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ABSTRACT
A mixture of general-use and of some custom-designed plastic parts, fabricated on inexpensive
layered manufacturing machines, is used to construct a variety of sculptural maquettes. This arti-
cle describes the design and fabrication of a set ofmodular parts that permit the assembly of tubular
sculptures as well as constructivist realizations of mathematical knots and links.
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1. Introduction

For many millennia, from the Venus of Willendorf [18]
to the Greek and Roman marble statues, sculpting was
a subtractive process; material was selectively removed
from an original body of wood, stone, or ivory to free up
a smaller, more artistic shape contained within.

During the last two centuries constructive sculpting
techniques have come into their own, where individual
pieces of material are assembled and held together with
bolts, welds, string, or some kind of adhesive glue. This
allowed the construction of more complex sculptures,
made from different materials, and possibly containing
movable parts.

In the last two decades a new revolution has taken
place. The emergence of rapid prototyping machines
based on layered manufacturing techniques permits
the fabrication of extremely complex, partially hollow
geometries that cannot bemadewith subtractivemachin-
ing, because the inner parts of such shapes are not reach-
able by any existing machine tool. The fact that the price
of such machines has dropped by two orders of magni-
tude in the last twenty years has made these machines
available to the general public. A large audience can now
create their own custom-made parts, either on their own
inexpensive rapid-prototyping machines, or through an
on-line service such as Shapeways [13]. This offers new
possibilities also for artists.

Thanks to layered manufacturing, many more people
can now experiment with various conceived geometries
and quickly produce small maquettes for little costs and
with fast turn-around times.
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2. Modular and reconfigurable art

At the 1981 Design Automation Conference, in Nashville
TN, Sculptor Frank Smullin [14] presented a reconfig-
urable sculptureFit to be Tied (Fig. 1a).Nine obliquely cut
tube segmentswere held togetherwith bolted flanges. Ini-
tially they were laid out and connected as a single straight
pipe lying on the ground. Subsequently the angled joints
were reconnected with a 180° azimuth change, and the
construction was transformed into a curled-up trefoil
configuration. Other artists, such as Richard Zawitz [19]
in his Museum Tangle (Fig. 1b) have used modular
tubular elements to make sculptural forms that can be
deformed smoothly and continuously.

The work reported in this article was originally
inspired by two pieces of art work by Henk van Putten
[17] (Fig. 1c,d) exhibited in the art exhibit of the 2013
Bridges conference in Enschede, Netherlands. The over-
all shape is based on some simple modules, generated by
sweeping a square cross section along a circular arc [16].
Combining several such elements with different bending
angles and sweep radii leads to intriguing geometrical
sculptures, in which the modularity may not be imme-
diately obvious. While these sculptures were designed
based on a few geometrical modules, they were not really
constructed from individual modular elements but were
machined or fabricated as composite shapes.

After the 2013 Bridges conference an exploration was
started to see whether it was practical to create some
physical “snap-together” parts representing the keymod-
ular shapes, so that one could do real-time “hands-
on sculpting” and compose many different shapes from

© 2015 CAD Solutions, LLC, http://www.cadanda.com

http://orcid.org/[0000-0002-0060-2162]
mailto:sequin@cs.berkeley.edu
http://www.cadanda.com


2 C. H. SÉQUIN

these parts in a matter of minutes. This led to project
“LEGO R©-Knots” presented at the 2014 Bridges confer-
ence in Seoul [12].

2.1. Basic Borsalino geometry

This exploratory effort started out with the design of the
two parts needed for the construction of the Borsalino
shape (Fig. 1c) as explained by Henk van Putten [16].
All parts are basically sweeps of a square cross section
along sweep curves that form circular arcs. The Borsalino
needs two building blocks (Fig. 2a): the three (orange)
end-caps that form tight 180° turns, and the six (green
and cyan) connector pieces, which exhibit gentler bends
through an angle of 45°. To form the tight, smoothly
connected Borsalino configuration, the sweep radius, r,
of the end-cap has to be half the side, s, of the square
cross section, and the bending radius, R, of the medial
axis of the connector has to be 1+√

2 times larger. By
solving the quadratic equation derived from Figure 2b,
which is the enlarged upper right corner of Figure 2a, one
obtains:

R2 + R2 = (r + R)2; → R2 − 2∗R∗r − r2 = 0;

→ R = r + r∗
√
2

Assembling the nine fabricated plastic parts resulted in
a rather faithful reproduction of the basicBorsalino shape
(Fig. 2c).

3. Fabrication issues

A second important goal of this effort was to design
these parts in such a manner that they can be built read-
ily on inexpensive rapid prototyping machines, such as
the Afinia_H479 3D Printers [1], which dispense only a
single plastic material. The aim was to minimize mate-
rial costs and build times, as well as any subsequent
cleanup required; it mandated geometries that in at least
one build- orientation require only a minimal amount of
supporting scaffolding that can be removed easily.

In a first round of implementation, all parts were built
as hollow pipe segments with a square cross section.
The nominal sleeve dimension bywhich consecutive pipe
modules fit together was chosen to be one inch, the ini-
tial wall-thickness was 70mils (1.75mm), and the sleeve
insertion depth was 0.2′′ (5mm). Building a straight tube
segment in a flat, horizontal position, would be very inef-
ficient; the whole tube would be filled with (grey) scaf-
folding material (Fig. 3a). Theoretically the tube could
be balanced on one longitudinal edge (Fig. 3b). Because
cantilevered surfaces sloping out at 45° can be built with-
out scaffolding, this build orientationmaynot require any

(a) (b) (c) (d)

Figure 1. Sculptures built from modular tube segments: Fit to Be Tied by Frank Smullin (1980); (b) Museum Tangle by Richard Zawitz
(1982); (c, d) Borsalino by Henk van Putten (2013).

(a) (b) (c)

Figure 2. Borsalino geometry: (a) CADmodel of Borsalino; (b) calculating the connector radius; (c) Borsalino assembled from nine plastic
pieces.
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(a)
(b)

(c) (d) (e) (f) (g)

(h)

Figure 3. Fabrication options: (a) flat square tube; (b) tube on edge; (c) vertical tube, (d, e) with 45° flange transitions; (f ) curved segment
with sharp inner transition and (g) tapered-off; (h) end-cap.

(a) (b) (c)

(d)

Figure 4. Fabrication options: (a) standard curved connector with built-in sleeve; (b) an end-cap with one tapered male sleeve;
(c) expanded end-cap with two female ends; (d) separate, insertable sleeve.

support material at all. However, praxis shows that such
a precariously balanced part will very likely get knocked
over during the build process; – and even if it didn’t, the
resulting cross section would no longer be square due to
some unavoidable sagging of such cantilevered surfaces.

It is much better to build such tubular elements in the
vertical direction. A small amount of scaffolding may be
required where the connection sleeve transitions into the
main tube (Fig. 3c). But even this can be avoided, if at the
male end the sleeve transitions from the nominal sleeve
profile to the outer wall with a taper of 45° (Fig. 3d).
However, such a 45° taper is not very desirable; it leaves
very visible gaps where two pieces are joined. Even more
advantageously, the connector parts can be built with-
out any scaffolding, if the female end points downward
(Fig. 3e); all the visible, outer tube diameter transitions
can then be kept square and planar.

A vertical build orientation also works well for the
curved connectors (Fig. 4a), since they don’t bend
throughmore than 45°. Again, the female end is oriented
downward. An internal, downward pointing wedge near
the male end might prompt the construction of a thin
supporting wall below it (Fig. 3f). This can be avoided
by asymmetrically tapering the offending tube diameter
transition at 45° into the inner wall of the curved main
tube (Fig. 3g).

In the end-caps, which turn through 180°, it is more
difficult to avoid completely the use of any support mate-
rial. The inner cylindrical surface could be remodeled
with some kind of “cathedral ceiling” sloping at 45°
(Fig. 3h); but the required central supporting wall would
block the free passage through this tubular element. Also,

if the end-cap uses a slightly larger turning radius, then
we cannot avoid some scaffolding to support the smaller
concave cylinder formed by the outer surface (Fig. 3h).
Adding flanges to one or both ends of such end-caps
(Fig. 4b) also increases the need for scaffolding. It then
becomes advantageous to build all end-caps with two
female ends (Fig. 4c) and to build separately a copious
number of insertable sleeves (Fig. 4d) that can turn such
an end into a male connection.

4. Rhombic Borsalinos

While playing with the various physical pieces, it tran-
spired that stretching the connection in the middle of
each pair of curved connectors in the regular, tight Bor-
salino loop could lead to another interesting configu-
ration. The two side-by-side square end-cross-sections,
which previously were connected by a tight end-cap, are
shifted past one another until they are located corner-
to-corner (Fig. 5a). Now these two ends can be closed
off with a new piece, called a “rhombic end-cap”, which
sweeps the square cross section along a half-circle par-
allel to one of its face diagonals. This geometry can also
be understood as sweeping a “rhombic” cross section, i.e.,
a square with an azimuthal rotation of 45°, along an arc
with a radius enlarged by

√
2. Figure 5b shows the result.

These new rhombic end-caps are by themselves attrac-
tive new building modules. We can also use them as
enlarged end-caps when tracing out the whole Bor-
salino shape with a consistent rhombic sweep along the
composite sweep curve scaled up by

√
2. This requires

the fabrication of six new connector pieces (Fig. 5c).
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(a) (b) (c) (d)

Figure 5. Rhombic Borsalinos: (a) an extension between a pair of connectors leads to (b) a Flipped-over, Rhombic Borsalino Loop;
(c) diagonal bending of the connectors leads to (d) a Rhombic Borsalino.

(a) (b) (c) (d)

Figure 6. Bow-Tie Loop construction: (a) tight tangle of prismatic beams; (b) helical end-caps added; (c) a single bow-tie lobe; (d) 3-
segment connector between standard 180° end-caps.

Figure 5d shows the complete, enlarged Rhombic Bor-
salino, – another instance of an attractive piece of sweep-
geometry.

5. Bow-Tie Loops

The shape shown in Figure 5b seems to consist of three
tight “Bow-Tie” lobes, where the square beam coming
into the end-cap turn lies flush against the beam com-
ing out of the turn, and the turn itself sweeps through
more than 180°. Such Bow-Tie lobes can also be con-
structed using beams with different cross sections, – e.g.,
with the shape of an equilateral triangle. Thus onemay try
to connect several suchBow-Tie lobes snuggly into a sym-
metrical, twisted loop. Such geometries are best designed
from the center outwards. Figure 6 illustrates the con-
struction principle: One may start with three triangular
prisms, where each has one edge lined up along the z-axis.
Then each prism is rotated around its horizontal sym-
metry axis going through the origin until it comes into
face-to-face contact with its two neighbors (Fig. 6a). The
prisms are cut to the length where their outer edges inter-
sect. Now, helical end-caps are added, so as to connect
pairs of triangles that share a vertex (Fig. 6b). Figure 6c
shows a single Bow-Tie lobe resulting from this construc-
tion. To keep the emerging set of parts as modular as

possible, the overall shape can be decomposed in a dif-
ferent manner: The helical end-cap itself is decomposed
into two small curved connector pieces attached to a stan-
dard, semi-circular end-cap sweeping through 180°; the
latter is a part that can be re-used in many other con-
figurations. Therefore these two extra connector pieces
are attached to the central straight potion of the sweep to
form a twisted, curved connector (Fig. 6d), which is cus-
tommade for this special Bow-Tie Loop with a triangular
cross section.

This construction can be generalized to more than
three triangular beams and to beams with other cross
sections. When one starts with four triangular prisms
symmetrically positioned around the z-axis, less of a
rotation is required to bring all prisms into face-to-face
contact with their two neighbors. Again the prisms are
truncated where their outer edges intersect, and pairs
of adjacent triangles are closed off with suitably twisted
end-caps. The first physical Bow-Tie Loop with four tri-
angular beams joining in the center (Fig. 7a) was con-
structed from four complete Bow-Tie lobes (Fig. 7b). But
the skewed directions of the two prismatic connection
sleeves made the assembly of the whole sculpture very
difficult. Thus the approach exemplified with Figure 6d
is much preferred. It was subsequently used in the con-
struction of a 5-lobe Bow-Tie Loop (Fig. 7c), where five
triangular prisms pass each other symmetrically around
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(a)

(b)

(c)

(d)

Figure 7. Bow-Tie Loopswith three (a) and four (c) lobes and the components from which they were built (b), (d).

the center. Thus this geometry is partitioned into ten
parts: five regular, re-usable end-caps that turn through
180° (Fig. 8a) and five tailor–made twisted S-shaped con-
nectors (Fig. 7d) in the spirit of Figure 6d. This sculpture
is easy to assemble. The same approach was also used to
construct a 3-lobe Bow-Tie Loop using pentagonal prism
beams.

6. Adding twisted and helical pieces

Another set of experiments, performed together with
Michelle Galemmo [5], explored what shapes emerge
when a triangular cross section is swept along Henk van
Putten’s classical Borsalino curve. It turns out that in this
case the curved connector pieces bending through 45°
also need to be given a twist of 15° tomake overall smooth
surface connections. For the square-sectioned Borsalino,
a pair of curved connectors performs a topological rota-
tion of the prism faces equivalent to a twist of 90°. For the
triangular cross section, such a cyclic face re-assignment
would be equivalent to a twist of 120°, and thus an actual
twist of 15° has to be introduced into each connector part
to correct for this fact. The end-caps (Fig. 8a), previously
employed in Figures 7c and 7d, were re-used to produce
the Tria-Borsalino loop shown in Figure 8b.

If the azimuth angle of the cross-section is changed
by 180° along the whole sweep, one obtains another
symmetrical geometry for the end-caps, referred to as
“Type II.” The modified end-cap and the resulting Tria-
Borsalino are shown in Figures 8c and 8d. Note that the
required connectors are different for the two types of
Tria-Borsalinos, since the starting azimuths of the sweeps
differ by 180°.

Once the notion of twist had been introduced, it
seemed natural to explore what this might bring to the
original Borsalino shape with a square cross section. Even
though Figures 5b and 5d may have a somewhat twisted
look, these generalized cylinders are still minimum-
torsion sweeps. However, theRhombic Borsalino (Fig. 5d)
is loose enough, so that there is room to add actual twist
into the six curved connector pieces. To keep the connec-
tions to the rhombic end-caps in the same orientation,
we must give each connector pair a total twist of 90°.
Because of the asymmetry introduced by the male and
female coupling sleeves, this leads to two new connector
parts (Fig. 9a,b). With such a pair we can form twisted
connections between consecutive end-caps. Figure 9c has
a single twisted link at the bottom; Figure 9d has all three
links twisted.

Modeling these twisted connectors offers some chal-
lenges. The outside surface should be nice and continuous

(a)
(c)

(b) (d)

Figure 8. Tria-Borsalinos: (a, b) Type I end-cap and assembly; (c, d) Type II end-cap and assembly.
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(a) (b) (c) (d)

Figure 9. Twisted Rhombic Borsalinos: (a, b) the twisted connector components; and the results: with one twisted branch (c) and with
three twisted branches (d).

when these parts are chained together; thus it wants to
be part of a continuously twisting helical structure. On
the inside, however, there should be short, straight sleeve
sections at both ends, so that these parts can fit together
with any of the other “LEGO R©-Knot” parts. We found
that a good way to model the inner surface is with a
sweep along a cubic Bézier curve, where the end-points,
the end-tangents, and the azimuthal orientation are care-
fully adjusted to match up seamlessly against the straight
sleeve sections.

7. Sculpture emulations

On Henk van Putten’s Facebook homepage [17] more
sculptures can be found that are composed mostly of the
same geometrical elements described earlier in this arti-
cle. Figure 10 shows howwell thesemodules can approxi-
mate threemore ofHenk vanPutten’s sculptures. The first
two examples (Fig. 10a,b) employ only the two modules
used in the original Borsalino. The right-most example
(Fig. 10c) also uses the expanded curved connector piece
used for the loose Borsalino (Fig. 4c). To obtain better

(a)
(c)

(b)

Figure 10. Inspirational sculptures by Henk van Putten found on his Facebook timeline [17] (top row) and the emulation of these
sculptures with “LEGO R©-Knot” pieces (bottom row).
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(a) (b) (c) (d)

Figure 11. (a) Sculpture by Beasley [3] inspiring free-standing “LEGO R©-Knot” constructions (b–d).

(a) (b)

(c)

Figure 12. (a) Sculpture by Krawczyk [6] inspiring free-standing LEGO R©-Knot constructions (b,c).

visual agreement, a 1′′-square end-cover was fabricated
to close off the hollow tube-ends.

The enlarged set of parts resulting from making vari-
ous derivatives of the original Borsalino geometry, yields
enough flexibility to emulate also various tubular sculp-
tures by other artists, such as Bruce Beasley [2], Jon
Krawczyk [6], or Paul Bloch [4].

In October 2013 Bruce Beasley opened Coriolis [3], a
3D-Printed Art Exhibition at the Autodesk Gallery in San
Francisco. All exhibited sculptures were basically sweeps
of a square cross-section along one or more intricate
free-form space curves. While it is not possible to model
the continuously varying curvature exhibited in most of
these sculptures with ourmodular “LEGO R©-Knot” parts,
they can still serve as inspiration. Figure 11a shows a

vertically thrusting sculpture by Beasley and a couple
of “LEGO R©-Knot” constructions inspired by it. For this
kind of sculpture a special (blue) platformwas fabricated,
which holds the lowest part in an upright position (Fig.
11b-d).

Also in downtown San Francisco, one can admire
three sculptures by Jon Krawczyk [6]; these are also pro-
gressive sweepswith a square profile (Fig. 12a). Since they
join the ground with two legs, a second (blue) platform
was fabricated, and a variety of free-form sweeps flowing
from one to the other were assembled (Fig 12b,c).

Several of Paul Bloch’s sculptures [4] are dominated by
helical elements. Amodular system cannot reproduce the
continuously changing curvatures found in Bloch’s work
(Fig. 14a); all helices need to be regular and of the same
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(a) (b) (c) (d)

Figure 13. Helices: (a) one helical piece; (b) two turns of a helical spiral formed with 16 pieces; (c) interlaced helical sweeps; (d) serially
connected, left-turning spiral loops.

(a) (c)

(b)

Figure 14. (a) After Wright by Bloch [4]; (b) an emulation thereof; (c) another helical closed loop.

type (Fig. 13b). Thus a “general-purpose” helical compo-
nent was introduced (Fig. 13a). This component sweeps
through 1/8 of helical turn (Fig. 13b), and the pitch of
this helix was set so that two identical helices could be
tightly intertwined (Fig. 13c). So far, only left-handed
spirals have been fabricated (Fig. 13d).

This helical module now enables an approximation
of Bloch’s After Wright sculpture (Fig. 14a). Serendipi-
tously, smooth closure could be achieved for a 2.5-turn
helical spiral by adding two straight pieces, two standard
curved connectors, and two rhombic curved connec-
tors (Fig. 14b). There is also a way to close off a 2-turn
helix with a path that goes through the center of this
corkscrew. However, there is some strain in this assem-
bly, as revealed by the gaps near the sharp bends (Fig.
14c). Creating a smoothly closed sweep through 3D space
with our limited set of different tubularmodules is a non-
trivial challenge: Six degrees of freedom (x, y, z, and 3
angles) have to be matched to obtain smooth closure.
This challenge becomes more severe for tightly wound,
knotted configurations.

8. Non-trivial knots

All of the shapes presented so far have been open-
ended sweeps or simple loops equivalent to the un-knot.

This section discusses the difficulties of using a small,
“generic” set of building blocks to construct compact,
well-formed, symmetricalmodels ofmathematical knots.

The simplest true knot in the Table of Mathematical
Knots [8] is the trefoil knot (Knot 3_1). To form a nice,
tightly wound realization of this knot, a good start is to
use six of the above helical pieces to form ¾ turns of a
helical spiral. Three such helical arcs can cover about 85%
of the envisioned trefoil sweep. They are placed into aD3-
symmetric [10] configuration, and the rotation around
the three C2-axes (passing between the lime and green
colored pieces in Figure 15a) as well as the distances
of the three arcs from the origin are adjusted interac-
tively. The goal is to line up, as best possible, the three
pairs of arc-ends that need to be connected. However,
the small set tubular modules at hand were insufficient
to construct a graceful closure between the three heli-
cal arcs. Exploiting the rapid turn-around provided by
layered manufacturing, a new custom-designed part was
introduced that fit nicely in between the three helical arcs
(shown inmagenta in Fig. 15a). Figure 15b shows the full
physical realization of a modular trefoil knot.

The second entry in the Knot Table [8] is the figure-
8 knot (Knot 4_1). The most symmetrical configuration
of this knot (Fig. 15c) has 4-fold rotational glide sym-
metry around the z-axis (S4-symmetry [10]). The helical
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(a) (b) (c) (d)

Figure 15. Non-trivial knots: (a,b) trefoil knot (Knot 3_1); (c,d) figure-8 knot (Knot 4_1).

(a)

(b) (c)

Figure 16. A new branch part (a) allows to make (b) tree structures and (c) general graphs.

arcs employed in the trefoil knot, are of no use here:
The figure-8 knot is non-chiral, i.e., it is its own mir-
ror image, and at this time only left-handed helices had
been fabricated. Instead, four planar, hemi-circular loops
are constructed from four curved connector pieces (blue
and cyan in Fig. 15c). To bend the ends of these pla-
nar arcs more closely into the direction in which they
need to join up with a corresponding end, a rhom-
bic connector piece (green) has been added at one end.
Again a new custom piece with the appropriate amount
of bending and twisting is needed to obtain graceful
closure. However, because of the amphichiral nature of
this knot, two pairs of mirror images had to be fabri-
cated – shown in magenta and red in Figure 15c. This
then leads to a rather smoothly curved knot construction
(Fig. 15d).

9. Branching out

At some point the lineal nature of all these assemblies
started to feel too confining. The branch component
shown in Figure 16a was introduced, and it enabled
the construction of “tree-” or “coral-like” structures
(Fig. 16b) as well as arbitrary graphs, such as Girl with
Curls shown in Figure 16c.

Tomake sculptural realizations of regular cubic graphs
(with all valence-3 vertices), such as the edge graphs
of some of the Platonic solids, using only the avail-
able “general-purpose” parts, is even more challenging
than making well-formed knots. Now there are many
more branches that need to be closed with a good
match of all six degrees of freedom (x, y, z, and 3
angles). Figure 17a shows a moderately successful con-
struction equivalent to the simple tetrahedral edge graph.
It resulted in a rather loopy structure, which however
displays 4-fold D2-symmetry. By introducing again one
custom-designed part, a more compact and streamlined
representation of this graph was obtained, in which all
branches close smoothly (Fig. 17b). Figure 17c shows a
reasonably compact realization of the edge graph of a
cube; but it has much less symmetry than the 48-fold
symmetry of a plain cube. The newly introduced branch
module, with an angle of 45° between its legs (Fig. 16a), is
definitely not an optimal component for the construction
of the edge-graphs of the regular polyhedra.

10. The fit to LEGO R©-DUPLO

By pure serendipity, the chosen sleeve dimension of 1
square inch just fit around four nibs of the LEGO R©
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(a) (c)

(b)

Figure 17. Geometrical graphs equivalent to the tetrahedral (a, b) and the cubical (c) edge graphs.

(a) (b) (c) (d)

Figure 18. (a) LEGO R© DUPLO pieces; (b) matching curved connectors; (c, d) resulting assemblies.

DUPLO system (Fig. 18a). However, to obtain a smooth
match of the outer walls with the LEGO R© DUPLO parts,
which are based on a 32mm grid [7], the wall thickness
of the tubular parts has to be increased from 1.75mm to
3.1mm. A better design is to stick with a wall thickness
of 1.75mm and add a thickened rim at the female end to
yield the needed 1′′-square connection around the 4 nibs.
The DUPLO stud height (5mm) determines the lengths
of the connecting sleeves. Figures 18b−d show a batch of
curved connector parts that bend through 45° and mesh
nicely with the LEGO R© DUPLO parts.

By combining the new curved pieces with standard
LEGO R© DUPLO pieces, it is possible to make nice
models of mathematical linkages: in particular, the Bor-
romean rings (Fig. 19a) and the Hopf link (Fig. 19b),
which are entries L2a1 and L6a4 in the Thistlethwaite
Link Table [15].

When fitting some new “LEGO R©-Knot” parts to the
DUPLO system, the question arises whether one should
use open-ended tubular modules or adopt the closed-
face LEGO R© approach with the 4 nibs protruding from
the surface. Open-ended tubular modules are much

(a) (c)

(b)

Figure 19. Linkages with DUPLO pieces: (a) Borromean rings (Link 632) [9] and (b) Hopf link (Link 221) (c) Glow-in-the-dark sculpture
making use of the open-ended hollow tubes.
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(a) (b) (c) (d)

Figure 20. Trefoil knots realizedwith: (a)¾-inch PVC-pipe elements, (b,c) Zawitz’s Tangle [19], (d) 33modules of the type shown in Figure
21a.

more amenable to fabricating these parts with a min-
imal amount of build material and without the use
of any support material. The open tube elements also
have the additional benefit that Christmas lights can be
strung through them, so as to produce attractive, glow-
in-the–dark sculptures (Fig. 19c).

11. Totally modular knots and links

The mathematical knot sculptures described above have
been realized mostly from general-purpose “LEGO R©-
Knot” parts, with one or two custom-designed modules
added to obtain maximal symmetry and graceful clo-
sure of a knot curve. Suppose we wanted to build several
different knot models out of just one single, “universal”
building block. What should this module look like?

Knot models can be built from plastic pipe elements
available in any hardware store. A trefoil knot can be built
from nine right-angle pipe elbows connected with nine
straight pipe segments – which, however, cannot be all
of the same length (Fig. 20a). Alternately, Zawitz’s Tangle
[19], which is sold as an un-knotted loop of 18 quarter-
turn toroidal elements, can be broken open and recon-
figured into a trefoil knot. But manipulating a closed
knotted loop is rather awkward, and it is difficult to obtain
symmetrical shapes; solutions with approximate C2- and
C3-symmetry are shown in Figures 20b,c.

Both of these types of constructions exist in a smooth
deformation space, since the circular cross-sections of the
tube elements allows arbitrary torsional twisting between
subsequent modules. Thus it is very difficult to know
when one has achieved a knot configuration with perfect
symmetry. To create a discrete solution space with a finite
number of possible configurations, themodule must per-
mit only a finite number of azimuthal angles by which
subsequent elements can be joined. A promising compro-
mise, yielding distinctly discrete azimuthal angles even
when fabricated on a low-end FDMmachine, is based on
a regular 16-gon; it still offers sufficient azimuthal options

that can lead to nice and compact realizations for simple
knots.

A second trade-off concerns the bending angle of such
a universal tubular module. Maximal control over the
shapes of the lobes that can be formed would result from
a thin, wedge-like sliver; but this would then require a
large number of modules for even the simplest knots.
A large bending angle may result in knots built from
fewer parts, but will constrain the possible geometries
more severely. To find a practical compromise solution,
an interactive CADprogram has been developed that can
chain several individual modules into larger compounds
by simply specifying the azimuthal angles at subsequent
module joints. Copies of these compounds can then be
placedwith the desired symmetry; e.g., for the trefoil knot
six copies can be positioned with D3-symmetry. Then
the 5 or 6 defining azimuth angles in one compound are
adjusted interactively to explore whether one of the pos-
sible angle combinations can close the loop formed by
the six compounds to within a small fraction of the tube
diameter and with a tangent alignment of a few degrees.
Extensive studies showed that a bending angle of 30°
seemed to work well for the first three knots in the Knot
Table [9].

Rapid prototyping was the final step in evaluating
whether the knots composed with the proposed mod-
ule could indeed be realized, i.e., whether the designed
tubular assemblies were sufficiently flexible for the loops
to close within the tolerances and rigidity of these parts
and their snap-together connections. Indeed, the 16-
gonal module bending through 30° (Fig. 21a) permitted
the construction of the first few knots in the table with
high symmetry: A D3-symmetric Knot 3_1 was con-
structed from 33 “universal” modules (Fig. 20d); this
should be compared with Figures 15a,b. Another tre-
foil knot with D2-symmetry was built from 38 modules.
Knot 4_1with S4-symmetry (as in Fig. 15c,d) required 40
modules. 50 building blocks can make up Knot 5_1 with
D5-symmetry (Fig. 21b). Also, a compact model of the
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(a) (b) (c)

Figure 21. A single modular component (a) to construct highly symmetrical knots (b) and links (c).

Borromean link (Fig. 19a) can be assembled from 3×16
modules (Fig. 21c).

Clearly, once a useful “universal” module has been
defined, this part should be mass-fabricated more cost-
effectively with an injection-molding process. Then, with
an ample supply of such modules in hand, the remain-
ing open challenges revert back to the design aspect:
How can one realize any envisioned knot or link with
a minimal number of parts and with as nice and un-
contorted a look as possible? For small knots where only
5–8 unique azimuth angles have to be set, an exhaus-
tive searchmay be a viable option given today’s computer
power. Even an interactive search within the described
CAD program was quite practical. The solutions men-
tioned above were all found within less than an hour of
virtual experimenting, once the author had developed
some intuitive understanding how a chain of modules
might react to a chosen azimuth change. The virtual
exploration was certainly faster than trying to find a sym-
metrical knot configuration by assembling the physical
modules.

For more complicated knots with less symmetry, a
much larger number of individual azimuth angles have
to be set, and the number of angle combinations will
run into the trillions. No program has yet been devel-
oped to find automatically the most compact closed-loop
realization of a particular knot. The nature of this dis-
crete solution space will require a probabilistic approach
to find an acceptably good solution. Moreover, even pro-
gramming an efficient search strategy based on simu-
lated annealing will require some insightful definition
of some “meta-moves;” these may be pairs or triplets
of synchronized angle changes on adjacent joints that
produce less “violent” motions of the end of a long
chain of modules than what changing a single azimuthal
angle typically will produce. There is one mitigating
effect: As larger numbers of modules are strung together,
the end-to-end flexibility of the assembly increases, and
the required geometrical match-up needs to be less
precise.

12. Summary and conclusions

In many domains of design and engineering, rapid pro-
totyping has become an important and unavoidable step
in the design process. This step is equally important for
artists who create geometrical sculptures. During the last
two decades the author has designed dozens of sculp-
tures using a variety of CAD tools and then implemented
many of them as small sculptural maquettes on vari-
ous rapid prototyping machines. Experience has shown
that, no matter how carefully the “final” designs were
inspected on the computer screen, once a physical pro-
totype became available, ways to improve the sculptures
could almost always be found.

“LEGO R©-Knots” are an experimental, hands-on
approach for constructing a special class of tubular
assemblies. A limited set of part types, all based on sweeps
of a fixed cross-section along a circular or helical arc,
allow the user to construct a wide variety of sculptural
forms. This study started out with the two pieces required
to re-create Henk van Putten’s Borsalino shape [17]. But
as soon as these first parts were in the author’s hands, he
wantedmore of them andwanted to put them together in
different ways. Shortly thereafter he also wanted to make
modified Borsalino shapes, with rhombic cross sections
andwith twisted legs. The availability of a rapid prototyp-
ing machine on which such extensions could be realized
within 24 hours, made this a very exciting and productive
activity. New parts almost immediately inspired addi-
tional geometrical visions, and the occasional need for
a special custom-designed part to complete a particular
project could also be fulfilled with fast turnaround times.

A few months into the project, a slightly modified
set of parts got matched to the LEGO R© DUPLO sys-
tem. With this integration, immediately a much richer
set of shapes could be constructed. This points the way
to the most effective use of 3D printing: If at all possible
one should try to make use of already existing build-
ing blocks and just focus on designing and fabricating
the critical parts that the existing system cannot deliver.
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Large savings in cost and turn-around time can result, as
so beautifully demonstrated by the “faBrickator” system
[8]. Even for the explorations carried out in the author’s
“LEGO R©-Knot system,” whether it was the emulation of
some sculpture of a famous artist or the smooth closure of
a knotted sweep through 3D space, there were often one
or two extra components that needed to be introduced in
order to complete a particular task. Without access to a
layered manufacturing machine or to a 3D-printing ser-
vice, this could result in frustrating delays. Obtaining the
needed parts within a day or two, keeps the excitement
alive, and it often stimulates new ideas for what should
be tried next. Thanks to the new technologies of addi-
tive machining, many more people can now experience
this exciting “design and build” mode, which seems to
amplify one’s creativity.
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