| Study reference | Fish/shellfish | ŀ | Habitat Requirements Threat/Stressor | | | | Fish/Habitat | | |--|------------------------------------|---|--------------------------------------|---------------|----------|---|---|--| | | species | Туре | DO | Temp | Salinity | Direct | Indirect | Response | | | | | Species 1 | – Elliptio co | mplanata | | | | | Bogan and Proch
1997, Cummings
and Cordeiro 2011,
Strayer 1993;
USACE 2013 | Eastern elliptio Eastern elliptio | Permanent
body of
water: large
rivers, small
streams,
canals,
reservoirs,
lakes, ponds
Presence of | | | | | Environmental | Diminished | | 2014; LaRouche
2014; Lellis et al.
2013; Watters
1996 | | fish host species (American eel [Anguilla rostrata], Brook trout [Salvelinus fontinalis], Lake trout [S. namaycush], Slimy sculpin [Cottus cognatus], and Mottled sculpin [C. bairdii]) | | | | | stressors on fish
species,
migratory
blockages | reproductive
success; local
extirpation | | Sparks and Strayer
1998 | Eastern elliptio
(juveniles) | Rivers | Interstitial
DO > 2-4
mg/L | | | Reduced
dissolved
oxygen caused
by
sedimentation, | | Behavioral stress
responses
(surfacing, gaping,
extending siphons
and foot), increased | | Study reference | Fish/shellfish | Н | abitat Re | quirements | | Threat/S | tressor | Exposure to predation Compromised immune system, reduced fitness Decreased frequency of observation, lower numbers of individuals Digestive gland atrophy and inflammation, reduced fitness Elevated energy expenditure, reduced growth rates, diminished fecundity, clogging | |----------------------|------------------|---------------|-----------|------------|----------|------------------|----------|---| | | species | Туре | DO | Temp | Salinity | Direct | Indirect | | | | | | | | | nutrient | | exposure to | | | | | | | | loading, organic | | predation | | | | | | | | inputs, or high | | | | | | | | | | temperatures | | | | Gelinas et al. 2014 | Eastern elliptio | Freshwater | | | | Harmful algal | | Compromised | | | | | | | | blooms, algal | | immune system, | | | | | | | | toxins | | reduced fitness | | Ashton 2009 | Eastern elliptio | Multiple | | 20-24°C | | Land cover | | Decreased | | | | environment | | | | conversion in | | frequency of | | | | al variables | | | | upstream | | observation, lower | | | | (pH, mean | | | | drainage area, | | numbers of | | | | daily water | | | | elevated | | individuals | | | | temperature, | | | | nutrients, | | | | | | conductivity, | | | | acidification, | | | | | | DOC, TP, N-N, | | | | sedimentation, | | | | | | TN, mean | | | | general channel | | | | | | wetted | | | | alteration | | | | | | width, fish- | | | | (=decreased | | | | | | IBI, benthic- | | | | physical | | | | | | IBI, % | | | | complexity) | | | | | | agriculture, | | | | | | | | | | channel | | | | | | | | | | gradient) | | | | | | | | Chittick et al. 2001 | Eastern elliptio | Freshwater | | | | Infection with | | Digestive gland | | | | streams | | | | gastrointestinal | | atrophy and | | | | | | | | bacteria, | | | | | | | | | | trematodes | | reduced fitness | | Kat 1982 | Eastern elliptio | Substrate | | | | Soft/muddy | | | | | | particle size | | | | bottoms | | | | | | ' | | | | | | | | | | | | | | | | _ | | | | | | | | | | - | | | | | | | | | | of filter tissue, | | | | | | | | | | irritation of mantle | | Study reference | Fish/shellfish | H | abitat Req | uirements | | Threat | /Stressor | Fish/Habitat | |----------------------------|-----------------|---|------------|--|-----------|--|---------------------------------------|--| | | species | Туре | DO | Temp | Salinity | Direct | Indirect | Response | | | | | | | | | | tissue | | Archambault et al.
2014 | Bivalvia | Freshwater
streams | | LT50
(lethal
temp.)
range=33.
3–37.2°C;
mean=35.
6°C | | Dewatering
(prolonged) | Increased
exposure to
predation | Mortality | | | | | Species 2 | – Pyganodon | cataracta | | • | | | Ashton 2009 | Eastern floater | Multiple environment al variables (pH, mean daily water temperature, conductivity, DOC, TP, N-N, TN, mean wetted width (MWW), fish- IBI, benthic- IBI, % agriculture, channel gradient) | | pH, ~6.8-
7.4; nitrite
and TN
<5mg/L;
ammonia
~0.04-
0.09
mg/L;
MWW, 4-
6m; %
agricultur
e, | | Land cover conversion in upstream drainage area, elevated nutrients, acidification, sedimentation, general channel alteration (=decreased physical complexity) | | Decreased
frequency of
observation, lower
numbers of
individuals | | Bogan and Proch
1997 | Eastern floater | Small ponds, quiet backwaters of creeks, occasionally in larger streams and | | | | | | | | Study reference | Fish/shellfish | | Habitat Red | quirements | | Threa | t/Stressor | Fish/Habitat
Response | |---|--------------------------------|--|-------------|-----------------------------|----------|---|--|--| | | species | Туре | DO | Temp | Salinity | Direct | Indirect | Response | | | | rivers;
bottom
materials
mud, sand,
and/or gravel | | | | | | | | Cummings and
Cordeiro 2012 | Eastern floater | Freshwater
river
systerms | | | | | | | | Dimock and Wright
1993 | Eastern floater
(juveniles) | pH>4.5 (96h
LC50 pH ~4.5) | Anoxic | >33°C
(96h LT50
33°C) | | | | Mortality | | Strayer 1993;
Strayer and Jirka
1997 | Eastern floater | Small lowland
or piedmont
streams;
marshes,
lakes, and
ponds | | | | | | | | Tankersley and
Dimock Jr 1993 | Eastern floater
(brooding) | Water
column
particulates | | | | Increased variability of substrate particle sizes | | Reduced fitness;
altered capacity for
acquiring nutritional
resources | | van Snik Gray et al.
1999; NatureServe
2015 | Eastern floater
(glochidia) | Amploplites rupestris (Rock bass), Catostomus commersoni (White sucker), Cyprinus carpio (Common carp), Gasterosteus aculeatus | | | | | Environmental
stressors on fish
species,
migratory
blockages | Diminished reproductive success; local extirpation | | Study reference | Fish/shellfish | Н | abitat Requ | uirements | | Threat/S | tressor | Recruitment failures Floater (Alasmidonta | |--|-------------------------------------|----------------------|----------------|-----------|----------|-------------------------------|-------------------|---| | | species | Туре | DO | Temp | Salinity | Direct | Indirect | - Kesponse | | | | (Threespine | | | | | | | | | | stickleback), | | | | | | | | | | Lepomis | | | | | | | | | | gibbosus | | | | | | | | | | (Pumpkinsee | | | | | | | | | | d), <i>Lepomis</i> | | | | | | | | | | macrochirus | | | | | | | | | | (Bluegill), | | | | | | | | | | Perca | | | | | | | | | | flavescens | | | | | | | | | | (Yellow | | | | | | | | | | perch) | | | | | | | | Strayer and | Eastern elliptio | Interstitial | | | | Un-ionized | | Recruitment | | Malcom 2012 | | water | | | | ammonia >0.02 | | failures | | | | chemistry | | | | mg/L | | | | Taxon 5 - Selected | · | | ssei (Alusiiii | varicosa) | r | rioatei (<i>Lusinigonu</i> s | ubviriuis), brook | rioatei (Alasiillaolita | | | All three | Rivers and | | | | | | | | Burch 1973 | | streams, | | | | | | | | | | freshwater, | | | | | | | | | | nontidal | | | | | | | | Swartz and Nedeau | Brook floater | Relatively low | | | | | | | | 2007 | | gradient | | | | | | | | | | streams, | | | | | | | | | | consistent | | | | | | | | | | flows, low | | | | | | | | | | nutrients, low | | | | | | | | | | calcium (soft | | | | | | | | | | waters) | | | | | | | | | | | | | | I Flachy coouring | | I Local ovtirnation | | - | Brook floater, Dwarf | Relatively low | | | | Flashy, scouring | | Local extirpation | | - | Brook floater, Dwarf
Wedgemussel | gradient | | | | flows; water | | Local extil pation | | Strayer and Ralley
1993; Strayer 1993 | | gradient
streams, | | | | flows; water pollution that | | Local extil pation | | | | gradient | | | | flows; water | | Local extil pation | | Study reference | Fish/shellfish | На | abitat Requ | uirements | | Threat, | Stressor | Fish/Habitat | |-----------------------------------|----------------
---|-------------|-----------|----------|----------------|--|---| | | species | Туре | DO | Temp | Salinity | Direct | Indirect | Pish/Habitat Response Diminished reproductive success; local extirpation | | | | nutrients, low calcium (soft waters); medium sand (0.25-1.0mm), water depth (mean 27.7cm, range 0.4-104 cm) and current speed (mean 11.8 cm/s, range 0.0-65.0 cm/s). | | | | and/or calcium | | | | NatureServe 2015;
Watters 1996 | Brook floater | Host fish species (laboratory): Longnose dace (Rhinichthys cataractae), Golden shiners (Notemigonu s crysoleucas), Pumpkinseed (Lepomis gibbosus), Marginated madtom (Noturus | | | | | Environmental
stressors on fish
species,
migratory
blockages | reproductive success; local | | Study reference | Fish/shellfish | Н | abitat Req | uirements | | Threat, | /Stressor | Fish/Habitat | |---|--|---|------------|---------------------------------------|----------|--|--|---| | | species | Туре | DO | Temp | Salinity | Direct | Indirect | Response | | | | insignis), Yellow perch (Perca flavescens), Blacknose dace (Rhinichthys atratulus), and Slimy | | | • | | | | | | | sculpin
(Cottus
cognatus) | | | | | | | | Campbell 2014 | Dwarf
Wedgemussel | Flows, water quality (Calcium, water temperature) | | Stable
temp.
regime;
max<29° | | Aragonite precipitation (CaCO ₃), elevated water temperature | | Mortality, local extirpation | | Strayer 1993 | Dwarf
Wedgemussel,
Green Floater | Freshwater,
nonotidal
streams,
flows | | | | Unstable
hydrology
(flashiness) | | Mortality, local extirpation | | Michaelson and
Neves 1995;
Watters 1996 | Dwarf
Wedgemussel | Substrate particle sizes, water velocity; host fish species (laboratory): Etheostoma nigrum, Etheostoma olmsteadi, Cottus bairdii | | | | Unstable hydrology (flashiness)/pre ference for finer substrate particle sizes | Environmental
stressors on fish
species,
migratory
blockages | Diminished
reproductive
success; local
extirpation | | Clarke 1981 | Dwarf
Wedgemussel | Gravel, sand,
or muddy | | | | | | | | Study reference | Fish/shellfish | | Habitat Req | uirements | | Threat, | Stressor | Fish/Habitat | | |---|-----------------------------|--|--|---------------|------------|--|-----------------------------------|--|--| | | species | Туре | DO | Temp | Salinity | Direct | Indirect | Eutrophication results in hypoxic areas in tidal regions and reservoirs. Removal of forest deprives stream of woody debris, as does direct removal of instream structure. Decreased oxygen availability, particularly in | | | | | bottoms,
sometimes
associated
with SAV
beds; water | | | | | | | | | | | depth 12-18" | | | | | | | | | Strayer et al. 1996 | Dwarf
Wedgemussel | Population density | | | | Any factor diminishing suitable habitat | | | | | | | | Species 4 | – Micropterus | s dolomieu | | | <u>.</u> | | | Davis 1975; Spoor
1984 | Smallmouth bass
(larvae) | | >6.5 mg l ⁻¹ | | | | Eutrophication | results in hypoxic
areas in tidal
regions and | | | Helmus and Sass
2008; Sechnick et
al. 1986; Todd and
Rabeni 1989 | Smallmouth bass | Structure
(logjams,
rootwads,
boulders) | | | | Riparian forest
removal;
stream clearing;
siltation | | Removal of forest
deprives stream of
woody debris, as
does direct removal
of instream | | | Brown et al. 2009;
Davis 1975; Jones
and Hoyer 1982;
Murdy et al. 1997;
Pease and Paukert
2014; Schmidt and
Stillman 1998 | Smallmouth bass
(adult) | | >6 mg I ⁻¹
>7 mg I ⁻¹
(spawning) | 13° – 27°C | <5 ppt | | Eutrophication;
climate change | Decreased oxygen availability, | | | Study reference | Fish/shellfish | | Habitat Req | uirements | | Threat, | /Stressor | Fish/Habitat | |---|----------------------------|------------------------|-------------------------|----------------------|-------------|----------------------------------|---|--| | | species | Туре | DO | Temp | Salinity | Direct | Indirect | Loss of suitable parameters for growth and recruitment to fishery Low oxygen results in low fitness; compresses habitat availability Loss of SAV habitat due to poor light attenuation Reduced fitness at increased temps | | | | | Species 5 | – Micropteru | s salmoides | | | 1 | | Meador and Kelso
1989; Stuber et al.
1982 | Largemouth bass
(fry) | Slow moving water | >5 mg l ⁻¹ | > 15° C | 0 ppt | Climate change | Precipitation changes, influencing flow changes to salinity and temperature | parameters for growth and recruitment to | | Love 2011; Meador
and Kelso 1989;
Murdy et al. 1997;
Rose et al. 2009 | Largemouth bass (adult) | Slow moving water; | >3.5 mg l ⁻¹ | 5-28°C | < 5ppt | Climate change,
hypoxia | | in low fitness;
compresses habitat | | Batiuk et al. 2000;
Love 2011 | Largemouth bass
(Adult) | SAV | | | | | Eutrophication | | | | | | Spe | cies 6 – <i>Esox</i> | niger | | | | | Armbruster 1959;
Coffie 1998; Kerr
et al. 2009; Murdy
et al. 1997 | Chain pickerel
(adult) | | | 2-23° C | < 5 ppt | Warming
(Climate
change) | | | | Armbruster 1959;
Dennison 1987; Li
et al. 2007; Murdy
et al. 1997; Scott
and Crossman
1973 | Chain pickerel
(adult) | SAV | | | | Dredging, loss
of SAV | Eutrophication | Loss of SAV habitat | | Benke et al. 1985;
Jenkins and
Burkhead 1994 | Chain pickerel
(adult) | Snags, woody
debris | | | | Dredging;
removal of
snags | | Loss of feeding habitat | | Jenkins and
Burkhead 1994;
Meixler and Bain
2011; Moring and | Chain pickerel | Slow moving water | | | | Unknown | Unknown | Unknown | | Study reference | Fish/shellfish | | Habitat Req | uirements | | Threa | at/Stressor | Increased water temperatures can stress larvae and increase mortality rates, depending on food availability Eutrophication results in hypoxic conditions which affects fish fitness. Dredging directly alters level bottoms; may also remove substantial amounts of sand Dredging directly removes SAV habitat; eutrophication creates reduced water clarity, thereby inhibiting plant growth Eutrophication will result in hypoxic areas that will reduce the amount of habitat white | |---|---------------------------|--|-------------------------|------------------------------------|---|----------|-----------------------------------|---| | | species | Туре | DO | Temp | Salinity | Direct | Indirect | | | Nicholson 1994 | | | | | | | | | | | | | Species 7 | 7 – Morone a | mericana | | | | | Marguiles 1988;
Roessig et al. 2004;
Setzler-Hamilton
1991; Stanley and
Danie 1983 | White perch (larva) | | >5.0 mg l ⁻¹ | 15-20° C | 0-13 ppt | | Climate change | temperatures can
stress larvae and
increase mortality
rates, depending on | | Breitburg 2002;
Hanks and Secor
2011 | White perch
(juvenile) | | >40%
saturation | | <18 ppt,
but
tolerant
of 0-35
ppt | | Eutrophication | Eutrophication results in hypoxic conditions which | | Able and Fahay
1998 | White perch
(juvenile) | Level
bottoms of
compact silt,
mud, sand or
clay | | | | Dredging | | alters level
bottoms; may also
remove substantial | | Batiuk et al. 2000;
Kraus and Jones
2012 | White perch (adult) | SAV | | | | Dredging | Eutrophication | Dredging directly removes SAV habitat; eutrophication creates reduced water clarity, thereby inhibiting | | Breitburg 2002;
Campbell and Rice
2014; Kerr et al.
2009; Newhard et
al. 2012; Setzler-
Hamilton 1991; | White perch (adult) | | >4.0 mg l ⁻¹ | 12-14°
C
(spawning)
10-27° C | 0-30 ppt | | Eutrophication;
Climate change | Eutrophication will result in hypoxic areas that will reduce the amount | | Study reference | Fish/shellfish | | Habitat Requ | uirements | | Threat | :/Stressor | Fish/Habitat | |--|---------------------|------------|-------------------------|--------------|-----------|---------------------------------------|---|---| | | species | Туре | DO | Temp | Salinity | Direct | Indirect | Response | | Stanley and Danie
1983 | | | | | | | | climate change may
result in a water
temperature
increase, creating
less than ideal
conditions for
spawning | | | | | Species | 8 – Anchoa | mitchilli | | | | | Houde and
Zastrow 1991;
Olney 1983 | Bay anchovy (Larva) | | >4.0 mg l ⁻¹ | 17-27° C | 0-15 ppt | | Eutrophication;
climate change | Hypoxia (reduced habitat volume; higher temperature creates physiological stress | | Batiuk et al. 2009;
Houde and
Zastrow 1991;
Olney 1983;
Roessig et al. 2004;
Zhang et al. 2014 | Bay anchovy (adult) | | >4.0 mg l ⁻¹ | 5-30° C | 0-32 ppt | | Eutrophication;
climate change | Hypoxia (reduced habitat volume; higher temperature creates physiological stress | | | | | Species 9 | – Leiostomus | xanthurus | | | | | Brady and Targett
2013; Uphoff et al.
2011 | Spot (juvenile) | | >3.0 mg l ⁻¹ | | | hypoxia | Urbanization
(impervious
surface) | Reduced fitness and survival | | Able et al. 2007;
Bilkovic and
Roggero 2008;
Seitz et al. 2006;
Szedlmayer and
Able 1996; Zapfe
and Rakocinski
2008 | Spot (juvenile) | Salt marsh | | | | Development
(marsh
destruction) | | Loss of habitat
results in loss of fish
productivity | | Study reference | Fish/shellfish | | Habitat Requ | irements | | Threat | /Stressor | Fish/Habitat | |---|-------------------|-------------------------------|-------------------------|-------------------|----------|---|-------------------------------------|--| | | species | Туре | DO | Temp | Salinity | Direct | Indirect | Response | | Buchheister et al.
2013; Horodysky et
al. 2008 | Spot (adult) | Water
column
(demersal) | | | | Hypoxia; water clarity | Eutrophication;
Water clarity | Decreased feeding; | | | | | Species 1 | .0 – <i>Macom</i> | balthica | | | | | Birchenough et al.
2015; Jansson et
al. 2015; Philippart
et al. 2003 | Macoma (juvenile) | рН | >3.0 mg l ⁻¹ | | | Ocean
acidification;
increased
temps | Climate change | Acidification weakens CaCO ₂ deposition in bivalves, reducing fitness. Increasing water temperatures will likely adversely affect phenology and create mis- match with food sources | | Hiddink 2003a;
Hiddink 2003b;
Powers et al. 2002;
Seitz et al. 2006 | Macoma | Tidal and intertidal mudflats | | | | Dredging;
shoreline
development | Contaminants
(oil in particular) | Reduction in infaunal populations; mortality or reduced fitness due to contaminants | | Dauer et al. 1987;
Lippson et al.
1981; Long et al.
2008; Long et al.
2014; Philippart et
al. 2007;
Sturdivant et al.
2014 | Macoma (adult) | | >3.0 mg l ⁻¹ | | 5-28 ppt | Нурохіа | Eutrophication | Disruption in coastal food webs, including phytoplankton availability; decreased burial (greater susceptibility to predation); Reduced reproductive output | | Study reference | Fish/shellfish
species | Habitat Requirements | | | | Threat/Stressor | | Fish/Habitat | |---|---------------------------------------|--|-------------------------|--------------|--------------------------------------|---|----------------|---| | | | Туре | DO | Temp | Salinity | Direct | Indirect | Response | | | | | Species | 11 – Menidio | menidia | | | | | Austin et al. 1975;
DePasquale et al.
2015; Eby and
Crowder 2004; Fay
et al. 1983 | Atlantic silverside
(larva) | | >7.9 mg l ⁻¹ | 15°-20° C | 30 ppt
(optimal
growth) | | Eutrophication | Eutrophication
creates hypoxic
regions, leading to
mortality or
unusable habitat | | Gilmurray and
Daborn 1981 | Atlantic silverside (adult) | Water clarity | | | | Increased
runoff | Eutrophication | Evidence that high levels of turbidity prevents feeding | | Batiuk et al. 2000;
Orth and Heck Jr.
1980; Schein et al.
2012 | Atlantic silverside
(adult) | Seagrass | | | | Dredging | Eutrophication | Loss of seagrass habitat directly from dredging activities; dieback of seagrasses as eutrophication creates poor water quality conditions | | Fay et al. 1983 | Atlantic silverside
(adult) | | | 5°-30° C | 7-8 ppt
(preferred
); 5-33 ppt | Climate change | | Increased water temperatures will reduce fitness and increase mortality rates | | Balouskus and
Targett 2012;
Bilkovic and
Roggero 2008;
Seitz et al. 2006 | Atlantic silverside (adult, spawning) | Salt marsh, in association with Enteromorpha | | | | Salt marsh
destruction
(shoreline
hardening;
development) | | Destruction of spawning habitat | | | | | Species 12 | – Paralichth | ys dentatus | | | | | Brady and Targett
2010; Eby et al.
2005 | Summer flounder
(juvenile) | | >4.2 mg l ⁻¹ | | | Нурохіа | | Low DO reduces available habitat | | Study reference | Fish/shellfish
species | ı | Habitat Req | uirements | | Threat/Stressor | | Fish/Habitat | |--|--|---|------------------------|---|-----------------|------------------------------------|------------------------------------|---| | | | Туре | DO | Temp | Salinity | Direct | Indirect | Response | | Buchheister et al.
2013; Eby et al.
2005; Murdy et al.
1997; Sackett et al.
2008 | Summer flounder
(adult) | | 6.5 mg [⁻¹ | 20.5 °C | Polyhaline | Ocean
warming;
hypoxia | | Rising temperatures result in less available habitat; rising temperatures result in lower DO concentrations | | Packer and Hoff
1999; Rountree
and Able 2007;
Smith and Daiber
1977 | Summer flounder
(juvenile) | Demersal;
polyhaline;
Seagrass
beds; salt
marsh
dominated
creeks; | | | | Dredging | Eutrophication; | Reduced water quality can eliminate seagrass habitat; Dredging can directly reduce seagrass habitat; | | Eby et al. 2005;
Sackett et al. 2008 | Summer flounder
(adult) | Deeper water (>6.0m); | | | | | Climate change;
hypoxia | Increasing water
temperatures and
hypoxia will reduce
reduce demersal
habitat; | | | | | Species 1 | 3 – Centropri | stis striata | | | | | Drohan et al. 2007 | Black sea bass
(larvae) | | | 22° C | | | | | | Arve 1960; Coen et
al. 1999; Lehnert
and Allen 2002 | Black sea bass
(juvenile and adult) | Oyster reef | | | | Habitat
destruction;
disease | Loss of prey items | Decrease in black
sea bass
productivity from
loss of foraging area | | Berlinsky et al.
2000; Drohan et al.
2007; Schwartz
1964 | Black sea bass | | >4.0mg l ⁻¹ | 2°C
(death)
8°C (stop
feeding) | > 11 -
15ppt | | Eutrophication-
induced hypoxia | | | Lehnert and Allen
2002; Orth et al.
2010; Stephan and
Lindquist 1989; | Black sea bass
(adult) | Seagrass;
wrecks; | | | | | Eutrophication | Eutrophication
causes declines in
seagrass
distribution, | | Study reference | Fish/shellfish
species | Habitat Requirements | | | | Threat/Stressor | | Fish/Habitat | |-----------------|---------------------------|----------------------|----|------|----------|-----------------|----------|-------------------| | | | Туре | DO | Temp | Salinity | Direct | Indirect | Response | | Weinstein and | | | | | | | | thereby reducing | | Brooks 1983 | | | | | | | | available habitat | ## **Literature Cited** - Able, K.W., J.H. Balletto, S.M. Hagan, P.R. Jivoff, and K. Strait. 2007. Linkage between salt marshes and other nekton habitats in Delaware Bay, USA. *Reviews in Fisheries Science* 15: 1-61. - Able, K.W., and M.P. Fahay. 1998. The First Year in the Life of Estuarine Fishes in the Middle Atlantic Bight. New Brunswick, New Jersey: Rutgers University Press. - Archambault, J.M., W.G. Cope, and T.J. Kwak. 2014. Influence of sediment presence on freshwater mussel thermal tolerance. *Freshwater Science* 33: 56-65. - Armbruster, D.C. 1959. Observations on the natural history of the chain pickerel (Esox niger). Ohio Journal of Science 59: 55-58. - Arve, J. 1960. Preliminary report on attracting fish by oyster shell plantings in Chincoteague Bay, Maryland. Chesapeake Science 1: 58-65. - Ashton, M.J. 2009. Freshwater Mussel Records Collected by the Maryland Department of Natural Resources' Monitoring and Non-Tidal Assessment Division
(1995-2009): Investigating Environmental Conditions and Host Fishes of Select Species., 71. Annapolis, MD: Maryland Department of Natural Resources, Resource Assessment Service, Monitoring and Non-Tidal Assessment Division. - Austin, H.M., A.D. Sosnow, and C.R. Hickey. 1975. Effects of temperature on development and survival of eggs and larvae of Atlantic silverside, *Menida menidia. Transactions of the American Fisheries Society* 104: 762-765. - Balouskus, R.G., and T.E. Targett. 2012. Egg Deposition by Atlantic Silverside, Menidia menidia: Substrate Utilization and Comparison of Natural and Altered Shoreline Type. *Estuaries and Coasts* 35: 1100-1109. - Batiuk, R.A., P.W. Bergstrom, W.M. Kemp, E.W. Koch, L. Murray, J.C. Stevenson, R. Bartleson, V. Carter, N.B. Rybicki, J.M. Landwehr, C. Gallegos, L. Karrh, M. Naylor, D.J. Wilcox, K.A. Moore, S. Ailstock, and M. Teichberg. 2000. Chesapeake Bay submerged aquatic vegetation water quality and habitat-based requirements and restoration targets: A second technical synthesis, 130. Edgewater, MD: Chespeake Research Consortium. - Batiuk, R.A., D.L. Breitburg, R.J. Diaz, T.M. Cronin, D.H. Secor, and G. Thursby. 2009. Derivation of habitat-specific dissolved oxygen criteria for Chesapeake Bay and its tidal tributaries. *Journal of Experimental Marine Biology and Ecology* 381: S204-S215. - Benke, A.C., R.L. Henry III, D.M. Gillespie, and R.J. Hunter. 1985. Importance of snag habitat for animal production in southeastern streams. *Fisheries* 10: 8-13. - Berlinsky, D., M. Watson, G. Nardi, and T.M. Bradley. 2000. Investigations of Selected Parameters for Growth of Larval and Juvenile Black Sea Bass Centropristis striata L. *Journal of the World Aquaculture Society* 31: 426-435. - Bilkovic, D.M., and M.M. Roggero. 2008. Effects of coastal development on nearshore estuarine nekton communities. *Marine Ecology Progress Series* 358: 27-39. - Birchenough, S.N.R., H. Reiss, S. Degraer, N. Mieszkowska, A. Borja, L. Buhl-Mortensen, U. Braeckman, J. Craeymeersch, I. De Mesel, F. Kerckhof, I. Kroncke, S. Parra, M. Rabaut, A. Schroder, C. Van Colen, G. Van Hoey, M. Vincx, and K. Watjen. 2015. Climate change and marine benthos: a review of existing research and future directions in the North Atlantic. *Wiley Interdisciplinary Reviews-Climate Change* 6: 203-223. - Bogan, A., and T. Proch. 1997. *Manual of the Freshwater Bivalves of Maryland*, 75. Annapolis, MD: Freshwater Molluscan Reserach, Maryland Department of Natural Resources, Monitoring and Non-Tidal Assessment Division. - Brady, D.C., and T.E. Targett. 2010. Characteriing the escape response of juvenile summer flounder *Paralichthys dentatus* to diel-cycling hypoxia. *Journal of Fish Biology* 77: 137-152. - Brady, D.C., and T.E. Targett. 2013. Movement of juvenile weakfish *Cynoscion regalis* and spot *Leiostomus xanthurus* in relation to diel-cycling hypoxia in an estuarine tidal tributary. *Marine Ecology Progress Series* 491: 199-219. - Breitburg, D.L. 2002. Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. *Estuaries* 25: 767-781. - Brown, T.G., B. Runciman, S. Pollard, A.D.A. Grant, and M.J. Bradford. 2009. Biological Synopsis of Smallmouth Bass (*Micropterus dolomieu*), 50. British Columbia, Canada: Fisheries and Oceans Canada, Science Branch, Pacific Region. - Buchheister, A., C.F. Bonzek, J. Gartland, and R.J. Latour. 2013. Patterns and drivers of the demersal fish community of Chesapeake Bay. *Marine Ecology Progress Series* 481: 161-180. - Burch, J.B. 1973. Freshwater Unionacean Clams (Mollusca: Pelecypoda) of North America. In *Biota of Freshwater Ecosystems. Water Pollution Control Research Series. Identification Manual No.* 11, 176. Washington, DC: U.S. Environmental Protection Agency. - Campbell, C.A. 2014. Identifying the Elusive Dwarf Wedgemussel Habitat through Modeling and Field Approaches. Ph.D, University of Maryland College Park, MD. - Campbell, L.A., and J.A. Rice. 2014. Effects of hypoxia-induced habitat compression on growth of juvenile fish in the Neuse River Estuary, North Carolina, USA. *Marine Ecology Progress Series* 497: 199-213. - Chittick, B., M. Stoskopf, M. Law, R. Overstreet, and J. Levine. 2001. Evaluation of potential health risks to Eastern Elliptio (Elliptio complanata) (Mollusca: Bivalvia: Unionida: Unionidae) and implications for sympatric endangered freshwater mussel species. *Journal of Aquatic Ecosystem Stress and Recovery* 9: 35-42. - Clarke, A.H. 1981. The tribe Alasmidontini (Unionidae, Anodontinae): Part 1, Pegias, Alasmidonta, and Arcidens. Washington, DC: Smithsonian Institution Press. - Coen, L.D., M.W. Luckenbach, and D.L. Breitburg. 1999. The role of oyster reefs as essential fish habitat: a review of current knowledge and some new perspectives. *American Fisheries Society Symposium* 22: 438-454. - Coffie, P.A. 1998. Status of the Chain pickerel, Esox niger, in Canada. . Canadian Field-Naturalist 112: 133-140. - Cummings, K., and J. Cordeiro. 2011. Elliptio complanata. The IUCN Red List of Threatened Species 2011. - Cummings, K., and J. Cordeiro. 2012. Pyganodon cataracta. *The IUCN Red List of Threatened Species* 2012. - Dauer, D.M., R.M. Ewing, and A.J. Rodi Jr. 1987. Macrobenthic distribution within the sediment along an estuarine salinity gradient-- Benthic studies of the lower Chesapeake Bay. *Internationale Revue der Gesamten Hydrobiologie* 72: 529-538. - Davis, J.C. 1975. Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review. *Journal of the Fisheries Research Board of Canada* 32: 2295-2332. - Dennison, W.C. 1987. Effects of light on seagrass photosynthesis, growth, and depth distribution. Aquatic Botany 27: 15-26. - DePasquale, E., H. Baumann, and C.J. Gobler. 2015. Vulnerability of early life stage Northwest Atlantic forage fish to ocean acidification and low oxygen. *Marine Ecology Progress Series* 523: 145-156. - Dimock, R.V., and A.H. Wright. 1993. Sensitivity of juvenile freshwater mussels to hypoxic, thermal and acid stress. *Journal of the Elisha Mitchell Scientific Society* 109: 183-192. - Drohan, A.F., J.P. Manderson, and D.B. Packer. 2007. Essential Fish Habitat Source Document: Black Sea Bass, Centropristis striata, Life History and Habitat Characteristics, 68: U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northeast Fisheries Science Center. - Eby, L.A., and L.B. Crowder. 2004. Effects of hypoxic disturbances on an estuarine nekton assemblage across multiple scales. *Estuaries* 27: 342-351. - Eby, L.A., L.B. Crowder, C.M. McClellan, C.H. Peterson, and M.J. Powers. 2005. Habitat degradation from intermittent hypoxia: impacts on demersal fishes. *Marine Ecology Progress Series* 291: 249-261. - Fay, C.W., R.J. Neves, and G.B. Pardue. 1983. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (Mid-Atlantic) -- Atlantic silverside, 15: U.S. Fish and Wildlife Service, Division of Biological Services. - Gelinas, M., M. Fortier, A. Lajeunesse, M. Fournier, C. Gagnon, S. Barnabe, and F. Gagne. 2014. Responses of freshwater mussel (*Elliptio complanata*) hemocytes exposed in vitro to crude extracts of Microcystis aeruginosa and Lyngbya wollei. *Ecotoxicology* 23: 260-266. - Gilmurray, M.C., and G.R. Daborn. 1981. Feeding relations of the Atlantic silverside *Menidia menidia* in the Minas Basin, Bay of Fundy. *Marine Ecology Progress Series* 6: 231-235. - Hanks, D.M., and D.H. Secor. 2011. Bioenergetic responses of Chesapeake Bay white perch (Morone americana) to nursery conditions of temperature, dissolved oxygen, and salinity. *Marine Biology* 158: 805-815. - Harbold, W., J.V. Kilian, G. Mack, J. Zimmerman, and M.J. Ashton. 2014. First evidence of *Elliptio complanata* (Bivalvia: Unionidae) from the Patapsco River, Maryland. *Northeastern Naturalist* 21: N35-N40. - Helmus, M.R., and G.G. Sass. 2008. The rapid effects of a whole-lake reduction of coarse woody debris on fish and benthic macroinvertebrates. *Freshwater Biology* 53: 1423-1433. - Hiddink, J.G. 2003a. Effects of suction-dredging for cockles on non-target fauna in the Wadden Sea. *Journal of Sea Research* 50: 315-323. - Hiddink, J.G. 2003b. Modelling the adaptive value of intertidal migration and nursery use in the bivalve Macoma balthica. *Marine Ecology Progress Series* 252: 173-185. - Horodysky, A.Z., R.W. Brill, E.J. Warrant, J.A. Musick, and R.J. Latour. 2008. Comparative visual function in five sciaenid fishes inhabiting Chesapeake Bay. *Journal of Experimental Biology* 211: 3601-3612. - Houde, E.D., and C.E. Zastrow. 1991. Bay Anchovy. In *Habitat requirements for Chesapeake Bay living resources*, ed. S.L. Funderburk and J.A. Mihurski, 8.1 8.14. Annapolis, MD: Chesapeake Bay Program. - Jansson, A., J. Norkko, S. Dupont, and A. Norkko. 2015. Growth and survival in a changing environment: Combined effects of moderate hypoxia and low pH on juvenile bivalve Macoma balthica. *Journal of Sea Research* 102: 41-47. - Jenkins, R.E., and N.M. Burkhead. 1994. Freshwater fishes of Virginia. Bethesda, MD: American Fisheries Society. - Jones, J.R., and M.V. Hoyer. 1982. Sportfish harvest predicted by summer chlorophyll-a concentration in midwestern lakes and reservoirs. *Transactions of the American Fisheries Society* 111: 176-179. - Kat, P.W. 1982. Effects of population density and substratum type on growth and migration of *Elliptio complanata* (Bivalvia: Unionidae). *Malacological Review* 15: 119-127. - Kerr, L.A., W.J. Connelly, E.J. Martino, A.C. Peer, R.J. Woodland, and D.H. Secor. 2009. Climate Change in the U.S. Atlantic Affecting Recreational Fisheries. *Reviews in Fisheries Science* 17: 267-289. - Kraus, R.T., and R.C. Jones. 2012. Fish abundances in shoreline habitats and submerged aquatic vegetation in a tidal freshwater embayment of the Potomac River. *Environ Monit Assess* 184: 3341-3357. -
LaRouche, G. 2014. Finding Cooperative Solutions to Environmental Concerns with the Conowingo Dam to Improve the Health of the Chesapeake Bay. Testimony of Genevieve LaRouche, Field Office Supervisor, Chesapeake Bay Field Office, U. S. Fish and Wildlife Service, U. S. Department of the Interior. In The Senate Environment and Public Works Subcommittee on Water and Wildlife. Conowingo, MD. - Lehnert, R., and D. Allen. 2002. Nekton use of subtidal oyster shell habitat in a Southeastern U.S. estuary. Estuaries 25: 1015-1024. - Lellis, W.A., B.S.J. White, J.C. Cole, C.S. Johnson, J.L. Devers, E.v.S. Gray, and H.S. Galbraith. 2013. Newly Documented Host Fishes for the Eastern Elliptio Mussel Elliptio complanata. *Journal of Fish and Wildlife Management* 4: 75-85. - Li, X., D.E. Weller, C. Gallegos, T.E. Jordan, and H.-C. Kim. 2007. Effects of watershed and estuarine characteristics on the abundance of submerged aquatic vegetation in Chesapeake Bay sub-estuaries. *Estuaries* 30: 840-854. - Lippson, A.J., M.S. Haire, A.F. Holland, F. Jacobs, J. Jensen, R.L. Moran-Johnson, T.T. Polgar, and W.A. Richkus. 1981. *Environmental atlas of the Potomac River estuary*. Baltimore, MD: Johns Hopkins University. - Long, C.W., B.J. Brylawski, and R.D. Seitz. 2008. Behavioral effects of low dissolved oxygen on the bivalve *Macoma bathica*. *Journal of Experimental Marine Biology and Ecology* 359: 34-39. - Long, W.C., R.D. Seitz, B.J. Brylawski, and R.N. Lipcius. 2014. Individual, population, and ecosystem effects of hypoxia on a dominant benthic bivalve in Chesapeake Bay. *Ecological Monographs* 84: 303-327. - Love, J.W. 2011. Habitat suitability index for largemouth bass in tidal rivers of the Chesapeake Bay watershed. *Transactions of the American Fisheries Society* 140: 1049-1059. - Marguiles, D. 1988. Effects of food concentrations and temperature on development, growth, and survival of white perch *Morone amerciana*, eggs and larvae. *Fishery Bulletin* 87: 63-72. - Meador, M.R., and W.E. Kelso. 1989. Behavior and movements of largemouth bass in response to salinity. *Transactions of the American Fisheries Society* 118: 409-415. - Meixler, M.S., and M.B. Bain. 2011. Predicting ecological outcomes of stream creation using fish community attributes. *Ecological Engineering* 37: 1420-1424. - Michaelson, D.L., and R.J. Neves. 1995. Life History and Habitat of the Endangered Dwarf Wedgemussel Alasmidonta heterodon (Bivalvia:Unionidae). *Journal of the North American Benthological Society* 14: 324-340. - Moring, J.R., and P.H. Nicholson. 1994. Evaluation of Three Types of Artificial Habitats for Fishes in a Freshwater Pond in Maine, USA. *Bulletin of marine Science* 55: 1149-1159. - Murdy, E.O., R.S. Birdsong, and J.A. Musick. 1997. Fishes of Chesapeake Bay. Washington, DC: Smithsonian Institution Press. - NatureServe. 2015. NatureServe Explorer: An Online Encyclopedia of Life. Arlington, VA: Version 7.1. - Newhard, J.J., J.W. Love, and J. Gill. 2012. Do Juvenile White Perch Morone americana Grow Better in Freshwater Habitats of the Blackwater River Drainage (Chesapeake Bay, MD, USA)? *Estuaries and Coasts* 35: 1110-1118. - Olney, J.E. 1983. Eggs and early larvae of the bay anchovy, *Anchoa mitchilli*, and the weakfish, *Cynoscion regalis*, in lower Chesapeake Bay with notes on associated ichthyoplankton. *Estuaries* 6: 20-35. - Orth, R.J., and K.L. Heck Jr. 1980. Structural components of eelgrass (*Zostera marina*) meadows in the lower Chesapeake Bay--Fishes. *Estuaries* 3: 278-288. - Orth, R.J., M.R. Williams, S. Marion, D.J. Wilcox, T. Carruthers, K.A. Moore, W.M. Kemp, W.C. Dennison, N.B. Rybicki, P.W. Bergstrom, and R.A. Batiuk. 2010. Long-term trends in submersed aquatic vegetation (SAV) in Chesapeake Bay, USA, related to water quality. *Estuaries and Coasts* 33: 1144-1163. - Packer, D.B., and T. Hoff. 1999. Life history, habitat parameters, and essential fish habitat of Mid-Atlantic summer flounder. *American Fisheries Society Symposium* 22: 76-92. - Pease, A.A., and C.P. Paukert. 2014. Potential impacts of climate change on growth and prey consumption of stream-dwelling smallmouth bass in the central United States. *Ecology of Freshwater Fish* 23: 336-346. - Philippart, C.J.M., J.J. Beukema, G.C. Cadee, R. Dekker, P.W. Goedhart, J.M. van Iperen, M.F. Leopold, and P.M.J. Herman. 2007. Impacts of nutrient reduction on coastal communities. *Ecosystems* 10: 95-118. - Philippart, C.J.M., H.M. van Aken, J.J. Beukema, O.G. Bos, G.C. Cadee, and R. Dekker. 2003. Climate-related changes in recruitment of the bivalve Macoma balthica. *Limnology and Oceanography* 48: 2171-2185. - Powers, S.P., M.A. Bishop, J.H. Grabowski, and C.H. Peterson. 2002. Intertidal benthic resources of the Copper River Delta, Alaska, USA. *Journal of Sea Research* 47: 13-23. - Roessig, J.M., C.M. Woodley, J.J. Cech Jr., and L.J. Hansen. 2004. Effects of global climate change on marine and estuarine fishes and fisheries. *Reviews in Fish Biology and Fisheries* 14: 251-275. - Rose, K.A., A.T. Adamack, C.A. Murphy, S.E. Sable, S.E. Kolesar, J.K. Craig, D.L. Breitburg, P. Thomas, M.H. Brouwer, C.F. Cerco, and S. Diamond. 2009. Does hypoxia have population-level effects on coastal fish? Musings from the virtual world. *Journal of Experimental Marine Biology and Ecology* 381: S188-S203. - Rountree, R.A., and K.W. Able. 2007. Spatial and temporal habitat use patterns for salt marsh nekton: implications for ecological functions. *Aquatic Ecology* 41: 25-45. - Sackett, D.K., K.W. Able, and T.M. Grothues. 2008. Habitat dynamics of summer flounder *Paralichthys dentatus* within a shallow USA estuary, based on multiple approaches using acoustic telemetry. *Marine Ecology Progress Series* 364: 199-212. - Schein, A., S.C. Courtenay, C.S. Crane, K.L. Teather, and M.R. van den Heuvel. 2012. The Role of Submerged Aquatic Vegetation in Structuring the Nearshore Fish Community Within an Estuary of the Southern Gulf of St. Lawrence. *Estuaries and Coasts* 35: 799-810. - Schmidt, R.E., and T. Stillman. 1998. Evidence of potamodromy in an estuarine population of smallmouth bass (Micropterus dolomieu). *Journal of Freshwater Ecology* 13: 155-163. - Schwartz, F.J. 1964. Fishes of Isle of Wight and Assawoman bays near Ocean City, Maryland. Chesapeake Science 5: 172-193. - Scott, W.B., and E.J. Crossman. 1973. Freshwater fishes of Canada: Fisheries Research Board of Canada Bulletin 184. - Sechnick, C.W., R.F. Carline, R.A. Stein, and E.T. Rankin. 1986. Habitat Selection by Smallmouth Bass in Response to Physical Characteristics of a Simulated Stream. *Transactions of the American Fisheries Society* 115: 314-321. - Seitz, R.D., R.M. Lipcius, N.H. Olmstead, M.S. Seebo, and D.M. Lambert. 2006. Influence of shallow-water habitats and shoreline development on abundance, biomass, and diversity of benthic prey and predators in Chesapeake Bay. *Marine Ecology Progress Series* 326: 11-27. - Setzler-Hamilton, E. 1991. White Perch. In *Habitat requirements for Chesapeake Bay living resources*, ed. S.L. Funderburk, J.A. Mihurski, S.J. Jordan and D. Riley, 12.11-12.20. Annapolis, MD: Chesapeake Bay Program. - Smith, R.W., and F.C. Daiber. 1977. Biology of the summer flounder, Paralichthys dentatus, in Delaware Bay. Fishery Bulletin 75: 823-830. - Sparks, B.L., and D.L. Strayer. 1998. Effects of low dissolved oxygen on juvenile *Elliptio complanata* (Bivalvia:Unionidae). *Journal of the North American Benthological Society* 17: 129-134. - Spoor, W.A. 1984. Oxygen requirements of larvae of the smallmouth bass, Micropterus dolomieui Lacepede. Journal of Fish Biology 25: 587-592. - Stanley, J.G., and D.S. Danie. 1983. Species profiles: life histories and environmental requirements of coastal fishes and invertebrates (North Atlantic)--white perch, 12: U.S. Fish and Wildlife Service. - Stephan, D.C., and D.G. Lindquist. 1989. A Comparative Analysis of the Fish Assemblages Associated with Old and New Shipwrecks and Fish Aggregating Devices in Onslow Bay, North Carolina. *Bulletin of Marine Science* 44: 698-717. - Strayer, D.L. 1993. Macrohabitats of Freshwater Mussels (Bivalvia:Unionacea) in Streams of the Northern Atlantic Slope. *Journal of the North American Benthological Society* 12: 236-246. - Strayer, D.L., and K.J. Jirka. 1997. *The Pearly Mussels of New York State*. New York, NY: University of the State of New York. - Strayer, D.L., and H.M. Malcom. 2012. Causes of recruitment failure in freshwater mussel populations in southeastern New York. *Ecological Applications* 22: 1780-1790. - Strayer, D.L., and J. Ralley. 1993. Microhabitat Use by an Assemblage of Stream-Dwelling Unionaceans (Bivalvia), including Two Rare Species of Alasmidonta. *Journal of the North American Benthological Society* 12: 247-258. - Strayer, D.L., S.J. Sprague, and S. Claypool. 1996. A Range-Wide Assessment of Populations of Alasmidonta heterodon, an Endangered Freshwater Mussel (Bivalvia:Unionidae). *Journal of the North American Benthological Society* 15: 308-317. - Stuber, R.J., G. Gebharrt, and O.E. Maughan. 1982. Habitat suitability index models: Largemouth bass, 33: FWS/OBS-82/10.16. - Sturdivant, S.K., R.J. Diaz, R. Llanso, and D.M. Dauer. 2014. Relationship between Hypoxia and Macrobenthic Production in Chesapeake Bay. *Estuaries and Coasts* 37: 1219-1232. - Swartz, B.I., and E. Nedeau. 2007. *Freshwater Mussel Assessment*. Bangor, ME: Maine Department of Inland Fisheries and Wildlife, Wildlife Division, Resource Assessment Section - Szedlmayer, S.T., and K.W. Able. 1996. Patterns of seasonal availability and habitat use by fishes and decapod crustaceans in a southern New Jersey estuary. *Estuaries* 19: 697-709. - Tankersley, R.A., and R.V. Dimock Jr. 1993. The effect of larval brooding on the filtration rate and particle-retention efficiency of Pyganodon cataracta (Bivalvia: Unionidae). *Canadian Journal of Zoology* 71: 1934-1944. - Todd, B.L., and C.F. Rabeni. 1989. Movement and habitat use by stream-dwelling
smallmouth bass. *Transactions of the American Fisheries Society* 118: 229-242. - Uphoff, J.H., M. McGinty, R. Lukacovic, J. Mowrer, and B. Pyle. 2011. Impervious surface, summer dissolved oxygen, and fish distribution in Chesapeake Bay subestuaries: linking watershed development, habitat conditions, and fisheries management. *North American Journal of Fisheries Management* 31: 554-566. - USACE. 2013. Unionid Habitat Literature Review, 76. St. Louis, MO: U.S. Army Corps of Engineers, St. Louis District and Ecological Specialist, Inc. - van Snik Gray, E.S., W.A. Lellis, J.C. Cole, and C.S. Johnson. 1999. Hosts of *Pyganodon cataracta* (eastern floater) and *Strophitus undulatus* (squawfoot) from the Upper Susquehanna River basin, Pennsylvania. *Triannual Unionid Report* 18: 6. - Watters, G.T. 1996. Small dams as barriers to freshwater mussels (Bivalvia, Unionoida) and their hosts. Biological Conservation 75: 79-85. - Weinstein, M.P., and H.A. Brooks. 1983. Comparative ecology of nekton residing in a tidal creek and adjacent seagrass meadow: Community composition and structure. *Marine Ecology Progress Series* 12: 15-27. - Zapfe, G.A., and C.F. Rakocinski. 2008. Coherent growth and diet patterns of juvenile spot (*Leiostomus xanthurus* Lacepede) reflect effects of hydrology on access to shoreline habitat. *Fisheries Research* 91: 107-111. - Zhang, H.Y., D.M. Mason, C.A. Stow, A.T. Adamack, S.B. Brandt, X.S. Zhang, D.G. Kimmel, M.R. Roman, W.C. Boicourt, and S.A. Ludsin. 2014. Effects of hypoxia on habitat quality of pelagic planktivorous fishes in the northern Gulf of Mexico. *Marine Ecology Progress Series* 505: 209-226.