ble 3 whenever their regional estimates for fuel consump-
tion per unit area were likely dominated by one vegetation
type. GFED estimates 46% higher biomass consumption for
North American boreal fuel types compared to the average of
the other referenced measurements. However, estimates of
Asian boreal biomass consumption by GFED lie within 4%
of the average of the few measurements. A comparison for
other fire types is difficult because the GFED biomass con-
sumption data is presented by geographic regions that usually
contain multiple fire types (van der Werf et al., 2010).

2.5 Global emission estimates

Operationally, most global models use temporally and spa-
tially explicit products such as monthly GFED (van der Werf
et al., 2006, 2010) or hourly FLAMBE (Reid et al., 2004,
2009) to generate open burning emissions over the course
of a model run. However, estimates of the total annual
biomass consumed globally by all the various fire types are
needed, at the global scale, to assess the importance of var-
ious fire types, to develop emissions inventories for an av-
erage or model year, and to factor into budgets. We report
several global estimates of combusted biomass (dry mat-
ter) for different fire types in Table 4. The individual es-
timates are based on data collected anywhere from 1987–
2000, which explains some of the variability in comparisons.
Global estimates from Andreae and Merlet (2001) and Bond
et al. (2004) agree well for the main types of open burning:
savanna, forest, and crop residue fires. The annual means
for 1997–2009 from GFED3 (van der Werf et al., 2010) are
about 20% lower than the widely used estimates in Andreae
and Merlet (2001) for both savanna burning (2460 versus
3160 Tg) and total forest burning (1591 versus 1970 Tg). The
Andreae and Merlet (2001) estimate of crop residue burn-
ing is about 75% higher than GFED3, but the latter assume
that they underestimate this source. Kopacz et al. (2010)
suggest that GFED3 underestimates BB in several impor-
tant tropical regions. Detailed discussion and comparison of
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Table 3. Biomass loading, combustion factor, and biomass consumption estimates for various fuel types.

Fuel Type Reference Location Vegetation specifics Biomass Combustion Biomass
Loading Factor Consumption
(Mg ha−1) (%) (Mg ha−1)

Tropical Dry Kauffman et al. (2003) Mexico Deforestation 118.2–134.9 62.4–80.2 73.7–108.1
Forest Kauffman et al. (1993) Brazil Deforestation 73.8 87 64

Jaramillo et al. (2003) Mexico Deforestation 112.2 – –
Shea et al. (1996) Zambia Understory 5.1–5.8 88–74 4.5–4.3
Hoffa et al. (1999) Zambia Understory 10.4 22.3 2.30
Ward et al. (1992) Brazil 9.3 78 7.3
van der Werf et al. (2010), GFED3 Central America Central America (CEAM) – – 29.8

Evergreen Tropical Ward et al. (1992) Brazil 292.4 53 155
Forest Fearnside et al. (1993) Brazil 265 27.5 73

Carvalho Jr. et al. (1998) Brazil 401.5 20.47 82
Carvalho Jr. et al. (2001) Brazil 496 50 248
Hughes et al. (2000) Mexico 403 95 380
Kauffman et al. (1995) Brazil 355.4 51.6 185
Guild et al. (1998) Brazil 354.8 47 167
van der Werf et al. (2010), GFED3 Equatorial Asia Equatorial Asia (EQAS) – – 190

Crop Residue Źarate et al. (2005) Spain Cereal crops – 80 1.14
Hughes et al. (2000) Mexico Cornfield 23 – –
Lara et al. (2005) Brazil Sugarcane – – 20

Peatland Page et al. (2002) Indonesia Peat plus overstory – – 510
Ballhorn et al. (2009) Indonesia Peat only – – 383

Pasture Hughes et al. (2000) Mexico 24 – –
Guild et al. (1998) Brazil 66.3 31 21
Kauffman et al. (1998) Brazil 53–119 21–84 24.5–44.5
Kauffman et al. (2003) Mexico 29.0–40.3 75–63 21.8–25.4
Jaramillo et al. (2003) Mexico 26.9 – –

Savanna Ward et al. (1992) Brazil Tropical savanna 7.2 99 7.1
Savadogo et al. (2007) West Africa Woodland savanna – – 4.1
Shea et al. (1996) South Africa 3.8 76 2.9

Boreal Forest Goode at al. (2000) Alaska, USA – – 36
S. Drury (unpublished data, 1998) Alaska, USA Wildfire B309, 28 June 1997 – – 37
van der Werf et al. (2010), GFED3 North America Boreal North America – – 53.2

(BONA)
FIRESCAN Science Team (1996) Bor Forest Island, Siberia Prescribed crown fire – – 38
Cofer III. et al. (1998) Northwest Territories, Canada Prescribed crown fire – – 42.7
van der Werf et al. (2010), GFED3 Asia Boreal Asia (BOAS) – – 39.6
Kasischke et al. (1999) Global estimate – – 10–60
Stocks (1991) Global estimate – – 25
Cahoon Jr. et al. (1994, 1996) Global estimate – – 25
de Groot et al. (2009) Canada – – 22

Temperate Forest Sah et al. (2006) Florida, USA Florida Keys pine forests 60.6 – –
Snyder (1986) Florida, USA Everglades NP 75–90 – –
van der Werf et al. (2010), GFED3 North America Temperate North America – – 12.5

(TENA)
Yokelson et al. (2007b) Mexico Pine dominated forest – – 6.5–32
Campbell et al. (2007) Oregon, USA Mixed conifer forest – – 34–44

Chaparral/Shrub Cofer III. et al. (1988) S. California, USA Chaparral – – 20–70
Clinton et al. (2006) S. California, USA Chaparral 28.3 – –
Ottmar et al. (2000) S. California, USA Chaparral – – 15.0
Hardy et al. (1996) S. California, USA Chaparral – – 24.5

current inventories can be found in Reid et al. (2009), Kopacz
et al. (2010), Wiedinmyer et al. (2010) and the references
therein. Yevich and Logan (2003) estimated biofuel biomass
consumption at 2447 Tg yr−1 for 1985, which suggested a
dominant role of biofuels in global emissions even 25 yr ago.
They also estimated that biofuel use was growing at 20% per

decade. Consistent with that growth, Bond et al. (2004) and
Fernandes et al. (2007) independently estimated higher bio-
fuel use for 1996 and 2000, respectively. If savanna burning
remains constant on average, biofuel burning could overtake
it as the primary source of BB emissions by approximately
2030; assuming the average emissions presented in Table 4
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Table 4. Global estimates of biomass consumption in units of mass of dry matter burned (Tg) per year.

Year measured 1990’s mid 1990’s 2000 1993/1995 1985

Andreae and Bond et al. Fernandes et al. Ludwig et al. Yevich and Otherf Average
Merlet (2001)a (2004)b (2007)c (2003)d Logan (2003)e

Savanna 3160 3572 – – – – 3366
Forest 1970 1939 – – – – 1955
Tropical forest 1330 – – – – – 1330
Extratropical forest 640 – – – – – 640
Biofuel 2897 – 2458 – 2447 – 2601
Cooking Stoves – – 1351 – – – 1351
Open Cooking (fuelwood) – – 1062 1714 –
Charcoal Burning 38 – 39 24 – 39
Charcoal Making 43 – – – – 43
Crop Residue (for biofuel) – – 495 – 597 – 546
Dung – – 75 – 136 – 106
Industrial – – 498 – – – 498
Peat – – – – – 3400 3400
Pasture Maintenance – – – – – 240 240
Crop Residue (field burning) 540 475 – – 451 – 489
Garbage Burning – – – – – 1000 1000

a Source is Andreae and Merlet (2001). Value of 640 Tg yr−1 is cited in original work as “extratropical forest”, which encompasses both boreal and temperate forest types. “Biofuel”
global estimate derived from the sum of biofuel burning, charcoal making, and charcoal burning estimates. Charcoal making estimate of 43 Tg yr−1 was calculated assuming a 27%
charcoal yield (Bertschi et al., 2003a). The biomass consumption estimates were derived using methods described in Lobert et al. (1999).
b Source is Bond et al. (2004). Estimates from Table 4 in original work.
c Source is Fernandes et al. (2007). Original work defines “biofuel” as fuelwood (open cooking), charcoal burning, crop residues and dung.
d Source is Ludwig et al. (2003).
e Source is Yevich and Logan (2003). “Biofuel” defined as woodfuel, charcoal burning, crop residues and dung.
f Other. Garbage burning estimate of 1000 Tg yr−1 from Christian et al. (2010), peat estimate of 3400 Tg yr−1 from Page et al. (2002), and pasture maintenance estimate of
240 Tg yr−1 from Yokelson et al. (2008).

represent global emissions from the year 2003 with a 20%
growth rate per decade. This projection is included to high-
light the importance of biofuel use, but it is based mostly
on past population/development trends and a rigorous pro-
jection of future trends is beyond the scope of this work. In
general, large uncertainties in biofuel use stem from the dif-
ficulty in monitoring its usage in developing countries (Bond
et al., 2004). The magnitude of industrial biofuel use remains
especially uncertain given the diverse range of fuels used and
the subjectivity of user surveys coupled with financial and
legal issues for micro-enterprises, which form a large part of
the economy of the developing world (Christian et al., 2010).
A quantity with extreme uncertainty is the amount of global
garbage burning with estimates ranging up to 1000 Tg yr−1

(Christian et al., 2010 and references therein).

3 Discussion

We begin this section with a brief comparison to two widely
used compilations of emission factors and then provide guid-
ance on estimating EFs for individual, unmeasured species.
We then discuss a few individual BB emissions that are im-
portant as a radical source (HONO) or for use as BB tracers
(HCN, CH3CN) and for which a significant amount of new

information has been recently obtained. We then briefly dis-
cuss progress in NMOC measurements as well as the large
amount of NMOC emitted by BB that so far remain uniden-
tified. We offer a new estimate for total global BB NMOC
emissions. An overview of the sparse information available
about atmospheric processing of BB emissions is presented.
We then conclude with a brief summary of the state of the
field identifying a few key gaps in our knowledge that should
be targeted for future research.

3.1 Summary comparison to previous compilations

Because of the large number of compounds and fire types
involved, a comprehensive comparison of the EFs presented
here to all previous compilations is beyond the scope of this
paper. In this section we present an overview comparison
of our open burning EFs with the widely used review of
Andreae and Merlet (2001, hereafter AM2001). We also
compare our biofuel EFs with those in the extensive refer-
ence work of Yevich and Logan (2003). We acknowledge
that a comparison of 2011 values to those from 2001 or
2003 should be seen partly as documentation of how values
evolve as new information becomes available rather than as
a traditional direct comparison. In addition, more than one
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averaging scheme may be adequate or appropriate since the
applications of these data are diverse. In particular, AM2001
takes an inclusive approach while we take a highly selective
approach, with each having their own strengths and weak-
nesses. An overly selective approach may inadvertently omit
useful data while the full literature average may not reflect
the ecosystem average for a large variety of reasons dis-
cussed earlier. The fact that many compounds are close in all
compilations suggests some additional confidence for those
species. A user may be well-advised to consider all compila-
tions and the original work in many applications.

To keep the discussion at a reasonable length and focus
it on differences outside the commonly observed variability,
we limit our comparison to AM2001 to “major” emissions
for which the recommended EF changed by more than 50%
between 2001 and 2011. We loosely define major emissions
as those with EF> 0.2 g kg−1 in our compilation. As an ex-
ception, we track the NOx and PM2.5 EFs even when they
do not meet these two selection criteria since they are critical
to so many applications. Many other major emissions differ
by less than 50% and many minor emissions change by more
than 50%, but they are not discussed here. The comparison is
influenced by the fact that AM2001 provided best guesses for
a significant number of unmeasured species while we do not.
Instead, we discuss application-specific options for estimat-
ing values for unmeasured species separately in Sect. 3.2. In
addition, we discuss HONO, HCN, and CH3CN in separate
sections following this overview.

We make three general points before discussing specific
compounds. We provide averages for 8 fire types not found in
AM2001: boreal forest, temperate forest, chaparral, cooking
stoves, peat, dung, pasture maintenance, and garbage burn-
ing, with possibility for even further subdivision using the
Supplement Tables. For many fire types we include some
new major emissions: e.g. HONO (see also Sect. 3.3), ace-
tol, and glycolaldehyde. Our PM EFs are generally modestly
higher.

We present a compact summary of the comparison with
AM2001 for the selected major EFs in Fig. 1, where the
black columns indicate the ratio of our EF to the AM2001
EF for each species. If a species has a blue column, this
indicates that a EF was not available in AM2001 and, for
the blue columns only, the height shows our actual EF in
g kg−1 to verify that it is a major emission. For example,
referring to the top panel of Fig. 1 (savanna fires), we see
that our EF(C2H6) is 2.06 times higher than the EF(C2H6)

in AM2001. For phenol, our EF is 175 times larger than that
reported in AM2001 as indicated by the number above the
column. While our values are higher for most of the EFs
shown, the AM2001 values are significantly higher for NH3
and HCOOH. Our EF for NOx is identical to that in AM2001
and our EF(PM2.5) is 33% higher. Finally, EF for HONO,
glycolaldehyde, and acetol are not found in AM2001 and
they are now seen to be “major” emissions (EFs of 0.20, 0.81,
and 0.45 g kg−1, respectively).

The underlying causes of all the differences depicted in
Fig. 1 cannot be discussed in detail here, but they can be
gleaned from the original papers and consideration of the var-
ious averaging schemes. However, for one category, much of
the difference with AM2001 can be summarized succinctly,
which we do next. Our extratropical smoldering compounds
are generally higher than AM2001, which is mostly due to
two factors. (1) Our total EFs for boreal fires reflect the large
component of smoldering combustion in this region and are
calculated by equally weighting the ground-based and air-
borne averages. (2) We also weight the boreal forest fire EFs
more than the temperate forest fire EFs (87:13, based on rel-
ative global fuel consumption) to generate our extratropical
EF. Conversely, our EF(NOx) for extratropical forest fires
is about three times lower than EF(NOx) for extratropical
fires in AM2001. This is because the EF(NOx) for temperate
fires is higher than for boreal fires, but the temperate forest
fire contribution is minimized in our extratropical average by
our weighting scheme. However, our temperate forest fire
EF(NOx) is similar to the AM2001 EF(NOx) for extratropi-
cal fires. For crop residue fires, the comparison to AM2001
is complex. The original AM2001 EFs relied on very lim-
ited data and extrapolations and AM2001 use a different av-
eraging scheme than that applied in this work. In fact, we
recommend using the EF measured specifically for mecha-
nized or manual-harvest agriculture explicitly when possible
(Sect. 2.3.13).

In comparison to Yevich and Logan (2003), the main dif-
ference is that they reported five major emitted species (CO2,
CO, CH4, NOx, and PM) whereas we include many more
species (nearly all recently-measured) in this work. For
species reported in both compilations most of the values are
within 40% of each other, but a few changed by a factor of 2
or more. Ratios of this work to Yevich and Logan (2003) for
a given EF are shown in parentheses. The large changes are:
lower NOx from charcoal burning (0.17) and dung burning
(0.10); higher CH4 (4.07) and PM (18.8) from dung burning;
and higher CO, CH4, and NOx emissions from crop residue
burned in field (2.00, 2.65, and 2.79, respectively). For the
main type of biofuel burning (open wood cooking fires) the
Yevich and Logan (2003) EFs are mostly very close to our
EFs and all their EFs are within 48% of our updated values.

3.2 Estimating unmeasured emission factors

In general, estimating unmeasured values can improve model
performance although this is not a guaranteed outcome. Our
compilation does not tabulate estimates for unmeasured, in-
dividual species because the best estimation method depends
on the application. The simplest estimates are obtained by
using the EF values that may be available for the most sim-
ilar fuel type. For example, filling in with EF values from
one forest type for another, or using savanna fire EFs to es-
timate missing EFs for mechanized agriculture crop residue
fires. To account for MCE differences between fire types,
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Fig. 1. The black columns show the EF in this work divided by the EF in Andreae and Merlet (2001) for the indicated species. The blue
columns show the EF in g kg−1 for species not found in Andreae and Merlet (2001). “Gly-ald”, “MVK”, and “MEK” indicate glycolaldehyde,
methyl vinyl ketone, and methyl ethyl ketone, respectively. See Sect. 3.1 for discussion.

one can calculate missing EFs at the average MCE for a fire
type using the relationships between EF and MCE for a sim-
ilar fuel type. Or one can use the inter-compound ratios from
the most similar fuel type. For example, assume compounds
X and Y have both been measured for fuel type A, but only
compound X has been measured for a similar fuel type B.
The emissions of compound Y from fuel type B can be esti-
mated from: YB = (Y/X)A × XB. If laboratory data is used it
is critical to consider how realistic the fire simulations were.
In addition, lab EFs may require some mathematical process-
ing to project EF that better reflect field burning conditions.

These latter two issues are discussed in detail in Christian et
al. (2003) and Yokelson et al. (2008). Another general prin-
ciple is to use data relying on the most appropriate measure-
ment technique available. For instance, in complex mixtures
featuring sticky gases, some techniques may be more prone
to chemical interference or positive or negative sampling ar-
tifacts. It is best to use sources where the smoke age and
MCE are available in addition to the EF for the species of in-
terest. Finally, if possible, estimates should be obtained from
studies where the data for all the reported species seems rea-
sonable. For example, BC values would be preferred from
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a study where all the trace gas EFs, particle size distribu-
tions, etc. are in the normal range as this indicates overall
representative sampling. Sometimes a study may report a
useful upper limit for a compound even though it does not
report an EF. For instance, an upper limit is reported for gly-
oxal/acetone of 20% in OP-FTIR studies (Christian et al.,
2003) or 10% in on-line, pre-separation MS studies (Karl et
al., 2007; Warneke et al., 2011). In some cases, inspection
of mass spectra can put an upper limit on the emissions of a
compound, but it is frequently the case at high masses that
many species appear at one nominal mass. Our estimates of
total NMOC in Sect. 3.4 also provide very rough guidance
for the sum of the compounds that are unmeasured.

3.3 Specific compounds

3.3.1 HONO

Given the abundance of highly reactive species present in
fresh smoke, OH plays a key role in the “fast chemistry” of
young plumes (Hobbs et al., 2003). Photolysis is the primary
daytime fate of nitrous acid (HONO), which forms OH and
NO with unit quantum yield within 10–20 min (Sander et al.,
2006). Thus, HONO can be an important source of the OH
radical, which then initiates attack on NMOCs (Finlayson-
Pitts and Pitts, 2000). Significant, direct emissions of gas-
phase HONO from BB at∼3% of NOx was first reported
for a savanna fire by Trentmann et al. (2005). A range of
1HONO/1NOx (5–30%) was then observed in a labora-
tory experiment burning various types of southern African
biomass (Keene et al., 2006). A comparable molar ratio
of 1HONO/1NOx (∼14%) was observed by Yokelson et
al. (2007a) from a pasture fire in the Amazon (Table S12).
The Caltech chemical ionization mass spectrometer (CIMS)
measured similar HONO/NOx ER for Yucatan BB (Yokel-
son et al., 2009). OP-FTIR and the NOAA negative ion pro-
ton transfer CIMS were in good agreement with each other
and observed HONO/NOx ratios similar to those mentioned
above when sampling laboratory fires burning North Ameri-
can biomass fuels (Roberts et al., 2010; Burling et al., 2010;
Veres et al., 2010). A subsequent aircraft field campaign con-
firmed the lab HONO/NOx ratios by airborne FTIR (Burling
et al., 2011) for the same fuel types on open fires and also
documented rapid post-emission HONO loss (Akagi et al.,
2011). Similar HONO/NOx ER were observed for boreal
forest fires during ARCTAS (J. M. St. Clair, personal com-
munication, 2010). The collective range of∼3–30% in the
ER 1HONO/1NOx from all studies suggests that HONO
emissions may be highly dependent on fuel type (Keene et
al., 2006; Burling et al., 2010). High levels of OH in young
BB plumes that are consistent with photolysis of significant
amounts of HONO have been observed at least twice (Hobbs
et al., 2003; Yokelson et al., 2009) (discussed further in
Sect. 3.5). In two prognostic model applications both Trent-
mann et al. (2005) and Alvarado and Prinn (2009) found that
adding both a “reasonable” amount of initial HONO and a

continuous source from heterogeneous chemistry to detailed
photochemical models of BB plumes improved the agree-
ment between simulated and observed ozone formation.

3.3.2 HCN

Andreae and Merlet (2001) reported HCN emission factors
only from Hurst et al. (1994a, b) and stressed the need for
more measurements of this species given its potential value
as a biomass burning tracer (Li et al., 2000). Within the past
decade EF(HCN) has been measured frequently and the re-
sults have high variability. However, the bulk of the new
data suggest average EF for most types of biomass burning
that are about ten times higher than obtained in the first mea-
surements (Tables 1 and 2). HCN has also proved useful
as a tracer to deconvolute mixtures of urban and BB emis-
sions (Yokelson et al., 2007b; Crounse et al., 2009). Cur-
rently there appears to be two main limitations in the use
of HCN as a BB tracer. First, there is a high natural vari-
ability in HCN emissions even within a single or similar fire
types. For example, Yokelson et al. (2009) note that the ER
1HCN/1CO for Brazilian tropical evergreen forest defor-
estation fires (0.0063±0.0054) does not differ significantly
from that of tropical dry forest deforestation fires in the Yu-
catan (0.0066± 0.0041). While it is encouraging that the
mean, observed ER for these two fuel types are similar, the
1σ standard deviation uncertainty in the mean is greater than
60% of the mean for both fuel types, which then contributes
large uncertainty to HCN-based estimates of the BB con-
tribution to regional pollutant levels as discussed elsewhere
(Yokelson et al., 2007b; Crounse et al., 2009). Second, there
is a large difference in the1HCN/1CO ER that can occur
for some different fire types, which impacts estimates in the
many areas featuring many types of biomass burning. For ex-
ample, Christian et al. (2010) note that HCN levels fell below
FTIR detection limits when sampling cooking fire emissions
in both Mexico and Africa. Thus, more sensitive measure-
ments of biofuel sources are needed for this fire type. On the
other hand the EF(HCN) measured for peat fires appear to
be about ten times larger than for other types of open burn-
ing (Tables 1, 2, and S5). Indonesia, as one example, can
have large amounts of peat fires, forest fires, and biofuel use,
complicating the use of HCN as a tracer in that region.

3.3.3 CH3CN

Biomass burning is thought to be the primary source of ace-
tonitrile in the atmosphere (de Gouw et al., 2003). Its rela-
tively long lifetime (5–6 months, Li et al., 2003) and near ex-
clusive production from biomass burning suggests great po-
tential as a biomass burning tracer. Many groups have now
measured CH3CN in smoke plumes by MS (Andreae et al.,
2001; Jost et al., 2003; Holzinger et al., 1999; Karl et al.,
2003, 2007; Christian et al., 2003; Yokelson et al., 2007a,
2009; Crounse et al., 2009). The1CH3CN/1HCN ER has
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been shown to be quite robust in both laboratory and field
measurements with molar ER of 0.39–0.56 being observed
for a wide range of non-boreal fuel types burned (Crounse
et al., 2009; Yokelson et al., 2008, 2009; Christian et al.,
2003). The1CH3CN/1HCN ER for 4 boreal plumes sam-
pled during ARCTAS was 0.30±0.11 (Simpson et al., 2011).
Analogous to HCN, CH3CN is both unmeasured for cooking
fires and was produced at order of magnitude higher levels
by peat fires (Table S5).

3.4 Gas-phase non-methane organic compounds
(NMOC)

Most NMOC are reactive so it is important to speciate as
many as possible and to know the total amount. Early at-
tempts to measure total gas-phase NMOC from BB relied on
instruments designed to measure total NMHC (TNMHC, e.g.
Cofer III. et al., 1993) and returned ER for1TNMHC/1CO
on the order of 24%. However, it is now known that∼60–
80% of the NMOC emitted by BB are OVOC on a molar
basis and that TNMHC instruments have a response to oxy-
genated compounds that is poorly characterized (Kállai et al.,
2003). More recent attempts to estimate total NMOC are de-
scribed next. PTR-MS is a “soft ionization” technique for
measuring gas-phase NMOC with proton affinity higher than
water (most NMOC) that produces essentially one peak per
molecular mass and for which the proportionality between
signal level and concentration falls within a narrow range
for all compounds detected at each mass (Lindinger et al.,
1998; Karl et al., 2007). GC and FTIR techniques can be use-
ful for species identification when more than one compound
appears at a mass, but their response factors to individual
species vary over a greater range than for PTR-MS. In addi-
tion, many of the NMOC emitted by BB are too “sticky” or
reactive to be measured by GC while FTIR works best for
smaller molecules whose strongest absorption features are
not severely overlapped by water or other co-emitted species
(Goode et al., 1999). In BB studies that synthesized all three
techniques the amount of MS signal due to identified and
un-identified peaks was compared in a few selected “typi-
cal” PTR-MS mass spectra. In this way both Christian et
al. (2003) and Karl et al. (2007) estimated that∼72% of
the NMOC in fresh smoke could be identified (on a molar
basis) when considering allm/z up to 205. Since most of
the unidentified species are heavier in mass (>100 amu) this
corresponds to successful identification of about 50% of the
NMOC on a mass basis. In a recent laboratory-based fire
study, additional advanced species identification processes
were employed, but the unidentified species still ranged from
25–51% on a mass basis (Warneke et al., 2011).

Two major concerns regarding this large amount of
unidentified (and often overlooked) NMOC species are
(1) the additional reactivity they contribute to plume gas-
phase chemistry should be recognized in models, and (2) be-
cause of their high mass, on average, many are likely to

be SVOC that could also condense after cooling or oxi-
dation (Robinson et al., 2007). Consistent with the first
effect, Trentmann et al. (2005) showed that tripling the
NMOC/NOx ratio above the measured amount improved
model-measurement agreement for ozone. Alvarado and
Prinn (2009) added monoterpenes to the BB initial emissions
in their smoke model to increase the total organic gas-phase
emissions by 30% as a surrogate for unidentified NMOC
and this enabled their model to better reproduce the sec-
ondary formation of particulate organic carbon observed in
a plume. Both findings suggest that model simulations can
be improved by including NMOC that have not been identi-
fied to date.

Because unidentified NMOC emissions are both abundant
and important, we have included their estimated EF for each
fire type in Tables S1–S14 and in Tables 1 and 2 as described
above. In addition, we provide a new global estimate of total
NMOC emissions in Table 5, which supersedes the estimate
in Table 5 of Yokelson et al. (2008). For most fuel types we
calculated total identified NMOC by summing the individ-
ual average NMOC emission factors reported in Tables S1–
S14. We then estimated the potential total NMOC (identified
plus unidentified) in g kg−1 for each fire type by multiplying
identified NMOC by a factor of 2 or 3 as needed. Based on
the findings of Christian et al. (2003) and Karl et al. (2007)
that only about half of the NMOC mass can be identified
when the emissions are measured by FTIR, GC, and PTR-
MS, we employed a factor of 2 to estimate total NMOC from
fire types where the emissions were measured with all these
instruments. Yokelson et al. (2009) found that studies us-
ing 2 of these techniques identified only about 40% as much
NMOC by mass compared to studies using all three tech-
niques. Therefore, we use a factor of 3 to calculate potential
total NMOC for those fire types that have so far only been
sampled with minimal instrumentation (e.g. biofuel burning).

To scale to global production of gas-phase NMOC in
Tg yr−1 in Table 5, we multiply the total NMOC in g kg−1

for each fire type by the estimated biomass consumption for
that fire type from Table 4. Global production of NMOC
from biofuels is calculated using EF(NMOC) of open cook-
ing fires, since these types of fires are the dominant source
of biofuel emissions on a global scale (Dherani et al., 2008).
Summing the annual gas-phase NMOC from each fire type
results in a total BB gas-phase NMOC source of 406 Tg yr−1

(383 Tg yr−1 without garbage burning). We then show that
adding the estimated NMOC emissions from peat fires in
the 1997 El Nĩno year brings the global total to 737 Tg yr−1.
The latter estimate is an upper limit for emissions during an
El Niño year when a large number of fires affected the In-
donesian tropical peatlands. The lower value of 383 Tg yr−1

ignores the contribution from peat and garbage burning en-
tirely. We note that Table 2 of AM2001 estimates that
about 100 Tg yr−1 of identified NMOC are emitted by BB
when considering all the NMHC and several of the main
OVOC. If the other OVOC from their Table 1 (that are not
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Table 5. Measured and predicted estimates of NMOC emitted from biomass burning on an annual basis.

Fuel Type Total EF(CO) CO global EF EF (NMOC, NMOC EF (BC) BC global
Combusted (g kg−1 production (NMOC, estimation of global (g kg−1 dry production
Biomass dry (Tg yr−1) identified) total) production biomass) (Tg yr−1)

(Tg yr−1)a biomass)b (g kg−1 dry (g kg−1 dry (Tg yr−1)

biomass)b biomass)c

Savanna 3366 63 212 12.4 24.7 83 0.37 1.25
Extratropical 640 122 78 27.0 54.0 35 0.56 0.36
Tropical Forest 1330 93 124 26.0 51.9 69 0.52 0.69
Biofuel 2601 77 200 19.2 57.7 150 0.83 2.16
Open Cooking/Cooking Stoves 1351 59.5 80 10.5 31.6 42.7 0.79 1.06
Dung Burning 106 105 11.1 32.6 97.7 10.4 0.53 0.056
Charcoal Making 43 255 11.0 161 321 13.8 0.02 8.6×10−4

Charcoal Burning 39 189 7.4 5.56 11.1 0.43 1.0 0.039
Pasture Maintenance 240 135 32 44.8 89.6 21.5 0.91 0.22
Crop Residue 489 102 50 25.7 51.4 25.1 0.75 0.367
Garbage Burning 1000 38 38 7.5 22.6 22.6 0.65 0.65
Peatd 3400 182 619 48.7 97.3 331 0.20 0.68

Avg. model year – global estimate – – 734 – – 406 – 5.69
El Niño year – global estimate – – 1353 – – 737 – 6.37

a Total combusted biomass estimates are from Table 4 averages (this work), unless otherwise noted. Charcoal making estimate is in units of Tg charcoal made per year. Charcoal
burning estimate is in units of Tg charcoal burned per year.
b Data are from Tables 1 and 2 of this work. EF for open cooking fires was used to represent EF for all biofuel since cooking fires are the dominant source of biofuel emissions
globally. EF for open cooking/cooking stoves was taken as the averages of open cooking and cooking stove EF. Charcoal making EF in units of g kg−1 charcoal made. Charcoal
burning EF in units of g kg−1 charcoal burned.
c Multiplication factors to estimate total EF(NMOC) (as identified + unidentified NMOC) is described in Sect. 3.4.
d Emissions from peat are added to global totals to estimate a typical emissions during an El Niño year.

included in their Table 2) are considered, it suggests that
about 150 Tg yr−1 of identified NMOC are emitted by BB
globally. Doubling this value to account for unidentified
species suggests a true global total near 300 Tg yr−1, how-
ever, this has not been widely realized. The latter value is
only 20–30% lower than our estimate in Table 5. Clearly
biomass burning emissions of NMOC rank well ahead of ur-
ban NMOC emissions globally and are second only to bio-
genic emissions (∼1000 Tg yr−1) as discussed in Yokelson et
al. (2008). CO and black carbon (BC) are also important BB
emissions. Both as a demonstration of (and a check on) our
methodology in Table 5, we also combine our biomass con-
sumption values with the measured EF(CO) and EF(BC) for
each fire type to produce global BB central estimates for CO
(734 Tg yr−1) and BC (5.69 Tg yr−1) that are in good agree-
ment with other recent estimates (Kopacz et al., 2010; Bond
et al., 2004).

3.5 Post emission processing

The emission factors presented herein were calculated from
fresh smoke sampled at the source that had usually cooled to
ambient temperature, but undergone minimal photochemical
aging. In nearly any application of this data, it is impor-
tant to realize that rapid, complex photochemistry can cause
large changes in smoke composition within minutes after its
initial emission. There is a not a single standard process-

ing scenario that can be applied to all smoke. Rather, there
are numerous possible fates of smoke given differences in
initial emissions, degree of cloud processing, dispersion alti-
tude, temperature, humidity, time of day or night, small vs.
large-scale fires (e.g. cooking fires vs. forest fires), the de-
gree of mixing with other BB plumes or biogenic or urban
emissions, etc. In theory, almost any realistic processing sce-
nario can be modeled. In practice, very few detailed smoke
evolution data have been acquired that are of value for test-
ing or constraining the chemical mechanism in smoke pho-
tochemistry models. Next we summarize the measurements
that have been made and draw a few conclusions.

The type of measurements that provide the most straight-
forward test of photochemical models are those that trace
the evolution of a single, isolated BB plume. Measure-
ments of this type have been obtained in Alaska, Africa,
California, Mexico, and Canada. Goode at al. (2000) sam-
pled two very large plumes up to∼56 km downwind in
Alaska (their Table 6). The B280 fire plume was sampled
well below the top of the plume and no ozone formation
or change in a reactive hydrocarbon (C2H4) was observed
over ∼2.8 h of aging. However NH3 decreased about 70%
over that time. The B309 fire plume was sampled closer
to the top and within∼2 h of aging the1O3/1CO ratio
had risen to∼9% (from negative values at initial injection).
Both 1HCOOH/1CO and1CH3COOH/1CO doubled on
that time scale, but the decrease in C2H4, which would have
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accompanied high OH, was small enough to be insignifi-
cant. The chemical evolution of five different isolated BB
plumes was tracked by various aircraft during the South-
ern Africa Fire Atmosphere Research Initiative (SAFARI)
2000. Three of these plumes were sampled by the Univer-
sity of Washington Convair 580 (Fig. 5 in Yokelson et al.,
2003) and1O3/1CO rose to∼9% in only∼40 min of ag-
ing. In addition1CH3COOH/1CO more than tripled from
its initial value to∼9% within the same aging interval. Ad-
ditional detailed analysis of the most extensively sampled
plume (Hobbs et al., 2003), the Timbavati plume, revealed
a rapid loss of NOx and 16 reactive hydrocarbons consistent
with an average OH of 1.7×107 molecules cm−3. Techni-
cal issues involving the sampling system preclude us from
making conclusive quantitative statements about the evolu-
tion of the particles in that plume (Alvarado and Prinn, 2009;
Magi, 2009), but particle nitrate definitely increased and OC
likely did also. Jost et al. (2003) sampled a Namibian BB
plume at 11 different smoke ages and observed1O3/1CO
rise to∼10% in∼2 h and also a tendency for acetone to be
enhanced in the downwind plume. In another African plume,
Abel et al. (2003) measured an increase in single scattering
albedo from 0.84 to 0.885 over 2.4 h of aging that they at-
tributed to condensation of non-absorbing (organic) species.

Yokelson et al. (2009) described the evolution during 1.5 h
of aging of a single BB plume in the Yucatan sampled by the
NCAR C-130.1O3/1CO rose to 10–15% in about one hour,
which is almost identical to the O3 formation rate observed
by Hobbs et al. (2003). Rapid secondary production of per-
oxyacetylnitrate (PAN), hydrogen peroxide, formic acid, and
peroxyacetic acid was observed. The post emission loss
rates were measured for SO2, NOx, and HONO. No reac-
tive NMOC were measured in the down-wind plume, but
in-plume OH was directly measured for the first time in a
BB plume and averaged 1.14×107 molecules cm−3 for the
plume age interval 22–43 min. Significant post-emission for-
mation rates for particle nitrate, ammonium, sulfate, organic
aerosol (OA), and an increase in single scattering albedo
were measured. Aerosol mass spectrometry and light scat-
tering measurements both indicated that the aerosol to CO
ratio increased by a factor of∼2.4 in 1.5 h. In another iso-
lated Yucatan plume TEM analysis indicated that slightly
aged smoke had a higher abundance of tar balls (Yokelson
et al., 2009), which have been linked to the concept of brown
carbon (Adachi and Buseck, 2008; Andreae and Gelenesér,
2006; Chakrabarty et al., 2010). Recently the evolution of
an isolated BB plume was measured in mid-coast California
for ∼4.5 h. A rapid increase in light scattering and formation
of O3, HCOOH, CH3COOH, and PAN was observed along
with loss of NOx, HONO, C2H4, C3H6, and NH3 (Akagi et
al., 2011).

The chemical evolution of one boreal forest fire plume
(Flight 18, McKay Lake Fire) was extensively measured dur-
ing ARCTAS (Alvarado et al., 2010). This fire plume ex-
hibited two different types of behavior on the same day.

In particular, the early evening samples were divided into
two groups: those obtained below 1 km and those obtained
above 2 km. The low altitude samples had low MCE (more
smoldering, 0.85–0.92) and low1NOy/1CO (0.34–0.55%).
After ∼4 h of aging1PAN/1CO reached 0.23–0.36% and
1O3/1CO ranged from−1% to 3%. The higher altitude
samples had higher MCE (more flaming, 0.96) and a higher
1NOy/1CO (1.1–1.7%). In the high altitude samples (pro-
duced by more vigorous combustion)1PAN/1CO reached
0.51% after only one hour, by which time1O3/1CO had
already reached 5%. These results nicely illustrate the high
natural variability in post-emission processing that can be ex-
pected for fires, which was, in this case, driven partly by
variable initial emissions. In light of the potential connec-
tion between plume chemistry and plume injection altitudes
it is significant that large numbers of BB plume heights can
now be measured from space about once per day (Val Martin
et al., 2010). However, in the boreal forest, where individ-
ual fires can burn for weeks, the fire radiative energy (and
likely the biomass consumption rate and injection altitude)
may not peak at mid-day in a simple diurnal cycle. In fact,
the regional fire radiative energy can be higher at night (see
Fig. 4b of Vermote et al., 2009), which could be driven by
frontal passage or other weather or fuel conditions.

Several authors have constructed detailed photochemical
models for direct comparison to the measurements in some
of the plumes mentioned above (Jost et al., 2003; Trentmann
et al., 2005; Mason et al., 2006; Alvarado and Prinn, 2009;
Alvarado et al., 2010). Taken together, these studies show
that model performance is improved by considering the ini-
tial emissions of HONO, a continuous heterogeneous source
of HONO, and unidentified NMOC. In addition, Alvarado et
al. (2010) discuss application-specific techniques to improve
model performance at larger geographic scales.

It is also useful to compare data acquired in “inter-
cepted”, aged plumes to “probable” initial values. Yokel-
son et al. (2009) discuss sources of uncertainty in interpre-
tation of data from aged smoke only in their Sect. 3.5. The
comparison is least uncertain for species which have tightly
constrained initial values such as1O3/1CO, which is neg-
ative in fresh plumes (Yokelson et al., 2003). For exam-
ple, Andreae et al. (1994) described encounters with 40 dif-
ferent tropical BB plumes about 7–10 days old for which
1O3/1CO averaged 43±26% (ranging from 11–89%) and
where 1O3/1CO correlated positively with1NOy/1CO
(their Table 1 and Fig. 14). At the other end of the spec-
trum, 1–2 day old plumes from smoldering tundra fires in
the Arctic had an average1O3/1CO of 9.5±6% (Wofsy et
al., 1992; Jacob et al., 1992). The smaller O3 enhancements
in the arctic plumes were attributed to younger plume age
and a factor of ten lower initial1NOx/1CO (inferred from
lower 1NOy/1CO) (Andreae et al., 1994). Nine plumes
from boreal wildfires that were 6–15 days old were sam-
pled at the PICO-NARE station in 2004 and eight of the
plumes had1O3/1CO ranging from 9% to 89% (Table 3
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of Val Mart́ın et al., 2006; Lapina et al., 2006). However one
aged plume had1O3/1CO of −42% (vide infra). Higher
O3 enhancements were correlated with higher NOy. Yokel-
son et al. (2007a) sampled a large regional plume in Brazil
containing the mixed output from many regional fires with
smoke age likely ranging from 1–20 h that had enhanced
O3, HCOOH, and CH3COOH. Reid et al. (1998) compared
regional haze dominated by aged BB smoke to BB smoke
<4 min old in Brazil. Smoke aging was associated with loss
of gas-phase NMHC and growth of particle ammonium, or-
ganic acids, and sulfate as well as other changes including
increases in particle size and single scattering albedo.

The observation at PICO-NARE that some plumes may
have little or no photochemical activity is consistent with
some airborne observations. One of two Alaskan plumes
traced by Goode et al. (2000) and several aged plumes en-
countered at high altitude off the coast of the US by de Gouw
et al. (2006) or in Africa by Capes et al. (2009) showed
little evidence of oxidation. Most of the boreal forest fire
plumes sampled during ARCTAS were photochemically ac-
tive enough to generate substantial amounts of PAN, but very
little O3 (Alvarado et al., 2010; Singh et al., 2010). A va-
riety of plume chemistry regimes has been observed in re-
mote sensing studies. For example, Fishman et al. (1991) at-
tributed widespread O3 enhancements in the Southern Hemi-
sphere to BB, while Verma et al. (2009) observed both O3
formation and O3 destruction in boreal forest fire plumes.
In summary, the airborne, ground-based, and space-based
observations consistently demonstrate that a large range in
post-emission outcomes is possible. An important aspect of
this variability is that despite the difficulty of using reactive
initial emissions as input for regional-global models, there
may not be an advanced smoke age that provides significant
advantages as a starting point at which emissions could be
tabulated.

A few observations have been made of cloud processing
of smoke. Yokelson et al. (2003) observed rapid reduc-
tion in NO, CH3OH, NH3, and CH3COOH and concurrent
fast NO2 and HCHO formation within a small pyrocumulus
cloud that capped a vertical column of smoke∼3 km above
the flame front. This was modeled as the product of hetero-
geneous reactions of CH3OH on droplet surfaces combined
with enhanced photochemistry in the cloud (Tabazadeh et al.,
2004; Madronich, 1987). Unpublished data from the Yucatan
plume described earlier in this section shows a very large step
increase in1HCHO/1CO immediately after the plume RH
briefly exceeded 100%, a potential sign of cloud-processing
(A. Fried and T. Campos, personal communication, 2010). A
large fraction of the smoke on Earth resides in hazy bound-
ary layers that are “topped” with a layer of embedded cu-
mulus clouds. These clouds also play a role in “pumping”
smoke from the boundary layer to the free troposphere. For
these reasons, smoke-cloud interactions require much more
research.

3.6 Knowledge gaps and sources of uncertainty

3.6.1 Poorly characterized combustion/fire types and
post-emission processing scenarios

The emissions from residual smoldering combustion have
rarely been measured and measurements of fuel consumption
by RSC are also rare. This is a major source of uncertainty
for every type of open burning except grass fires. For in-
stance, Bertschi et al. (2003b) showed that if RSC accounted
for 10% of fuel consumption on woody savanna fires, the
fire-average EF for some species would be∼2.5 times larger.
Biofuel use (e.g. cooking fires) is the second largest type of
global BB, but often overlooked as these small fires elude
satellite detection. Biofuel consumption is estimated from
questionnaires distributed in rural areas (Yevich and Logan,
2003), which may underestimate urban and industrial bio-
fuel use. The NMOC emissions from biofuel use have not
been measured with mass spectrometry, which is required
for comprehensive smoke analysis. Thus, HCN and CH3CN
emissions have not been quantified for biofuels and there is
no chemical tracer to validate survey results (Christian et al.,
2010). The lack of a tracer to verify surveys is especially
problematic for industrial biofuel use. Small informal firms
account for over 50% of non-agricultural employment and
25–75% of gross domestic product in both Latin America
and Africa (Ranis and Stewart, 1994; Schneider and Enste,
2000). These firms use a variety of fuels (wood, sawdust,
crop residue, coal, used motor oil, tires, garbage, boards with
lead paint, etc.) and some are illegal, which can affect survey
results (Christian et al., 2010). More biofuel measurements,
with more complete instrumentation, are needed to charac-
terize the diverse emissions, which depend on fuel, geogra-
phy, local customs, climate, and season (Yevich and Logan,
2003).

Garbage burning (GB) is a poorly characterized emission
source that can be significant in urban-rural areas of devel-
oping and developed nations. Christian et al. (2010) made
seminal measurements of open GB. High EF(HCl) (1.65–
9.8 g kg−1) traceable to waste polyvinyl chloride suggest
that GB is the main global source of HCl. GB emits large
amounts of PM, HCl, and NOx (Yokelson et al., 2011) and
interaction between these species could impact O3 forma-
tion (Osthoff et al., 2008; Raff et al., 2009; Thornton et
al., 2010). GB is the main global source of dioxins (Cost-
ner, 2005, 2006) and the emissions of other toxic chlorinated
compounds should be measured. GB could impact source
apportionment studies because it emits high levels of sev-
eral compounds used as tracers for BB such as levoglucosan
(Christian et al., 2010).

Relatively few measurements have been made of BB in
temperate regions where much of the burning is prescribed
for land management, but controlled to protect air quality
(Mutch, 1994; Neary et al., 2005; Wiedinmyer and Hurteau,
2010). Models often assess the air quality impacts using
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EFs from tropical and boreal forest fires, which adds uncer-
tainty. Preliminary results from recent laboratory and field
campaigns in temperate regions are included in this compila-
tion. Finally, there are very few measurements of important
post-emission processing scenarios such as nighttime smoke
chemistry and mixing with clouds or other plumes.

3.6.2 Measurement challenges

The proper measurement of particle-phase light absorbing
carbon (LAC, including BC, weak absorption by organic car-
bon (OC), and strong absorption by “brown carbon”) and
the best way to represent LAC in models is an area of ac-
tive research (Andreae and Gelenesér, 2006; Magi, 2009;
Chakrabarty et al., 2010). Most of the high molecular mass
NMOC in both the gas and condensed phases are still uniden-
tified, making it difficult to model their atmospheric impact.
Moving from the current common mass resolution of∼200
to ∼5000 and scanning at higher masses will allow more
of these compounds to be identified. However, compounds
with different structural formulas can have the same molec-
ular mass at any resolution (e.g. acetic acid and glycolalde-
hyde) (Jordan et al., 2009). Species with identical mass can
sometimes be quantified based on their different tendencies
to form clusters, pre-separation, or MS-MS techniques, but
all these approaches have limitations and many of the un-
known species are semi-volatile and thus difficult to sample
(Crounse et al., 2006; Karl et al., 2007). However, improved
knowledge of the chemical formula of the emissions present
at higher masses should enable an improved assessment of
the physical properties of these emissions (e.g. vapor pres-
sure, reactivity, etc.).

Limitations exist for all platforms used to study BB. Each
offers well-documented advantages, but here we mention
some key limitations and ideas for overcoming them. In
laboratory studies many fire-types are hard to replicate and
the different products of flaming and smoldering combustion
may not mix the same way as in real fires. Wall losses limit
aging studies to a few hours. Careful comparison/synthesis
of laboratory results with field results for similar fuels (dis-
cussed at length in Yokelson et al., 2008) should maintain a
key role for laboratory studies in future BB research.

Airborne studies sample real fires, but the lofted and
unlofted emissions can have different chemistry and post-
emission transport. Simultaneous ground-based and airborne
EF measurements have been made on the same fire (Yokel-
son et al., 2008), but more measurements of the biomass con-
sumption contributing to the lofted and unlofted emissions
are needed, as noted above. Airborne platforms can study ag-
ing on long time scales, but real world smoke is often a com-
plex mixture of young and old plumes and non-BB sources.
The use of multiple tracers helps deconvolute mixtures of ur-
ban and BB emissions (Crounse et al., 2009).

Remote sensing provides numerous products to drive and
validate models, but the global loss of information due to
cloud coverage and lack of daily coverage by MODIS in
the tropics are serious limitations. Detection efficiency of
fires as hot-spots or burn scars is poor for small fires, which
may comprise the majority of tropical fires (Hawbaker et
al., 2008; Chang and Song, 2010a; Giglio et al., 2006).
Comparison of burned area or hotspot products often reveals
factor of ten or larger disagreements (e.g. Al-Saadi et al.,
2008; Tables 5–7 in Chang and Song, 2010a, b). The lat-
ter authors noted that GFED2.1-based estimates of CO emis-
sions from tropical Asia were 5–7 times higher than their
estimates based on MODIS or L3JRC burned area prod-
ucts. On the other hand, Kopacz et al. (2010) concluded
that GFED2.1 significantly underestimated CO from biomass
burning in this region and globally. Better characterization
of remote sensing products could improve their incorpora-
tion into models and possibly inform the development of new
sensors.

The most serious measurement limitations from the stand-
point of model accuracy may be as follows. At the plume
scale, there is a large fraction of unidentified, reactive NMOC
and few measurements of plume aging that constrain/validate
chemical mechanisms. At regional-global scales there is un-
certainty in biomass consumption, plume injection heights,
and model parameterizations for processes that occur on spa-
tial scales much smaller than the model grid (Alvarado et al.,
2009, 2010; Fast et al., 2009). Additional measurements and
improvements in computing power and parameterization of
fast processes could increase model performance (Alvarado
et al., 2009, 2010).

4 Conclusions

In the past ten years significant progress has been made in
characterizing the initial emissions of trace gases and par-
ticles from biomass burning and their post-emission evolu-
tion. New instruments better quantify particle species, use-
ful BB tracers, and light oxygenated NMOC, which account
for much of the gas-phase NMOC emitted by fires. The de-
tailed chemical evolution of several individual BB plumes
has now been measured in the field. This new information
has improved model performance for several biomass burn-
ing fuel types. In this work, recent studies are used to derive
emission factors that characterize the nascent emissions from
14 types of biomass burning. Biomass burning terminology,
biomass consumption, and plume aging are also summarized.
Large uncertainties still exist for fire types (e.g. biofuels)
and smoke-processing scenarios (e.g. clouds, night-time) that
have been sampled only minimally with currently available
instruments. Thus, significant advances could be achieved in
the near future by deploying existing technology more exten-
sively and we plan to update the EF data as warranted.
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article is available online at:
http://www.atmos-chem-phys.net/11/4039/2011/
acp-11-4039-2011-supplement.zip.
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