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Abstract

Background: The supergroup Euglenozoa unites heterotrophic flagellates from three major clades, kinetoplastids,
diplonemids, and euglenids, each of which exhibits extremely divergent mitochondrial characteristics. Mitochondrial
genomes (MtDNAs) of euglenids comprise multiple linear chromosomes carrying single genes, whereas
mitochondrial chromosomes are circular non-catenated in diplonemids, but circular and catenated in kinetoplastids.
In diplonemids and kinetoplastids, mitochondrial mRNAs require extensive and diverse editing and/or trans-splicing
to produce mature transcripts. All known euglenozoan mtDNAs exhibit extremely short mitochondrial small (rns)
and large (rn/) subunit rRNA genes, and absence of tRNA genes. How these features evolved from an ancestral
bacteria-like circular mitochondrial genome remains unanswered.

Results: We sequenced and assembled 20 euglenozoan single-cell amplified genomes (SAGs). In our phylogenetic
and phylogenomic analyses, three SAGs were placed within kinetoplastids, 14 within diplonemids, one (EU2) within
euglenids, and two SAGs with nearly identical small subunit rRNA gene (18S) sequences (EU17/18) branched as
either a basal lineage of euglenids, or as a sister to all euglenozoans. Near-complete mitochondrial genomes were
identified in EU2 and EU17/18. Surprisingly, both EU2 and EU17/18 mitochondrial contigs contained multiple genes
and one tRNA gene. Furthermore, EU17/18 mtDNA possessed several features unique among euglenozoans
including full-length rns and rn/ genes, six mitoribosomal genes, and nad11, all likely on a single chromosome.

Conclusions: Our data strongly suggest that EU17/18 is an early-branching euglenozoan with numerous ancestral
mitochondrial features. Collectively these data contribute to untangling the early evolution of euglenozoan
mitochondria.
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Background

The major components of the eukaryotic tree of life that
remain underexplored comprise heterotrophic flagellates
(HFs) [1]. Investigation of HFs enables improved under-
standing of both eukaryotic evolution and diversity.
However, traditional methods for acquiring molecular
data from HFs necessitates the establishment of cultures,
which can be difficult [1], especially as many of these
cellular forms depend on symbiotic interactions. New
approaches have focused on leveraging single-cell ampli-
fied genome (SAG) sequencing technologies to generate
data enabling placement of these mysterious groups into
the tree of life [2—4]. Single-cell and traditional ap-
proaches have recently uncovered HFs that are not part
of well-studied groups (e.g., Rhodelphis, SAG D1, Ancor-
acysta) [2, 5, 6], and phylogenetic placement of orphan
taxa has helped to resolve major branching relationships
(e.g., Hemimastigophora, Picozoa, telonemids) [7-9].
Further sampling of HFs is predicted to shed light on
key evolutionary transitions that led from ancestral to
diverged states across the eukaryotes.

Among HFs, the phylum Euglenozoa includes line-
ages with some of the most divergent cellular charac-
teristics. Euglenozoans comprise four well-defined
clades: kinetoplastids, diplonemids, euglenids, and
symbiontids [10-12]. Most euglenozoans, including
diplonemids [13, 14], most kinetoplastids [15], and
most euglenids are free-living HFs [16, 17]. Symbion-
tids are anaerobic and covered in epibiotic bacteria
[10, 11]. Investigations of the parasitic kinetoplastid
Trypanosoma brucei have shown that although their
mitoribosomes, nuclear pore complexes, and mito-
chondrial import machineries are extremely diverged
from most other eukaryotes, they function in a similar
manner [18-20]. Increased sampling of rare eugle-
nozoans that branch at the base of each major lineage
will provide insights into how these cellular character-
istics diversified in structure and protein composition,
without obvious functional divergence.

Compared to lineages like vertebrates and fungi, in
which relatively little mitochondrial genome (mtDNA)
variation has occurred, euglenozoans have amassed
mitochondrial genomic oddities like no other eukaryotic
group [21]. Juxtaposed with their closest relatives (ie.,
jakobids, Tsukubamonas, and heteroloboseans), which
have bacteria-like, circular-mapping, gene-rich mtDNAs,
the transcripts of which do not require trans-splicing or
RNA editing [22-25], euglenozoans exhibit diverse
mtDNA architectures and mitochondrial transcript pro-
cessing mechanisms [26—29]. The mtDNA of the eugle-
nid Euglena gracilis is composed of linear chromosomes
bearing full-length genes, non-functional pseudogenes,
and terminal repeats in diverse arrangements [28, 30].
Kinetoplastid mtDNA, like that of T. brucei, is split into
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mutually interlocked maxi- and minicircles [31]. Maxi-
circles contain unrecognizable mitochondrial genes, the
transcripts of which undergo extensive uridine insertion/
deletion editing, facilitated by minicircle-encoded guide
RNAs and complex protein machinery [27]. Diplonemids
have mitochondrial genes split into small fragments,
often on separate molecules [32, 33], which require ex-
tensive trans-splicing and four kinds of RNA editing to
produce mature transcripts [29, 32—34]. How this diver-
sity evolved in euglenozoans is unclear.

A recently sequenced SAG (called “D1”) branched sis-
ter to all known kinetoplastids in phylogenetic analyses
[2]. Its mitochondrial contigs contained genes that were
fragmented in a similar fashion as diplonemids, requir-
ing diplonemid-like trans-splicing to produce mature
transcripts, but lacked any RNA editing [2]. While these
data allow us to infer that the ancestor of kinetoplastids
and diplonemids had a diplonemid-like mtDNA archi-
tecture, we cannot infer how the various idiosyncrasies
of euglenozoan mtDNAs emerged from a canonical
architecture. Here, we provide a starting point for un-
derstanding early transitions by identifying a deep-
branching euglenozoan SAG with an ancestral-like
mtDNA lacking any RNA editing and/or trans-splicing,
which encodes full-length mitoribosomal genes, and
multiple mitochondrial genes not present in other eugle-
nozoan mtDNAs.

Results and discussion

Diverse euglenozoans can be recovered in SAG analyses
We sequenced and assembled 20 SAGs previously amp-
lified and reported to be euglenozoans via V9 18S map-
ping [4]. Assemblies varied in size from 1.2 Mb (EU20)
to 57.6 Mb (EU16) (Additional file 1: Table S1). Similar
to previous reports [2, 35, 36], our SAGs had very low
BUSCO completion scores (0-26% including fragmented
genes) with the eukaryota_odb9 dataset (Additional file
1: Table S1). Although all SAGs contained predomin-
antly eukaryotic sequences, six (EU3-5, EU7, EU15, and
EU19) were judged to be heavily contaminated as they
had relatively high (53—-83%) BUSCO completion scores
when using the bacteria_odb9 dataset. These results
were consistent with the BlobTools plots (Additional file
2: Fig. S1). When the eukaryotic small subunit rDNA
(18S) genes from all 20 SAGs were used as BLAST quer-
ies against the NCBI nucleotide database, their top
BLAST hits were all euglenozoan 18S rDNAs (Add-
itional file 1: Table S1).

18S rDNA and concatenated nuclear phylogenies reveal a
deep-branching euglenozoan

Using a previously published 18S dataset [7], we per-
formed phylogenetic analysis including 18S sequences
from a broad diversity of eukaryotes (Fig. 1; Additional
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Fig. 1 18S rDNA sequences from 20 SAGs branch with euglenozoans. 185 rDNA sequences were collected from 20 sequenced SAGs for
phylogenetic analysis. The 18S rDNA alignment, based on a previously published dataset [7], contained 131 taxa and 1551 nucleotide positions.
The maximum likelihood phylogenetic tree was estimated under GTR + I with standard bootstrapping (BS) and ultrafast bootstrapping (UFB).
Support values are shown if = 50% and = 75% for BS and UFB, respectively. Fully supported nodes are shown as black circles. For clarity, the
majority of eukaryotes are collapsed (for full tree see Additional file 2: Fig. S2)

file 2: Fig. S2). All 20 SAGs branched within euglenozo-
ans, which were recovered as a monophyletic clade with
full support. The majority of these euglenozoan SAGs
branched within major clades (3 kinetoplastids, 1 eugle-
nid, and 14 diplonemids) with full support. Only SAGs
EU17 and EU18 could not be confidently placed within
any known euglenozoan clade. To better place these two
SAGs, we conducted phylogenetic analyses with add-
itional euglenozoan 18S (332 sequences) and 16 discobid
sequences as an outgroup (Additional file 2: Fig. S3).
Euglenozoan monophyly was obtained, and kinetoplas-
tids, diplonemids, and symbiontids all formed monophy-
letic groups. As in some previous investigations [37, 38],
euglenids were not retrieved as a monophyletic clade.

EU2 branched sister to Rapaza viridis, confirming its
euglenid identity (100% standard bootstrap [BS]). EU17
and EU18 branched with very low support (35% BS) sis-
ter to petalomonads, a basal euglenid lineage [39].

To further investigate the position of EU17 and EU18
within euglenozoans, we performed a multi-gene phylo-
genetic analysis. Because their 18S sequences differed only
in three nucleotides (not shown) and because of the low
completeness of their individual assemblies (4.0% and
4.3% BUSCOs with eukaryota_odb9, respectively; Add-
itional file 1: Table S1), we co-assembled EU17 and EU18
(Additional file 1: Table S1), producing SAG EU17/18
(6.9% eukaryota_odb9 BUSCOs). Of 20 nucleus-encoded
proteins used in a recent euglenid study [39], only four
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Fig. 2 Concatenated nuclear phylogenetic analysis indicates EU17/18 represent a deep-branching euglenozoan. Assemblies of EU17/18 and EU2
were searched for a set of marker proteins based on a previously published study including 20 nucleus-encoded proteins [39] for phylogenetic
analysis. The final alignment contained 62 taxa and 10,366 amino acid positions. EU17/18 and EU2 had 82% and 90% missing data, respectively.
The maximum likelihood tree was estimated under two models, LG + C60 + F + I (C60) and LG4X, with standard bootstrapping (BS) and ultrafast
bootstrapping (UFB). The tree topology shown is from the C60 analysis. Support values for < 50% BS and < 75% UFB are denoted by a dash (-),
whereas an asterisk (*) marks a topology that does not exist in a particular analysis. Fully supported nodes are shown as black circles




Zéhonova et al. BMC Biology (2021) 19:103

and two of these genes were identified in EU17/18 and
EU2, resulting in only 18% and 10% complete
concatenated alignments, respectively. While EU2
branched again sister to R. viridis with 90% BS and 99%
ultrafast bootstrap (UFB) support (LG + C60 + F + I'), and
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85/97% BS/UFB (LG4X), EU17/18 consistently formed a
sister clade to petalomonads with moderate, but uncon-
vincing support values given the extent of the missing data
(64/94% BS/UFB using LG + C60 + F + I' model, and 42/
81% BS/UFB using LG4X model) (Fig. 2). Taken together,
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Fig. 3 EU17/18 (a) and EU2 (b) mtDNA structure and gene content are unique among known euglenozoans. The reassembly of EU17/18 was
obtained using the SAGAWE pipeline (see “Material and methods”) including reads from both EU17 and EU18 libraries. Horizontal lines represent
mitochondrial chromosomes with genes as predicted by MFannot and lengths above them. Star (%) depicts the nadi gene that is split to two
contigs most likely because of poor quality of contig ends
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our results suggest that EU17 and EU18 likely represent a
novel basal lineage of euglenids or a basal euglenozoan
lineage. The uncertain placement could be attributed to
the poor data representation, and/or the limited taxon
sampling of basal euglenids and/or euglenozoans.

Concatenated mitochondrial gene phylogeny places
EU17/18 as a deep-branching euglenozoan

We identified 21 and seven ancestrally conserved
mitochondria-encoded proteins in EU17/18 and EU2, re-
spectively (Fig. 3). Full-length rus and rnl genes were
identified in EU17/18 and a very small part of ru/ (corre-
sponding to the 3’ half [LSU-R] of the E. gracilis rnl
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[30]) was identified in EU2. Along with the standard
mitochondrial genes, we identified a large number (24)
of open reading frames (ORFs), that, when translated,
have no similarity to any protein in the GenBank data-
base. Furthermore, no protein domains were predicted
by InterProScan, except transmembrane domains in 12
of them (Additional file 2: Fig. S4). One of these ORFs
could represent an extremely divergent nad6, which is
expected to be found as it is rarely lost or transferred to
the nucleus [40]. No additional ORFs were identified in
EU2 (Fig. 3). In both SAGs, several genes encoded TGA
codons as tryptophan (W), a feature found in all known
euglenozoans [28, 33, 41-43], further supporting the
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Fig. 4 Concatenated mitochondrial phylogenetic analysis confirms EU17/18 as a member of an early-diverging euglenozoan lineage.
Mitochondrial-encoded protein sequences were predicted from EU17/18 and EU2 mitochondrial contigs and subjected to phylogenetic analysis.
The alignment, based on a previously published study including 15 mitochondrion-encoded proteins [33], contained 37 taxa and 4325 amino
acid positions. EU17/18 and EU2 had 8.35% and 38.81% missing data, respectively. The maximum likelihood tree, estimated under two models, LG
+ C20 + F + T (C20) and LG + F + | + G4 (LG; the best-fitting model as determined by IQ-TREE), with 1000 standard bootstraps (BS) and 1000
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(-), whereas an asterisk (¥) marks a topology that does not exist in a particular analysis. Fully supported nodes are shown as black circles

-mZ-X
>ONOZmrooCm

Flectonema neradi
Rhynchopus euleeides
Rhynchopus humris
Lacrimia lanifica
Diplonema papillatum
Diplonema ambulator
Diplonema japonicum

>PmMmEmMZ20rv—0




Zéhonova et al. BMC Biology (2021) 19:103

conclusion that the TGA-W genetic code change is an
ancestral feature of euglenozoans. In addition, trnK was
predicted to be encoded in EU17/18, and truM in EU2
(Fig. 3).

Since the position of EU17/18 in nuclear phylogenies
was not fully resolved, we sought to reconstruct a mito-
chondrial phylogeny using a set of 15 proteins used pre-
viously [33]. In this concatenated alignment, EU17/18
had only 8.35% missing data, whereas in EU2 38.81%
was missing (in comparison, the model species E. gracilis
had 32.42% missing data). The mitochondrial phylogeny
shows euglenozoans, inclusive of EU17/18, as a fully
supported monophyletic clade with fully supported
euglenid (EU2 branching deeply within), kinetoplastid,
and diplonemid clades (Fig. 4). Glycomonada (kineto-
plastids + diplonemids) were also retrieved as monophy-
letic with nearly full support (99/99% BS/UFB using LG
+ C20 + F + T model, and 98/100% BS/UFB using LG +
F + I + G4 model as determined by IQ-Tree as best-
fitting model). Support for a monophyletic euglenozoan
clade excluding EU17/18 was moderately supported (74/
89% BS/UFB [LG + C20 + F + I, 72/92% BS/UFB [LG
+ F + I + G4]). These data further suggest that EU17
and EU18 represent an early-branching euglenozoan
lineage. We repeated the analysis including the highly
divergent atp6 from EU17/18 identified using Phyre2.
This phylogeny placed EU17/18 as a basal euglenid
(Additional file 2: Fig. S5). However, the support for this
position was low (72/85% [LG + C20 + F + I, 52/65%
BS/UFB [LG + F + I + G4]), and many internal euglenid
branches remained unresolved. While this placement is
suggestive of a euglenid identity of EU17/18, the extreme
divergence of atp6 sequences in euglenozoans could also
contribute to long-branch attraction artefacts. More
mitochondrial genomes from deep-branching euglenids
like petalomonads and ploeotids are required to improve
the resolution of the deep-branching relationships within
euglenozoans.

EU17/18 and EU2 bear surprising mtDNA architecture and
gene content

Since architectures of mitochondrial genomes differ sig-
nificantly among euglenozoan lineages [26], we investi-
gated the mtDNA contigs from EU2 and EU17/18
assemblies. Unlike other discobans, mitochondrial gen-
ome structures in euglenozoans exhibit diverse organiza-
tions [22]. The ancestral state from which these unique
organizations evolved was likely a circular, gene-rich,
bacteria-like mitochondrial genome. To date, no inter-
mediates between the divergent extant euglenozoan ar-
chitectures and their ancestral state have been
discovered. Both EU2 and EU17/18 exhibited contigs en-
coding several mitochondrial genes, unscrambled, and
without need for RNA editing (Fig. 3). To confirm these

Page 7 of 14

gene arrangements, we inspected read coverage by map-
ping trimmed reads onto contigs (see “Materials and
methods”). Like previously sequenced SAGs [4], the
mitochondrial to nuclear gene coverage ratios were very
high in our euglenozoan SAGs (Additional file 1: Table
S2), which is probably due to a combination of high
mtDNA copy numbers in euglenozoans [44] as well as
biassed amplification during SAG preparation. Neverthe-
less, read mapping showed a similar level of coverage
throughout all contigs, supporting the predicted genome
arrangements (Fig. 3).

All euglenozoans encode several subunits of respira-
tory complexes in their mitochondrial genome. Euglenid
mtDNAs (e.g., E. gracilis and Eutreptiella gymnastica)
encode only eight proteins: an extremely divergent ATP
synthase subunit 6 (atp6), cytochrome b (cob), three
subunits of cytochrome ¢ oxidase (coxI, cox2, and cox3),
and three subunits of NADH dehydrogenase (nadl,
nad4, and nad5) [28, 45]. Diplonemids and kinetoplas-
tids additionally encode seven subunits of NADH de-
hydrogenase (nad2, nad3, nad4L, nad6, nad7, nad8, and
nad9) and kinetoplastids also possess two mitoribosomal
proteins (rps3 and rpsi2) as well as a protein of un-
known function (murf2) [19, 46]. Diplonemids further
encode two proteins with unknown function (y4 and y7),
although the former might represent a highly divergent
subunit of the respiratory chain complexes or a mitori-
bosomal protein [32, 33, 47]. So far, no euglenozoan
mtDNA was found to encode a tRNA gene [26, 48].
Small and large subunits of mitoribosomal RNAs (rnus
and rnl) of kinetoplastids are extremely short [49-51].
In euglenids, rus and rul are each split into two halves
that are separately transcribed, though they appear to
fold into more conventional secondary structures [30].
Those in diplonemids are composed of one or more
fragments, called modules (up to three and four for rus
and rnl, respectively, depending on species) [32, 33]. Re-
gardless of the number of modules, diplonemids’ rus are
about 390 nt long, which is only one third of the length
of those in kinetoplastids.

In the EU2 mitochondrial contigs, we were able to
identify the identical protein-coding repertoire of genes
as E. gracilis mtDNA with one exception (cox3) (Fig. 3).
Several genes were identified on a single contig, namely
atp6, cob, coxl, cox2, nad4, nad5, and surprisingly, a
predicted tRNAM®(CAU) gene (Fig. 3; Additional file 2:
Fig. S6). nadl and an rnl fragment were found on two
separate contigs. Since EU2 is undoubtedly a euglenid
(Figs. 1, 2, and 4; Additional file 2: Fig. S3), its gene ar-
rangement suggests that the mitochondrial genome
architecture in euglenids is not well reflected in the sole
investigated species, E. gracilis [28, 30].

In EU17/18, we identified atp6, cob, all three cox sub-
units, 10 nad subunits (namely nadl, nad2, nad3, nad4,
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nad4l, nads, nad7, nad8, nad9, and nadll), six mitori-
bosomal proteins (rpl2, rpli4, rps2, rps12, rpsl3, and
rpsi4), full-length rul and rus, and a single tRNA'“
*(UUU) gene (¢rukK; Fig. 3; Additional file 2: Fig. S6). We
were unable to identify nad6, which may have either di-
verged beyond recognition (e.g., atp6 in E. gracilis [45])
or have independently transferred to the nucleus [52—
57]. Unlike any other sequenced euglenozoan, EU17/18
exhibited full-length rn/ and rus genes that could be eas-
ily aligned with ribosomal sequences of E. coli (Add-
itional file 2: Fig. S7).

The gene repertoire and genome architecture of
EU17/18 implies that the ancestral euglenozoan mtDNA
was more complex than anticipated—in line with nu-
merous convergent simplifications of mitochondrial gene
content across the eukaryotes [6]. Our phylogenetic re-
constructions suggest that EU17/18 represents either a
deep-branching euglenozoan or a basal member of the
euglenids. Either way, the euglenozoan ancestor can be
inferred to have had a circular-mapping single mito-
chondrial chromosome encoding at least 16 electron
transport chain components, seven mitoribosomal pro-
teins (i.e., rpl2, rpll4, rps2, rps3, rpsi2, rpsi3, and
rps14), full-length rRNA genes, and at least one tRNA.

Euglenozoans exhibit a complex history of endosymbiont
gene transfer of mitoribosomal proteins

Although genes encoding components of the electron
transport chain and mitoribosomal proteins are retained
in the mtDNA of most eukaryotes, these genes can be
lost or transferred to the nucleus [58]. In sampled eugle-
nozoans other than EU17/18, most protein components
of mitoribosomes are encoded in the nuclear genome
[19]. The only two exceptions are rps3 and rpsI2 genes
in mtDNA of kinetoplastids, which could be retained in
diplonemids but are too divergent to detect [19, 33]. In
the well-characterized mitoribosome of the kinetoplastid
T. brucei, the short length of mito-rRNAs is supple-
mented by 127 mitoribosomal proteins, assembled by a
number of dedicated factors, making it the largest
known ribosome [19, 59, 60]. While the T. brucei mitori-
bosome contains some conserved subunits widely dis-
tributed in other eukaryotes, it also incorporates
numerous euglenozoa- and kinetoplastid-specific sub-
units [60-62]. The same applies for the E. gracilis mitor-
ibosome, predicted to be composed of 108 proteins, also
with euglenozoa- and euglenid-specific subunits present
[63]. Indeed, there are eight eukaryotic mitoribosomal
subunits in E. gracilis, which are absent from T. brucei
(L1, Le, L18, L38, L56, S7, S13, and S28), and 16
eukaryotic subunits retained in 7. brucei, but likely lack-
ing in E. gracilis (L5, L29, L30, L33, L35, L41, L42, L48,
S14, S21, S26, S30, S33, S37, S38, and Fyv4) [63, 64]. We
sought to identify mitoribosomal genes encoded in the
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nuclear genome of EU17/18, but identified only one can-
didate rps protein (EG_transcript_13898 homologue)
and two candidate rpl proteins (EG_transcript_7639 and
EG_transcript_26116 homologues) (Additional file 1:
Table S3). However, even if these proteins are ortholo-
gous, there is no guarantee that they will perform the
same function as those in other euglenozoans. From
where novel euglenozoan mitoribosomal proteins
emerged and diversified is still unknown, but EU17/18
has provided a starting point for this investigation. As
more sequences from the EU17/18 lineage become avail-
able, we will begin to grasp the origins of the divergent
cellular features exhibited by euglenozoans.

Conclusions

Our data strongly suggest that SAG EU17/18 represents
the earliest-branching lineage of known euglenozoans,
or perhaps a novel euglenid lineage with ancestral fea-
tures. EU17/18 exhibits several unique mitochondrial
characteristics, enabling us to infer the ancestral eugle-
nozoan mtDNA coding content and reconstruct the
transformations that occurred within each major eugle-
nozoan lineage (Fig. 5). From an ancestral
heterolobosean-like mtDNA with a standard genetic
code, several major changes can be traced (Fig. 5 @©).
Prior to the last common euglenozoan ancestor the
TGA-W genetic code change in mtDNA occurred and
several genes were lost or transferred to the nucleus
(®). The ancestral euglenozoan mtDNA was most prob-
ably a circular-mapping chromosome encoding atp6,
cob, cox1-3, nadl, 2, 3,4, 4L, 5,6, 7,8, 9, and 11, rpl2,
14, rps2, 3, 12, 13, 14, full-length rus and rnl, as well as
some tRNA genes (@). When tRNA genes were fully
transferred to the nucleus remains unclear as the eugle-
nid EU2 retains at least one predicted tRNA.

After divergence of EU17/18 from all other euglenozo-
ans, rps2, rpl2, and nadll were transferred to the nu-
cleus (®). From this point, major changes likely
occurred in the rus and rul genes, which coincided with
the emergence of a number of novel mitoribosomal pro-
teins [19, 59, 63]. In euglenids this can be seen by split
rns and runl genes ®, whereas in glycomonads, this is
seen in their accelerated divergence and drastic shorten-
ing ®. In euglenids, nad2, 3, 4L, 6, 7, 8, and 9 were ei-
ther lost or transferred to the nucleus, as only atp6, cob,
coxl, cox2, cox3, nadl, nad4, and nad5 were retained in
the mtDNA ® (more euglenid mtDNA sequences are
needed to confirm this inference) [63]. In kinetoplastids
and diplonemids, the mitochondrial coding complement
is nearly overlapping in electron transport chain compo-
nents, both retaining atp6, cob, cox1-3, nadl, 2, 3, 4, 4L,
5 6, 7, 8 and 9 ®. Kinetoplastids additionally retain
rps3 and rpsi2 [19, 46]. rps13 and rpli4 are encoded in
the mtDNA of EU17/18, appear to be lost outright in
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rps14 was lost. ® For the glycomonads, genes were split to modules and rRNAs were significantly shortened. While rps74 underwent EGT, rps13
and rpl14 were lost completely. ® Mitochondrial genome structure of early-branching euglenids is currently unknown. @ For the SAG EU2,
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glycomonads ® but transferred to the nucleus in eugle-
nids @. Similarly, rpsI4 was lost in euglenids @ but
likely transferred to the nucleus in the lineage leading to
glycomonads ®.

In conclusion, SAG EU17/18 has provided signifi-
cant insight into the origin and diversification of the
euglenozoan mtDNA gene complement (Fig. 6). The
evolutionary reconstruction presented herein shows
that the extreme complexity of mtDNA organization
and transcript processing exhibited by most eugle-
nozoans had rather simple origins, an unexpected
finding for this group known for its highly divergent
mitochondrial characteristics. Our data further dem-
onstrate that single-cell approaches are necessary for
identifying basal protist lineages whose incorporation
into the tree of life is essential for understanding

cellular evolution in particular and eukaryote biology
in general.

Material and methods

Sample origin, genome amplification, and sequencing
We chose to sequence a set of 20 heterotrophic fla-
gellate SAGs that were previously isolated and ampli-
fied, and their V9 18S sequences were Sanger
sequenced [4]. V9 18S placement revealed their
phylogenetic affinity to euglenozoans [4]. These SAGs
originated from cells isolated from the deep chloro-
phyl maximum in the North Pacific Ocean as re-
ported previously [4]. In the current study, we
prepared sequencing libraries with Nextflex Rapid
DNA library preparation kit (BIOO Scientific) and 12
cycles of PCR amplification. Libraries (250 bp paired-
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end) were sequenced on a HiSeq 2500 using Rapid
run SBS v2 reagents (Illumina).

Single-cell genome assembly

Each sequence library corresponding to a SAG was assem-
bled using the SAGAWE pipeline available at https://
github.com/guyleonard/sagawe. Briefly, libraries were
quality controlled and adapter trimmed using Trim Gal-
ore! v0.6.4 (https://www.bioinformatics.babraham.ac.uk/
projects/trim_galore), digitally normalised using BBNorm
(part of the BBTools suite v37.93; https://jgi.doe.gov/data-
and-tools/bbtools/) to compensate for uneven coverage of
multiple displacement amplification, reads merged using
BBMerge (part of the BBTools suite) to create sets of lon-
ger reads, and then assembled with SPAdes v3.13.1 [65] in
single-cell mode under default parameters. Post assembly
statistics were computed to provide general assembly stats
using QUAST v5.0.2 [66], genome completeness estimates
using BUSCO v3.0.1 [67] software, contamination checked
using BlobTools v1.0 [68] and BLAST v2.2.31+ [69]
against NCBI nucleotide database, and coverage estimated
via read mapping using BWA v0.7.17-r1188 [70] and Qua-
limap v2.2.2-dev [71]. For the reassembly of EU17/18, the
same pipeline was employed using reads from both EU17
and EU18 libraries.

Phylogenetic analysis of 185 rDNA and concatenated
nuclear genes

Small subunit ribosomal DNA (18S rDNA) was ex-
tracted from each assembly by BLASTn searches
using a set of euglenozoan 18S sequences as queries.
Extracted 18S rDNAs of SAGs were aligned using
MAFFT v7.458 [72] under FFT-NS-i strategy (as

determined with --auto) with 18S rDNAs of organ-
isms from all major eukaryotic groups [7] and from
other discobans. To remove poorly aligned positions
trimAl v1.4 [73] (-gt 0.8) was used. Maximum likeli-
hood analysis was performed with IQ-TREE v1.6.8
[74] under the GTR + I model. Branch supports were
obtained by non-parametric (BS) and ultrafast (UFB)
bootstrap approximation methods [75] with 100 and
1000 replicates, respectively.

Assemblies EU17/18 and SAG EU2 were queried for
20 nucleus-encoded proteins [39]. Found proteins were
aligned in the respective single-gene alignment using
MAFFT v7.458 [72] under L-INS-I strategy (as deter-
mined with --auto), and trimmed with trimAl v1.4 [73]
(-gt 0.5). Single-gene trees were inferred from trimmed
alignments using the best-fitting substitution model as
determined by IQ-TREE v1.6.8 ([74], and support
assessed with 1000 ultrafast bootstrap replicates [75].
Single-gene trees were visually inspected to identify con-
taminant and paralogous sequences. The final trimmed
and concatenated dataset consisted of 20 genes from 62
discobans and had 10,366 amino acid positions. A max-
imum likelihood phylogeny was estimated in IQ-TREE
v1.6.8 [74] under two models: LG + C60 + F + T and
LG4X. For the LG + C60 + F + I' model, 200 BS and
1000 UFB replicates were used, and for the LG4X model,
1000 replicates were estimated with both bootstrapping
methods.

Mitochondrial genome analysis and concatenated
phylogenetic analysis

Reassembly EU17/18 and SAG EU2 were searched for
mitochondrial protein- and rRNA-coding genes using
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Diplonema papillatum [32] and Euglena gracilis [28] se-
quences as tBLASTn and BLASTn queries, respectively.
The identity of found sequences was confirmed by
BLAST searches against the NCBI non-redundant data-
base. Larger mitochondrial contigs of EU2 and EU17/18
were analysed by MFannot (https://megasun.bch.
umontreal.ca/cgi-bin/dev_mfa/mfannotInterface.pl). Pro-
tein domains were predicted by InterProScan search
[76]. The protein translations of identified ORFs were
subjected to search using Phyre2 [77] to identify more
divergent homologues.

For presentation purposes, tRNA and rRNA sequences
were aligned using the built-in aligner of the Geneious
Prime v2020.2.3 software [78] and adjusted in a graph-
ical editor.

Identified mitochondrial protein-coding genes were
added to a dataset from a previous investigation [33].
Datasets were aligned with MAFFT v7.458 [72] under L-
INS-I strategy (as determined with --auto), and trimmed
with trimAl v1.4 [73] (-gt 0.5). Single-gene trees were in-
ferred from the alignments using the best-fitting substitu-
tion model as determined by IQ-TREE v1.6.8 [74] and
1000 UFB replicates. The final trimmed concatenated
dataset consisted of 15 genes from 37 discobans and had
4324 and 4348 amino acid positions with and without
atp6 from EU17/18, respectively. A maximum likelihood
tree was inferred with IQ-TREE v.1.6.8 [74] under the LG
+ F + I + G4 model (determined as the best-fitting model
by IQ-TREE) and 1000 BS and 1000 UFB replicates.

Homology searching

Ancestral and euglenozoan-specific subunits of the
mitoribosome were searched using the previously pub-
lished dataset of E. gracilis [63]. Candidate homologues
were subjected to a reciprocal BLAST search to validate
orthology. A list of proteins that were searched is avail-
able in Additional file 1: Table S3.

Supplementary Information
The online version contains supplementary material available at https://doi.
0rg/10.1186/512915-021-01035-y.

Additional file 1: Table S1. General statistics of assembled SAGs. Table
S2. Proportion of mtDNA in SAGs. Table S3. List of proteins searched in
EU17/18 reassembly. +, presence; +?, uncertain presence; -, absence.

Additional file 2: Fig. S1. BlobTools plots showing contamination of
several sequenced SAGs. The bacterial contamination is shown as blue
circles, while sequences with eukaryotic signal are in magenta. For
comparison, BlobTools plots for SAGs EU17 and EU18 are also shown.
Fig. S2. 185 rDNA phylogeny of eukaryotes. The Maximum Likelihood
phylogenetic tree was estimated from an alignment containing 131 taxa
and 1551 nucleotide positions under the GTR + I model with standard
bootstrapping (BS) and ultrafast bootstrapping (UFB). Support values are
shown if 2 50% and = 75% for BS and UFB, respectively. Fully supported
nodes are shown as black circles. Fig. $3. 185 rDNA phylogeny of
euglenozoans. The Maximum Likelihood phylogenetic tree was estimated
from an alignment containing 368 taxa and 1269 nucleotide positions
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under the GTR + I model with standard bootstrapping. Support values
are shown if 2 50%. Fig. S4. Predicted domains in EU17/18 mtDNA-
encoded ORFs. ORFs annotated by MFannot (https://megasun.bch.
umontreal.ca/cgi-bin/dev_mfa/mfannotinterface.pl) were submitted to an
InterProScan [76] search. Predicted domains are highlighted as explained
in the graphical legend. Fig. S5. Concatenated mitochondrial phylogen-
etic analysis including atp6 from EU17/18. The alignment contained 37
taxa and 4348 amino acid positions, with EU17/18 missing 3.65% of data.
The Maximum Likelihood tree was estimated under two models, LG +
C20 + F + I (C20) and LG + F + | + G4 (LG; the best-fitting model as de-
termined by IQ-TREE), with 1000 standard bootstraps (BS) and 1000 ultra-
fast bootstraps (UFB). The tree topology shown is from the C20 analysis.
Support values for < 50% BS and < 75% UFB are denoted by a dash (-),
whereas an asterisk (*) marks a topology that does not exist in a particu-
lar analysis. Fully supported nodes are shown as black circles. Fig. S6.
Characterization of tRNAs encoded in mtDNA of EU17/18 and EU2. a-b)
Sequences of trmK (a) and trmM (b) were aligned with mitochondrially
encoded tRNAs of other species of Discoba. Residue shading indicates se-
quence conservation. c-d) Secondary structures of trnK (c) and trnM (d) as
predicted by tRNAScan-SE. Double and triple bonds are depicted as dark-
and light-blue circles, respectively. Anticodons are highlighted with a
green background. Since all other known euglenozoans import all tRNAs
into mitochondria from the nucleus [48], we built tRNA alignments with
homologues from the mtDNAs of other discobans to take into account
different evolutionary pressures and mutational rates in nuclei and mito-
chondria [52]. The identity across nine trnK and 20 trnM sequences was
38.7% and 15.8%, respectively (a-b). Predicted secondary structures re-
sembled other tRNAs supporting their functionality (c-d). While most eu-
karyotes have at least some tRNA mitochondrial-encoded, the long-
standing paradigm was that euglenozoans and unrelated apicomplexans
(which share with euglenozoans a range of unique features [79]) import
all tRNAs from the cytosol [80]. This has significant consequences, since
the bacterial-type translation system has to cope solely with the
eukaryotic-type tRNAs [81]. Fig. S7. Mitoribosomal RNAs of EU17/18. Se-
quences of rns (a) and rn/ (b) genes, as predicted by MFannot, were
aligned with sequences of Escherichia coli. E. coli sequences were ob-
tained from http://rna.ucsc.edu/rnacenter/ribosome_images.html, and
their predicted domains [82, 83] are shown as magenta and blue boxes
below the sequences. Nucleotide identities are shown by black back-
ground with white nucleotides.
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