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Abstract

QuickSpec is a theory exploration system which tests a Haskell program to find equational properties
of it, automatically. The equations can be used to help understand the program, or as lemmas to help
prove the program correct. QuickSpec is largely automatic: the user just supplies the functions to be
tested and QuickCheck data generators.

Previous theory exploration systems, including earlier versions of QuickSpec itself, scaled poorly.
This paper describes a new architecture for theory exploration with which we can find vastly more
complex laws than before, and much faster. We demonstrate theory exploration in QuickSpec on
problems both from functional programming and mathematics.

1 Introduction

Formal specifications are a powerful tool for understanding programs. For example, if we
know that filter p (xs++ ys) = filter p xs++filter p ys, we know that filter acts pointwise on
its input: to understand what filter does, we need only understand what it does to singleton
lists. When a library comes with a specification, the user need not guess how the library
behaves: they can work it out for themselves.

A specification also helps the designer of a library. Formal specifications are unforgiving
of irregular behaviour: if the code has special cases, the specification will have special cases.
Implicit assumptions about how the library is used must be explicitly spelled out in the
specification. A clean, clear specification is a good sign that the design of the library is
on the right track. And of course, we can use an automated testing tool like QuickCheck
(Claessen & Hughes, 2000) to check the library against its specification.

But it is hard and time-consuming to write a specification. Properties are different from
programs, and writing them needs a different mindset; it is easy not to bother, especially if
the code has to be delivered to a tight deadline. The result is code that behaves in unexpected
ways, and libraries that we have to decipher through trial and error.

How can we lower the entry barrier for formal specification? In this paper, we show
how to discover a specification, automatically, simply by testing the program. Our tool,
QuickSpec, discovers equations between the functions in the program. It does so efficiently,
taking seconds on smaller inputs or minutes on larger ones; for example, it discovers
the above filter law in a fraction of a second. You can study the discovered equations to
understand the program better, or use them as the basis for a full specification.
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Example As a first example, illustrating both the strengths and limits of QuickSpec, let’s
use it to discover the monad laws. To run QuickSpec, we have to provide it with a set of
functions to explore, which we call the signature.1 QuickSpec understands polymorphic
functions, but not typeclass polymorphism, so we have to specialise the monad functions
to a specific monad, say lists. We give QuickSpec the functions return and >>=, and it
immediately prints:

xs>>= return = xs (1)

return x>>= f = f x (2)

These are two of the monad laws. However, the third monad law, (xs >>= f )>>= g =

xs>>= (λx. f x>>=g), is missing. Why?
Note that this law contains a λ -term. QuickSpec only builds equations from the functions

it is given; it does not try to synthesise new functions, and in particular it does not generate λ -
terms. To characterise monads without needing λ -terms, we can use the Kleisli composition
operator, here specialised to lists: (>=>) :: (a→ [b])→ (b→ [c])→ (a→ [c]).

With (>=>) added to the signature, QuickSpec finds five additional laws:

return>=> f = f (3)

f >=>return = f (4)

( f >=>g) x = f x>>=g (5)

( f >=>g)>=>h = f >=>(g>=>h) (6)

(xs>>= f )>>=g = xs>>=( f >=>g) (7)

Laws 3 and 4 state that >=> has unit return, law 5 defines >=> in terms of >>= and law 6
state that >=> is associative. Finally, equation 7 is the third monad law!

The whole process takes about 1 1
2 seconds from start to finish, and the bulk of the time is

spent testing these laws with QuickCheck, i.e. there is very little overhead discovering these
laws compared to just testing them.

What use is QuickSpec? In this paper, we are interested in QuickSpec as a standalone tool:
the programmer runs it, and sees the equations that are printed out. The laws discovered by
QuickSpec have several practical uses:

• Confirming/denying expectations. A programmer can check the relatively small set of
equations discovered by QuickSpec to ensure that the specification is what they really
expected and intended. If not, this could indicate a bug.

1 For the benefit of the curious reader, the example on this page uses the following signature:

signature {
constants = [

constant "return" (return :: A→ [A]),
constant ">>=" ((>>=) :: [A ]→ (A→ [B ])→ [B ]),
constant ">=>" ((>=>) :: [A]→ (A→ [B])→ [B ])]}

The signature is an ordinary Haskell expression which gives the names and values of all the functions
QuickSpec should explore. In signatures, A and B represent type variables.

For user-defined datatypes, we also have to supply QuickCheck generators for random data. These are
small functions that QuickCheck uses to produce random values of a given type.
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• Regression testing. Properties which look sensible can be added as regression tests; if
the program’s behaviour changes in the future then these properties might fail.

• Refinement. Similarly, properties can be discovered from a model implementation
and then used to test an optimised implementation.

• Understanding third-party code. For poorly-documented third-party libraries, where
the source code is perhaps not even available, the discovered laws can give the user
an insight into how the library behaves.

QuickSpec can also be used as part of a program verification system or proof assistant.
One challenge when proving properties of functional programs is finding lemmas which
can be proved by induction; this is difficult to do automatically. QuickSpec is used as a
backend by the state-of-the-art inductive theorem provers HipSpec and Hipster (Claessen
et al., 2013; Johansson et al., 2014), where the conjectures discovered are piped through to
the prover. Once proved, they are used as lemmas when the theorem prover tackles harder
problems.

Finally, QuickSpec is an example of a theory exploration system. In mathematics, after
defining the basic operators and concepts of a new structure, the mathematician has to come
up with all the appropriate basic conjectures about that structure before they can proceed to
more advanced theorems. Theory exploration systems (Buchberger et al., 2006; Johansson
et al., 2011; Montano-Rivas et al., 2012) take a mathematical structure and try to discover
as many interesting lemmas about it as possible. These are then given to the mathematician
as inspiration for more complex theorems.

QuickSpec is therefore not just a tool for programmers, but can also be used as a theory
exploration system for mathematics and theorem proving. In this paper, we concentrate on
QuickSpec itself and not its other applications.

Contributions. In principle, a theory exploration system such as QuickSpec simply gener-
ates and checks a large set of conjectures, built somehow from the functions and constants
in the theory. As there is no way of knowing in advance which conjectures might be true, it
should consider all possible conjectures up to some resource limit.

The reader might find it hard to believe that this could possibly scale beyond small
examples. Indeed, finding interesting properties or lemmas about a program or mathematical
structure is a very difficult problem, which suffers inherently from exponential blowup.
Existing theory exploration systems, including earlier versions of QuickSpec (Claessen
et al., 2010), work only on small examples.

Our paper presents a new, efficient, architecture for theory exploration, which suffers far
less from exponential blowup than existing designs. It often does less work by a factor of
hundreds or thousands than older theory exploration systems. The new architecture scales
well, discovering complex equational laws over large signatures of functions. While earlier
theory exploration systems were limited to toy problems, this new incarnation of QuickSpec
is a capable tool for finding equational specifications for real programs and libraries. We
start by demonstrating its power on a pretty-printing library (Section 2); we then describe
QuickSpec’s design in detail (Section 3), followed by a variety of case studies (Section 4).

QuickSpec is open source and available from:

https://github.com/nick8325/quickspec.

https://github.com/nick8325/quickspec
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2 Pretty-printing

In his classic paper, Hughes (Hughes, 1995) uses equational reasoning to design an efficient
pretty-printing library. In this section, we will take this library as an initial example of how
QuickSpec can be used. The library defines a type Doc of documents, and four combinators
which build documents:

type Doc = ... -- the abstract type of documents
(�) :: Doc→ Doc→ Doc -- horizontal composition, x � y
($$) :: Doc→ Doc→ Doc -- vertical composition, x $$ y
nest :: Int→ Doc→ Doc -- indentation, nest k x
text :: String→ Doc -- plain text, text xs

The four combinators behave as follows:

• Horizontal composition: x � y sets x next to y on the page.
• Vertical composition: x $$ y sets x above y on the page.
• Indentation: nest k x indents x by k spaces.
• Plain text: text xs converts a string xs into a document.

Hughes starts with a denotational semantics of his combinators, in the form of a model
implementation, which he assumes to be correct. He lists laws that hold in his semantics,
then uses those laws to derive an efficient version of the combinators.

The laws themselves appear out of nowhere, and Hughes does not explain how he thought
of them. One of the laws in particular is rather intimidating:

text xs � ((text "" � x) $$ y) = (text xs � x) $$ nest (length xs) y

In this section we put ourselves in Hughes’s shoes: from a nice model implementation of
the pretty-printing combinators, work out what laws it satisfies. However, instead of doing
it ourselves by hand, we will let QuickSpec help us. In all examples, we give all equations
output by QuickSpec in full, without omissions, unless otherwise stated.

As before, we need to define a signature, which will consist of all four pretty-printing
combinators. We run QuickSpec, and in a couple of seconds it prints the following equations:

(x � y) � z = x � (y � z) (1)

(x $$ y) $$ z = x $$(y $$ z) (2)

(x $$ y) � z = x $$(y � z) (3)

x � nest i y = x � y (4)

nest i (x � y) = nest i x � y (5)

nest i x $$ nest i y = nest i (x $$ y) (6)

nest i (nest j x) = nest j (nest i x) (∗)

These laws reveal a number of properties of the pretty-printing combinators:

• Both horizontal and vertical composition are associative (laws 1 and 2)—in other
words, we can lay out a sequence of documents horizontally or vertically, without
worrying about bracketing.
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• In a horizontal composition x � y, if x is a multi-line document constructed using $$ ,
then y is appended to the last line of x (law 3).

• In a horizontal composition x � y, the indentation of y is ignored (law 4): only the
indentation of x matters (law 5).

• Nesting a multi-line document indents every line in it (law 6).

The final starred equation states that two nested nests commute. All very well and good,
but is there more we can say than this? Presumably, indenting a document by i and then
by j has the total effect of indenting it by i+ j, but we don’t get a law to this effect. This is
because QuickSpec only discovers laws about functions in the signature, and + is not in our
signature!

We add + to the signature, and 0 for good measure. We can even mark them as background
functions—QuickSpec will only print a law if it involves at least one non-background
function, so we won’t get laws about just + and 0. Having done this, QuickSpec finds two
more laws:

nest 0 x = x (7)

nest (i+ j) x = nest i (nest j x) (8)

What’s more, it no longer prints the starred law above since it follows from law 8. Inspired
by our success, we also add ++ and "". We get two laws about the text combinator:

x � text ""= x (9)

text xs � text ys = text (xs++ ys) (10)

We also get three rather more complicated-looking laws.

text "" � (text xs $$ x) = text xs $$ x (a)

text "" � ((text xs � x) $$ y) = (text xs � x) $$ y (b)

(text "" � x) $$(text "" $$ x) = text "" � (x $$ x) (∗)

These laws are curious because they all involve terms of the form text "" � x. Isn’t this
the same as x? The law text "" � x = x is conspicuous by its absence from the list above, so
we can QuickCheck it, which reveals a counterexample:

nest 2 (text "ab") renders to " ab", but

text "" � nest 2 (text "ab") renders to "ab".

It seems that text "" � x strips any indentation from x, so text "" � x = x exactly when x
is not indented. We therefore see from the first two laws above that any document whose
first line starts with a text is not indented. This suggests that the indentation of a document
as a whole is determined by how its first line is indented.

The third, starred, law is slightly different in that it has text "" on both sides. Could we
generalise this law to an arbitrary string, text xs? The correct generalisation certainly isn’t

(text xs � x) $$(text xs $$ x) = text xs � (x $$ x)

because the left-hand side will print the string xs twice. Nor is it

(text xs � x) $$(text "" $$ x) = text xs � (x $$ x)
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because on the left-hand side, the second x won’t be indented, while on the right-hand side
it will be. We need to indent the second x by the length of xs, and in hindsight it is obvious
that we should also have length in our signature—clearly, changing the length of a string
will affect how a document is typeset (by, for example, moving other documents set next to
it). Adding the standard Haskell function length :: String→ Int to the signature, we get a
generalisation of the starred law,

(text xs � x) $$(text "" � x) = text xs � (nest (length xs) x $$ x) (c)

in which the second x on the right-hand side is effectively unindented. We also get three
more laws, including Hughes’s scary law from the start of this section!

text xs � (text "" $$ x) = text xs $$ nest (length xs) x (d)

text (xs++ ys) $$ nest (length xs) x = text xs � (text ys $$ x) (e)

text xs � ((text "" � x) $$ y) = (text xs � x) $$ nest (length xs) y (11)

This means that QuickSpec has succeeded in finding all 11 of Hughes’s laws (the 11
numbered laws in this section); all we had to do was give it the right auxiliary functions to
explore. It also finds five extra ones, which are the ones labelled (a)–(e). The complete set
of laws is listed in Figure 1; the five which are not in (Hughes, 1995) are marked with a star.

nest 0 x = x

x � text ""= x

(x $$ y) $$ z = x $$(y $$ z)

x � nest i y = x � y

(x $$ y) � z = x $$(y � z)

(x � y) � z = x � (y � z)

nest i (x � y) = nest i x � y

nest (i+ j) x = nest i (nest j x)

text xs � text ys = text (xs++ ys)

nest i x $$ nest i y = nest i (x $$ y)

text "" � (text xs $$ x) = text xs $$ x (∗)
text xs � (text "" $$ x) = text xs $$ nest (length xs) x (∗)

text (xs++ ys) $$ nest (length xs) x = text xs � (text ys $$ x) (∗)
(text xs � x) $$(text "" � x) = text xs � (nest (length xs) x $$ x) (∗)
text "" � ((text xs � x) $$ y) = (text xs � x) $$ y (∗)
text xs � ((text "" � x) $$ y) = (text xs � x) $$ nest (length xs) y

Fig. 1: What QuickSpec discovers about the pretty-printing library. Starred equations are
ones not found in Hughes.

Of these five extra laws, four are special cases of the final law. QuickSpec prints laws as
it discovers them, and explores laws in order of size; as the final law is quite big, and the
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special cases smaller, we get those special cases. This is not so bad: small special cases of a
large general law are often quite instructive. The fifth law,

(text xs � x) $$(text "" � x) = text xs � (nest (length xs) x $$ x)

does not follow from Hughes’s 11: his laws are complete for ground documents, but not
documents with variables.

This law is not very useful: it talks about typesetting x above itself, hardly a common
operation. We can generalise it by observing that we do not really need to have the same
document twice, but two documents which are indented by the same amount. We therefore
introduce a new concept, the nesting level of a document. Using our earlier idea that a
document x is unindented if text "" � x = x, we say that the nesting level of x is k if
nest (−k) x is unindented. We define a function nesting which takes a document and returns
its nesting level; given nesting, QuickSpec discovers six new laws. The first four show that
the four combinators affect the nesting level as we would expect:

nesting (text xs) = 0

nesting (x $$ y) = nesting x

nesting (x � y) = nesting x

nesting (nest i x) = i+nesting x

while the fifth one shows that our definition of nesting makes sense, as unindenting a
document and then indenting it by its nesting level recovers the original document:

nest (nesting x) (text "") � x = x

Finally, Hughes’s 11th law is gone! Instead, it is replaced by the following reformulation,
which we think is simpler as it doesn’t rely on using text "" to unindent x, instead explicitly
adjusting the nesting of y by the correct amount:

text xs � (x $$ nest (nesting x) y) = (text xs � x) $$ nest (length xs) y

From these equations about nesting, one of the starred laws from Figure 1:
(text xs � x) $$(text "" � x) = text xs � (nest (length xs) x $$ x) also follows, so QuickSpec
can now discard it. We conjecture that this final set of laws is a complete equational
specification for Hughes’s pretty-printing library—Hughes’s specification is complete only
for ground documents.

Summing up. QuickSpec was able to find all of Hughes’s laws, and with a bit more thought
on our part was even able to generalise them, letting us use the concept of nesting level
to reason about non-ground documents. All we had to do was supply the right signature.
The skill in using QuickSpec lies in knowing which functions to include in the signature,
including auxiliary functions, and sometimes which to leave out. By looking at unexpectedly
specific laws, and thinking how to generalise them, we can often come up with new auxiliary
functions which will give us better laws.

For the complete pretty-printing example, including nesting, running QuickSpec takes
about ten seconds. Previous theory exploration systems cannot handle such a complex set
of laws.
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3 Implementing a theory exploration system

In the previous section, we got a taste of what QuickSpec can do. Now it is time to look
under the hood and see how it does it. Before we dive into QuickSpec’s algorithms, we will
take a look at a very basic model of theory exploration, to properly understand the problems
that QuickSpec is designed to solve.

3.1 Inventing equations slowly

How can we discover equations about a program? One idea is to generate all equations
up to some size limit, test them (e.g. with QuickCheck) and print out the ones which
seem to hold. This idea finds too many laws: given the function ++ and constant [ ], it will
discover xs++[ ] = xs and [ ]++xs = xs, but also xs++[ ] = [ ]++xs and [ ]++[ ] = [ ], which
follow from the first two laws. We must therefore prune the discovered laws, removing the
redundant laws, i.e. the ones which follow from other discovered laws. The resulting design,
which we call SlowSpec, is shown in Figure 2.

Candidate
conjectures

Likely
conjectures

Interesting
conjecturesGenerate

Test Prune
Print

Fig. 2: A simple but slow design for theory exploration.

SlowSpec will find a nice set of laws—eventually. Unfortunately, it is terribly slow, and
on non-trivial examples we will run out of time or space before it terminates. To see why,
consider the pretty-printing example. The law

text xs � ((text "" � x) $$ y) = (text xs � x) $$ nest (length xs) y

relates two terms of size 9. There are approximately 106 terms of size 6 9 over the pretty-
printing combinators and three variables. This is too many for SlowSpec, for two reasons:

• Quadratic blowup. To find all equations between a set of n terms, SlowSpec will
try n2 conjectures. In other words, the pretty-printing example will need to test 1012

conjectures! This is not a reasonable number.
• Wasted testing. Suppose that each of the 106 terms is on average equal to one other

term.2 Then SlowSpec will generate about n/2 = 500000 true conjectures, all of
which will be thoroughly tested—but all but perhaps 50 will then be pruned away as
redundant. In this particular case, 99.99% of the testing we do is simply wasted time.

In the next section we describe QuickSpec’s design, which avoids both these problems:

• The runtime is proportional to the number of explored terms, not the number of
possible conjectures.

• Most of the testing effort is spent on the final laws that are presented to the user,
not conjectures that are falsified or pruned away. The testing effort is in practice
proportional to the number of discovered laws.

2 This number reflects reality quite closely in our experience.
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3.2 Inventing equations quickly

QuickSpec uses the same ingredients as SlowSpec—it tests conjectures, prunes out redun-
dant ones, and presents what remains to the user. But it rearranges these ingredients to
discover equations much more efficiently. In the following section we describe the three
refinements that take us from SlowSpec to QuickSpec:

• We interleave testing and pruning to avoid testing redundant conjectures (section 3.2.1).
• We test terms instead of conjectures to avoid quadratic blowup (section 3.2.2).
• We use so-called schemas to avoid testing most terms altogether (section 3.2.3).

3.2.1 Interleaving testing and pruning

SlowSpec tests many laws that are later pruned away. For example, given the functions ++,
[ ] and reverse, it will discover both xs++[ ] = xs and reverse xs++[ ] = reverse xs, and then
prune away the second one. In practice, very many pairs of terms are equal, but a small
subset of these equalities implies the rest, and the overwhelming majority (well over 99%)
are redundant.

Our first improvement is to not test redundant laws. To do so, we will test each conjecture
before generating the next one. This allows us to prune a conjecture before we test it, if it
follows from what we have already discovered.

As before, we enumerate all equations up to some size limit. For each equation, we do
the following:

• If the equation follows by equational reasoning from the equations we have already
discovered, it is redundant and we discard it.

• Otherwise, we test the equation. If it is false, we discard it. If it seems to be true, we
print it out. It can then be used to help prove later equations.

With this design, after discovering the law xs++ [ ] = xs, the law reverse xs++ [ ] =

reverse xs will be discarded without being tested, since it is an instance of the first law. By
interleaving testing and pruning, we avoid testing laws that we already know to be true. As
false laws are typically falsified after a few cases, but true laws have to be tested fully, this
cuts out the vast majority of testing effort.3

3.2.2 Enumerating terms instead of equations

The design so far still suffers from the quadratic blowup of section 3.1: if we want to
discover all equations between a set of n terms, we need to generate n2 conjectures. Even
though almost all will be false and discarded quickly, generating them still uses time and
memory.

To solve this problem, instead of enumerating conjectures we will enumerate terms. For
each term, we will try to discover an equation that relates it to a previously-explored term.
We call this considering the term.

3 It is hard to quantify exactly how much, but Section 4.5 suggests that a factor of 1000 may be
common.
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Term Status Result

[ ] Not equal to a previous term Added to candidate terms
xs Not equal to a previous term Added to candidate terms
ys Not equal to a previous term Added to candidate terms
xs++[ ] Equal to xs by testing xs++[ ] = xs discovered
[ ]++ xs Equal to xs by testing [ ]++ xs = xs discovered
ys++[ ] Equal to ys by existing laws Discarded
[ ]++[ ] Equal to [ ] by existing laws Discarded
xs++ ys Not equal to a previous term Added to candidate terms
xs++(ys++ zs) Not equal to a previous term Added to candidate terms
xs++(xs++ xs) Not equal to a previous term Added to candidate terms
[ ]++(xs++ ys) Equal to xs++ ys by existing laws Discarded
(xs++ ys)++ zs Equal to xs++(ys++ zs) by testing Associativity discovered
(xs++ xs)++ xs Equal to xs++(xs++ xs) by existing laws Discarded

Table 1: Exploring the functions [ ] and ++.

We can adapt the design of section 3.2.1 to consider terms instead of equations. We
maintain a set of discovered equations, which are used for pruning, and a set of candidate
terms, which each term we consider is checked against.

To consider a new term we do the following (the changes from the previous section are
marked in italics):

• If we can prove the term equal to a candidate term, using the equations discovered so
far, it is redundant and we discard it.
• Otherwise, we test the term. If it is different from all candidate terms, we add it to the

candidate term set. If it seems to be equal to a candidate term, we add the equation to
the discovered set.4

Table 1 shows a term-by-term trace of this algorithm exploring the list functions ++ and [ ]

and discovering the laws xs++[ ] = [ ], [ ]++xs = xs and (xs++ys)++ zs = xs++(ys++ zs).
More formally, we can model consider as a function of type Term→ State→ State,

where the state consists of E, the discovered equations, and T , the candidate terms. The
specification of consider is then as follows:

consider t (E,T) =


(E,T ) if t = u follows from E for some u ∈ T

(E ∪{t = u},T ) if t = u holds by testing for some u ∈ T

(E,T ∪{t}) otherwise.

4 Notice that this algorithm maintains the invariant that no two candidate terms are equal, which
means each term can only be equal to one candidate term. In theory a term may test equal to two
candidate terms, but we will see in Section 3.3 that this is not possible.
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A term ordering Notice that the laws we get out depend on the order in which we
enumerate terms. If, for example, we had generated the term [ ] ++ [ ] before xs ++ [ ],
we would have got the law [ ]++[ ] = [ ] as well as xs++[ ] = xs.

In QuickSpec, we prune away a law if it is redundant with respect to previous laws—but it
may be redundant with respect to later laws. It’s important to enumerate terms in a sensible
order—by generating the terms in Table 1 in a different order, we could have “discovered”
the unwanted laws (xs++ xs)++ xs = xs++(xs++ xs) or [ ]++(xs++ ys) = xs++ ys.

But what is a sensible order? We want to discover more general laws before more specific
ones. In particular, we want to generate a law t = u before any of its instances tσ = uσ . So
we define an order < on terms with the property that, if σ is not a renaming, then t < tσ ,
and then we enumerate terms in that order. It seems that the precise order does not matter
much as long as it satisfies this property. QuickSpec defines < as follows:

• If t’s size is smaller than u’s size, then t < u.
For example, xs++[ ]< (xs++ ys)++[ ].

• Otherwise, the term with the most variable occurrences is smaller.
For example, xs++ xs< xs++[ ]< [ ]++[ ].

• Otherwise, the term with the most distinct variables is smaller.
For example, xs++(ys++ zs)< xs++(xs++ xs).

• If all else fails, we simply compare the terms lexicographically.

Efficiency At this point, we do not seem to have gained anything by enumerating terms.
When we consider a new term, we must still compare it against all existing candidate terms.
Thus, exploring n terms will still take O(n2) time.

To fix this, we must efficiently compare each new term against all existing terms
simultaneously. For testing, we will assume we have a data structure for sets of terms
that supports the following operation:

test :: Term→ Set Term→ Result
data Result = EqualTo Term | Distinct (Set Term)

The idea is that test takes a term t and a set of terms T and tests t against all terms in T . If it
finds that t is equal to some term u ∈ T then it returns EqualTo u. Otherwise, it inserts t into
T and returns Distinct (T ∪{t}). We will see how to implement this in section 3.3.

For pruning, instead of trying to prove equations we will compute a normal form for each
term, so that to prove an equation we simply normalise both sides and see if they turn out
equal. We assume a normalisation function

norm :: Set Equation→ Term→ Term

with the property that if norm E t = norm E u, then t = u follows from E. Conversely, if
t = u follows from E, then we hope that norm E t = norm E u, but because equational
theorem proving is undecidable this does not always hold.5 We will see how to normalise
terms effectively in section 3.4.

5 When this happens, we get redundant equations that our pruner could not prove. In practice, an
equation which is redundant but hard to prove is quite likely to be interesting to the user anyway.
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We can now refine the specification of consider above into the following code. The
comments explain how the code relates to the specification. Notice that we keep the
candidate terms T normalised with respect to the discovered equations E, which makes it
easy to check if the new term can be proved equal to any candidate term:

type State = (Set Equation,Set Term)

consider :: Term→ State→ State
consider t (equations, terms)

-- Does t = u follow from E for some u ∈ T ?
| norm equations t ∈ terms = (equations, terms)
| otherwise =

-- Does t = u hold by testing for some u ∈ T ?
case test t terms of

EqualTo u→
let equations′ = equations∪{t = u} in
(equations′,map (norm equations′) terms)

Distinct terms′→ (equations, terms′)

Generating fewer terms Though consider is now efficient, we still feed it a vast number
of terms. We would like to avoid generating most terms at all.

Suppose we know that a term t is equal to a candidate term u. Then there is no point
generating any term which has t as a subterm; we will generate the same term with t replaced
by u anyway. So, when we build terms, we only build them out of candidate subterms. This
reduces the number of generated terms substantially; in the pretty-printing example, it goes
down 106 to 104.

Summary The algorithm we have now described is an efficient theory exploration system,
though we will refine it further in the next section.

Why is this algorithm fast? One reason is that we enumerate terms instead of conjectures.
Because the number of conjectures grows exponentially with size, exploring n2 conjectures
in O(n) time allows us to effectively find laws of double the size.

The other main reason is that most terms are cheap to explore. Normalisation is very
cheap, as we shall see in section 3.4, so we discard redundant terms quickly. When a term
is not equal to any candidate term, a very small number of test cases (typically 10 or so)
suffice to distinguish it from the candidate terms, so this case is also quick.

The only time exploring a term is expensive is when we discover a new law—in this case,
we must test the law thoroughly, which may take some time. We must also update the data
structures used by normalisation, which we will see later is also expensive. But in return we
get to print out a law—the user sees progress.

Looking back to the promises we made about QuickSpec in Section 3.1, we see that we
have kept both. QuickSpec’s runtime is proportional to the number of explored terms, and
only the discovered laws are tested thoroughly. We will see in Section 4.5 that the testing
effort is indeed roughly proportional to the number of discovered laws.
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3.2.3 Enumerating schemas instead of terms

We can reduce the number of terms generated still further. The rough idea is to avoid
generating lots of terms that are the same up to variable renaming. Instead of directly
discovering a law like

(xs++ ys)++ zs = xs++(ys++ zs),

we will first discover that there is a law of the shape

(?++?)++? =?++(?++?)

where each ? stands for a variable, and then work out how to fill in the variables in the most
general way. Notice that there is a law of this shape if and only if the law

(xs++ xs)++ xs = xs++(xs++ xs)

holds. Our idea is to generalise from laws with one variable to laws with many variables.
To do so we enumerate schemas instead of terms. A schema is a term in which all

variables have been replaced by a hole. For example, the term (xs++ ys)++ zs has the
schema (?++?)++?, while the term (xs++ys)++[ ] has the schema (?++?)++[ ]. A schema
represents all the terms we could build by plugging variables into the holes in whatever
combination we like; we call these terms the instances of the schema.

We consider two instances of each schema:

• The most general instance of a schema such as ?++(?++?) is one where all holes
are instantiated with different variables, such as xs++(ys++ zs).

• The one-variable instance is one where all holes of each type are instantiated with
the same variable, such as xs++(xs++ xs).

We observe that, if the most general instance of a schema can be pruned away by some
discovered law, then all of its instances can be pruned away using the same law. Conversely,
if there is a law waiting to be discovered about some instance of a schema, then the one-
variable instance of that law must also hold: (xs++ys)++zs = xs++(ys++zs) implies
(xs++xs)++xs = xs++(xs++xs). If testing the one-variable instance of a schema reveals
no laws then we need not test the other instances.

We then add a schema layer on top of the previous section’s term layer. The term layer, as
before, considers terms and discovers equations, but the schema layer is in charge of giving
it terms to consider. The way it does this is to test each schema and possibly instantiate it,
which means generating all instances of the schema and giving them to the term layer to
consider. In more detail, if the schema has n holes, we fill it in with all possible combinations
of n variables, and send the resulting terms to the consider function of Section 3.2.2. The
goal is that most schemas will not need to be instantiated and the number of terms we
consider will be drastically reduced: a single schema with n holes stands for nn terms.

Our algorithm is quite similar to the previous section’s. We enumerate schemas in order
of size. We maintain a set of candidate schemas analogous to the candidate terms from
Section 3.2.2. For each schema:

• We discard the schema if we can prove its most general instance equal to either

— a term we have considered, or
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— the most general instance of a candidate schema,

using the equations we have discovered so far.
• Otherwise, we add the schema to the candidate schemas, and then test the one-variable

instance of the schema against the one-variable instances of all other candidate
schemas.
If this reveals an equation t = u, we instantiate both schemas.
Otherwise, we do not instantiate the schema.

Most commonly, the schema is tested and is not equal to any existing schema. In that
case, we are finished with that schema, and just add it to the candidate schemas.

Otherwise, we have discovered a candidate equation between two one-variable instances,
such as (xs++xs)++xs = xs++(xs++xs), meaning that testing has not found any values
for xs falsifying this equation. However, a more general version of the equation might exist.
To find out if it does, QuickSpec takes all instances (with “?”s instantiated by variables) of
both schemas, and feeds them to the term layer. We generate these instances in order of
generality, i.e. the instances with the fewest repeated variables first. This makes the term
layer first discover the most general formulation of the law, and then use this law to discard
the remaining instances.

Example Let us revisit the pretty printing library from Section 2. Suppose QuickSpec is
given the functions �, 0 and nest. On the first iteration QuickSpec generates schemas of size
1: The trivial schema 0 and the one-hole schemas ‘?’ (one for each type). Of course none of
the schemas is equal.

Let us fast-forward to size 3. Here QuickSpec generates (among others) the schema
nest 0 ?. When we test this schema, we find that it is equal to ‘?’. As these schemas only
have one hole each, we generate the terms nest 0 x and x, and discover the law nest 0 x = x.
From now on, we will not construct any larger schemas that contain nest 0 ? as a sub-schema,
as such a schema will necessarily be equal to an existing one.

Now let’s see what happens at size 5. Here the schemas

(?�?)�? and ?�(?�?)

are generated. They each have three holes of the same type and neither is redundant. To test
them, we instantiate all those holes with the same variable, say x, obtaining the one-variable
instances (x�x)�x and x�(x�x). The two schemas will end up equal after testing. We
then feed all instances of the schemas to the term layer, in order of generality, i.e. adding
instances with larger number of different variables first. As soon as we have fed the term
layer the terms (x�y)�z and x�(y�z), it will discover associativity. We will generate more
instances such as (x�x)�y, which will either be pruned away by associativity or not be
equal to any other term.

Singleton schemas The algorithm above has one problem: it does not find laws such as
commutativity where both sides share the same schema. A schema such as ?+? will not be
equal to any other schema and we will not instantiate it. The flaw in the algorithm described
above is that it assumes we can generalise any law t = u from the corresponding law about
the one-variable instances of t’s and u’s schema, but in the case of commutativity this is a
trivial law which has the same term x+ x on both sides.
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To fix this problem, we also need to instantiate any schema that is not equal to any
existing schema. To improve performance, we sacrifice completeness and only do this if the
schema’s size is below some threshold, by default 5.6 We are then not guaranteed to find
a law above this size if both sides of that law have the same schema, but will still find all
other laws.

Associative-commutative functions There is also a slight aesthetic problem with the
algorithm as it stands. Suppose we explore an associative-commutative function such as +.
After instantiating the schema ?+?, we will discover commutativity. We will then instantiate
?+(?+?), and discover the law x+(y+ z) = y+(x+ z). In the presence of commutativity,
this law implies associativity: coming to the schema (?+?)+?, we will discard it, and
not print the associativity law.7 Both laws are equivalent, but we would rather find the
conventional formulation of associativity.

At the same time, we do not want an ad hoc heuristic that treats associative-commutative
functions specially. Instead we observe that (x + y) + z = x + (y + z) is a terminating
rewrite rule, in the sense that applying it repeatedly left-to-right on a term is bound to
terminate, while x+(y+ z) = y+(x+ z) is not, because we can rewrite t +(u+ v)→
u+(t + v)→ t +(u+ v) forever. We would rather discover terminating rewrite rules than
arbitrary equations, as these are more likely to represent sensible simplification laws.

Whenever QuickSpec discovers a new law t = u, with t being the newly-explored term,
it tries to show that t = u is a terminating rewrite rule.8 If it is, it prints it. Otherwise, it
forgets about the law, and does not add t to the set of explored terms. It then continues. After
exploring all terms of the same size as t, it then reconsiders t. If t still cannot be pruned, it
emits the law t = u. In effect QuickSpec behaves as if we had delayed exploring t until a bit
later.

3.3 Decision trees for testing terms

In Section 3.2 we assumed that QuickSpec could efficiently test a single term against a set
of other terms. To do this, we maintain a decision tree alongside the set of terms. Figure 3
illustrates one such tree; the internal nodes are test cases, whose edges are labelled with test
results, and the leaves are terms.

To test a new term against the terms in a decision tree, we try inserting it into the decision
tree. That is, we take the test case at the root, evaluate the term on that test case and follow
the appropriate edge down into the tree.

In Figure 3, we are inserting xs++xs into the tree. When we evaluate xs++xs on the test
case xs = [1], ys = [], there is no edge labelled with the result [1, 1]. This means
that xs++xs is not equal to any existing term in the tree and we insert it at that point.

6 On the pretty-printing example, switching off this threshold increases runtime by a factor of 5, so
recovering completeness is possible at a cost.

7 The term (x+y)+ z is equal to z+(x+y) by commutativity, which as an instance of ?+(?+?) is a
term we have already explored.

8 In our current implementation, it checks if t >KB u where >KB is the Knuth-Bendix ordering on
terms.
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Fig. 3: Inserting a term into a decision tree.

Suppose we instead insert the term xs++ys. The decision tree will take us to the leaf ys.
Does this mean that xs++ys = ys? Certainly not! But the decision tree does not contain
the right test case to falsify this equation. When insertion reaches a leaf in the decision
tree, that gives us a candidate equation, which we test using QuickCheck. In this case,
testing xs++ys = ys will reveal a counterexample such as xs = [1], ys = [1]. We
then refine the decision tree by adding that test case to it; see Figure 4. As an optimisation,
before testing a candidate equation with QuickCheck, we try using all the other test cases in
the decision tree; this saves us having to generate new test cases most of the time.

If QuickCheck fails to find a counterexample, then we have discovered a law; our decision
tree remains the same.9

Notice that we only have to QuickCheck one equation, not one for each term in the
decision tree; this makes the process efficient. Furthermore, the decision trees are typically
very shallow; for the pretty-printing example, the maximum depth is 9. This means that we
spend little testing effort on placing terms in the decision tree.10

3.4 Pruning

In Section 3.2 we also assumed that we can check if a term can be proved equal to any of the
candidate terms using the discovered equations. Recall that we prune terms by normalising
them somehow with respect to the discovered equations. The pruner consists of a function

norm :: Set Equation→ Term→ Term

which computes the normal form of a term. To check if a term is redundant, we check if its
normal form is equal to the normal form of an existing term. By maintaining a set containing
all terms’ normal forms, we can do this check efficiently; the only cost is that, when we
discover a new law, we need to renormalise this set.

9 The function consider will then renormalise the set of terms, but the decision tree is not affected.
10 On the other hand, the decision trees can be wide: one node can have many children. We therefore

store the children of each node not in a list, but in a map (whose keys are test case results), which
ensures good performance during insertion.
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Fig. 4: Adding the test case xs = [1], ys = [1] and the term xs++ys.

The question is: how to do this normalisation? We would like two terms to have the
same normal form if and only if they can be proved equal, but this is impossible because
equational theorem proving is not decidable. Instead, we must have an approximation: if
two terms have the same normal form, they must be equal; but even if they can be proved
equal they may have different normal forms. We want this to happen rarely, because every
time it happens, we discover an equation that is redundant. Furthermore, normalisation must
be very quick, because we generate tens of thousands of terms.

We have implemented a pruner based on term rewriting. The core of the pruner works on
first-order, simply-typed terms; a higher layer translates away polymorphic types (section
3.5) and higher-order features (section 3.7). In addition, whenever we normalise a term it is
first Skolemised: its variables are replaced by fresh, uninterpreted constants. This allows the
normalisation function to only consider ground terms. Recall from section 3.2.2 that we
also have a total, well-founded ordering on ground terms, the term order.

Naive term rewriting One simple idea is to use the discovered equations as rewrite rules.
To normalise a ground term, we look for an equation that we we can apply once to rewrite
the term to a lesser term. We repeat this process until all the matching equations lead to
a greater term. For example, given the law xs++ [ ] = xs, we would normalise the term
xs++(ys++[ ]) to xs++ ys.

This process is very simple to implement and quite efficient. However, it tends to generate
many redundant laws. For example, given the two pretty-printing laws

(x � y) � z = x � (y � z)
x � text ""= x,

it is a fact that

x � (text "" � y) = x � y

by reassociating the left-hand side. However, the term x�(text “”�y) is already in normal
form, as applying associativity right-to-left gives a greater term. As a result, we get the fact
above as an extra law.
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Knuth-Bendix completion Instead, we use Knuth-Bendix completion (Knuth & Bendix,
1983). Completion takes a set of equations and produces a confluent, terminating set of
rewrite rules which are equivalent to the input equations. For example, given the two
equations above it will produce the two rules

(x � y) � z → x � (y � z)
x � text ""→ x

as well as a third one,

x � (text "" � y)→ x � y.

This third rule is exactly what we were missing in the previous section: QuickSpec will no
longer print the third law, as completion proves x � (text "" � y) equal to x � y. Completion
works by finding pairs of equal terms that cannot be proved equal by simplification and
adding those equalities as new rewrite rules. When it terminates, it guarantees that two
terms are equal if and only if they have the same normal form modulo the rewrite rules.
When completion works it is perfect, but there are two ways in which it can fail, and we
have to account for both of them in our pruner.

First, completion only works with orientable equations. Given an equation t = u, it
needs to turn it into a rewrite rule t → u, such that all instances of t are greater than the
corresponding instance of u. This is necessary to ensure that the resulting rewrite system is
terminating, but it is not always possible. For example, in a commutativity law, t+u = u+ t,
both sides are renamings of one another, so whichever way we try to orient the equation,
there will be instances where the right-hand side is greater than the left. We solve this
problem using unfailing completion (Bachmair et al., 1989) and ground joinability testing
(Martin & Nipkow, 1990), two standard techniques which allow completion to keep certain
rules as unoriented equations.

A more serious problem is that completion is not guaranteed to terminate. It can go on
generating more and more rewrite rules forever. This problem is easy for us to solve as the
new rules must get bigger and bigger and in practice they rapidly become enormous. We
simply throw away any rule whose left-hand or right-hand side is bigger than the maximum
term size we are exploring. This means that our pruner can fail to prove an equation whose
proof goes through a very large intermediate subterm, but finds all proofs that do not do
this. This ensures termination; in practice, it is also fairly efficient and lets few redundant
equations through.

3.5 Polymorphism

We have not yet talked about types. It is easy to support simple types in QuickSpec: we
make sure to enumerate only well-typed terms and schemas, and we send typed equations
to the pruner, which must respect those types while doing rewriting.

Polymorphic functions are trickier. We would like to just enumerate polymorphic schemas
and feed them to our algorithm, but there are several difficulties:

1. We rely on the property that all schemas have a most specific instance, namely the
one-variable instance. Polymorphic schemas do not have this property. For example,
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if f :: a→ Int→ Bool→ b, then both f x x y and f x y x are well-typed, but not f x x x,
so the schema f ? ? ? has two most specific instances.

2. We may need to discover laws between terms whose types are not equal, but unifiable.
For example, given sort :: Ord a⇒ [a]→ [a] and a specialised sorting function for
lists of integers intsort :: [Int ]→ [Int ], we would like to discover sort xs = intsort xs,
but the schemas sort ? and intsort ? have different types.

3. Given a polymorphic function such as map, we can construct terms of quite strange
types such as map (map (map (map map))) :: [[[[a→ b ]]]]→ [[[[[a]→ [b ]]]]]. The
user is unlikely to be interested in laws about the type [[[[[a]→ [b]]]]]: after all, it
probably does not appear in the program. Furthermore, QuickCheck’s size control
interacts badly with deeply nested types so we will generate extremely large test data.

4. Our pruning algorithms are based on term rewriting, which typically assumes a
simply-typed setting.

We solve these problems with an incomplete but effective approach. The goal is to leave
the basic algorithms alone as far as possible, keep the core of QuickSpec simply-typed, and
add a small layer on top which deals with polymorphism.

Monomorphic testing Instead of monomorphic schemas, we now enumerate polymorphic
schemas. However, before we consider each schema, we first monomorphise it, setting all
its type variables to an abstract type A. In reality, this type is implemented by Int, so that
we can test monomorphised schemas. The algorithm to consider a schema then works as
before, with no changes for polymorphism—except that we will not discover polymorphic
laws, but monomorphic laws mentioning the type A. Thus once we have discovered a law
t = u, containing polymorphic functions specialised to the type A, we do type inference to
find the law’s most general type.

For example, given the functions map and ++, we will discover the law

map f (xs++ ys) = map f xs++map f xs

where the variables xs and ys have type [A] and f has type A→ A. Type inference will then
replace the occurrences of A by type variables, generalising xs and ys to type [a] and f to
type a→ b. This generalisation does not change how the law is shown to the user, but it is
important to give the pruner the polymorphic version so that it can apply this law at any
type, not just A.

This trick sacrifices some completeness. For example, given the function f :: a→ Int→
Bool→ b from above, we will generate the schema f ? ? ? but then monomorphise a and
b to A. The terms f x x y and f x y x will not be well-typed, because A 6= Int and A 6= Bool.
Note that we still generate all schemas; we just lose some instances of some of them. This
incompleteness has not been a problem in practice.

Type unification Let us call a schema the representative if when we considered it, its
one-variable instance was not equal to any other term. Whenever we have two representative
schemas whose polymorphic types are unifiable, we generate instances of both schemas
specialised to the most general unifier (mgu) of their types. This ensures that, for example,
the schema ‘?’ (which has the polymorphic type a) gets generated at every type. In the
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example with sort and intsort, we will notice that their types are unifiable to [Int ]→ [Int ]
and generate sort :: [Int ]→ [Int ], which will let us discover sort xs = intsort xs.

A type universe To avoid terms of absurd types such as map (map (map (map map))) ::
[[[[a→ b]]]]→ [[[[[a ]→ [b ]]]]], we restrict the set of allowed types. Before exploring the
program, we compute a universe of types, which is a guess at the set of types the programmer
might be interested in. We are only interested in a law if the types of all its subterms are in
the universe.

We therefore only generate a schema if:

• the types of all its proper subterms are in the universe, and
• the schema’s type itself is in the universe, or it is a function whose result type is in

the universe (because we might later generate the schema applied to an argument).

The type universe is in reality a set of monomorphic types, and we consider a polymorphic
type to be in the universe if there is some monomorphic instance in the universe. Currently
the type universe consists of all argument and result types of the functions in the signature,
monomorphised so that all type variables are replaced by the abstract type A from above.

Using a type universe restricts the set of types we consider, ruling out silly types that do
not appear in the user’s program. It also makes the pruner’s job easier. Each function in the
signature can only be instantiated to a finite set of monomorphic types. Therefore, whenever
we discover a polymorphic law, we generate all monomorphic instances and pass them to
the pruner. To normalise a polymorphic term, we monomorphise all type variables to A
before passing it to the pruner. The pruner itself does not have to deal with polymorphic
laws or terms; it is only given simply-typed laws, as before.

Example Suppose QuickSpec is given the signature below:

0 :: Int
(++) :: [a]→ [a]→ [a]
sum :: [Int ]→ Int
(+) :: Int→ Int→ Int
concat :: [[a ]]→ [a ]

The type universe consists of the types: Int, [Int ], A, [A] and [[A]], which are the only
types QuickSpec will allow in terms it constructs. This allows QuickSpec to discover,
for example, the law concat (xs++ ys) = concat xs++ concat ys, where the left-hand side
occurrence of ++ has type [[a]]→ [[a]]→ [[a]] and the right-hand side occurrence has
type [a ]→ [a]→ [a].

3.6 Observational equivalence and background theories

Sometimes, we want to generate laws about a type which we cannot compare directly,
but for which we have a notion of observational equivalence: two values of that type are
equivalent if all observations make them equal. To support this, for any type T the user can
supply an observation function of type Obs→ T → Res, where Obs can be any type that
we can generate random data for, and Res any type we can compare for equality. QuickSpec



ZU064-05-FPR all 31 January 2017 12:2

Quick Specifications for the Busy Programmer 21

will then include a random value of type Obs as part of each test case, and will compare
values of type T by applying these random observations.

We also normally want to supply background functions, functions that can appear in
generated laws but are not interesting in their own right, such as + and ++ in the pretty-
printing example. To do this, we first run QuickSpec using only the background functions,
and it discovers all laws about them. We then re-run QuickSpec, adding the remaining
functions but also giving the pruner all the laws we have already discovered. The background
laws will therefore be used for pruning; in particular, they will not be printed again, because
the pruner will consider the terms in them to be redundant. As future work, we plan to
augment QuickSpec with a library of already discovered properties for commonly occuring
background functions, to avoid having to explore them repeatedly.

3.7 Higher-order functions

Higher-order functions bring a few challenges of their own. The first is how to compare
terms of function type for testing. We solve this using QuickSpec’s support for observational
equivalence from Section 3.6. When we want to compare two functions for equality, we
generate a random argument, apply both functions to that argument and compare the result.

A more difficult problem is pruning. Our pruning infrastructure is based on first-order
term rewriting. In this setting each function has a fixed arity: you cannot write map f if map
is a function of arity 2. Also, you can only apply a function symbol, not a variable, so you
can’t write f (x) if f is a variable.

A simple and well-known solution is for the pruner to treat Haskell functions as constants
and introduce a binary function symbol apply for function application. The term map f xs
will be apply(apply(map, f ),xs) as far as the pruner is concerned. QuickSpec will transform
all the laws it discovers, and all the terms it wants to normalise, into this form before passing
them to the pruner. This neatly solves both problems above as we can write apply(map, f )
to partially apply a function or apply(f ,x) to apply a variable.

A more efficient encoding Unfortunately, this encoding is inefficient and puts stress on
the pruner. For example, many equational reasoning algorithms treat commutative functions
specially and look for axioms of the form f (x,y) = f (y,x). But we will express this axiom as
apply(apply(f ,x),y) = apply(apply(f ,y),x), and any pruning algorithm which syntactically
checks for commutativity will not detect it. Performance will suffer: pruning will take much
longer, or will be able to prove fewer equations.11

Instead, we have a hybrid encoding which uses apply only when necessary. Let us
illustrate it with an example. Suppose we have the binary function map. We will introduce
three function symbols: map2(f ,xs) of arity 2, map1(f ) of arity 1, and map0 of arity 0. The
first represents a fully-applied call to map and the other two are partial applications. To

11 QuickSpec’s built-in pruner does not suffer from this problem, but the encoding still hurts
performance by cluttering the axioms. Occasionally it can be useful to connect QuickSpec to
an external theorem prover to filter redundant equations even more thoroughly; in this case the
encoding is really harmful.
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relate these functions to one another, we add the axioms apply(map0, f ) = map1(f ) and
apply(map1(f ),xs) = map2(f ,xs).

Whenever we have an expression like f x where f is a variable, we translate it to apply(f ,x).
We do the same with over-saturated functions like foldr (◦) id fs x, where the fourth argument
will be passed using apply as foldr has arity 3. Apart from these two cases, the translated
laws will not use apply.

Point-free reasoning and higher-order functions To illustrate how higher-order func-
tions are explored in practice, let us see how QuickSpec explores the functions map, id and
(◦). We will ignore the process of discovering the properties and concentrate on the pruning,
picking a few laws that illustrate features of our encoding.

Recall that for each Haskell function f of arity k, the pruner is given several function
symbols f0, . . . , fk which represent partial applications of f . For our example these function
symbols are map0, map1 and map2 for the map function; id0 and id1 for the identity function;
and compose0,compose1,compose2,compose3 for function composition. We also introduce
the function symbol apply and the following axioms:

apply(map0, f ) = map1(f )
apply(map1(f ),xs) = map2(f ,xs)
apply(id0,x) = id1(x)
apply(compose0, f ) = compose1(f )
apply(compose1(f ),g) = compose2(f ,g)
apply(compose2(f ,g),x) = compose3(f ,g,x)

The first law QuickSpec will discover is id x = x. As a result it feeds the pruner the following
equation:

id1(x) = x

Notice that we do not use apply in the discovered law. Next QuickSpec might discover
map id = id (recall that we test this law by applying both sides to a random argument).
QuickSpec feeds the pruner the following equation:

map1(id0) = id0

Next QuickSpec might generate the terms xs and map id xs. Of course, the law map id xs= xs
follows from map id = id, and id xs = xs, but does our encoding allow the pruner to see
this? The answer is yes: the pruner reasons as follows:

map2(id0,xs)
= apply(map1(id0),xs) -- axiom for apply
= apply(id0,xs) -- map id = id
= id1(xs) -- axiom for apply
= xs -- id xs = xs

Next QuickSpec might discover that (f ◦g) x = f (g x). It feeds the pruner the following
equation:

compose3(f ,g,x) = apply(f ,apply(g,x))
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Notice that on the right-hand side we apply a variable. QuickSpec might also discover
map f ◦map g = map (f ◦g), which becomes:

compose2(map1(f ),map1(g)) = map1(compose2(f ,g))

Of course, we now want QuickSpec to be able to prune away the law map f (map g xs) =
map (f ◦g) xs. Indeed it can:

map2(f ,map2 (g,xs))
= apply(map1(f ),apply(map1(g),xs)) -- axiom for apply
= compose3(map1(f ),map1(g),xs) -- (f ◦g) x = f (g x)
= apply(compose2(map1(f ),map1(g)),xs) -- axiom for apply
= apply(map1(compose2(f ,g)),xs) -- map f ◦map g = map (f ◦g)
= map2(compose2(f ,g),xs) -- axiom for apply

Once QuickSpec has discovered a law, the axioms for apply allows it to eta-expand that
law during pruning. It may seem like the pruner has to do a lot of work, expanding and
contracting the definition of apply, but this sort of reasoning is the bread and butter of
Knuth-Bendix completion. Furthermore, the pruner need only reason about apply when
there is a partially-applied function; first-order reasoning is unchanged.

Although our encoding allows the pruner to eta-expand laws, it does not allow it to
eta-reduce them. For example, the pruner will not be able to show that

id ◦ f = f ,

even though it can prove the eta-expanded version, (id ◦ f ) x = f x, by expanding the
definition of (◦). Thus, even though we have discovered the definitions of id and (◦),
QuickSpec will also find three point-free laws about them:

id ◦ f = f
f ◦ id = f
(f ◦g)◦h = f ◦ (g◦h)

In general, QuickSpec is able to prune away a point-free law if it can be proved using
point-free reasoning, that is, without eta-expanding the law. This is a deliberate choice:
without it, QuickSpec would prune away the three laws above, and point-free laws that can
only be proved by reasoning about points seem noteworthy. If we wanted, we could have
QuickSpec eta-expand each term before passing it to the pruner, which would filter out such
laws.

3.8 Conditional Equations

As described so far, QuickSpec is only able to find equations that hold unconditionally.
However, many interesting equations hold under certain conditions. In this case, QuickSpec
may find no law, or find overly-specific laws.

For example, when asked to generate laws about zip and ++, QuickSpec produces the
following equation:

zip xs (xs++ ys) = zip xs xs
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The equation is certainly valid, but too specific: both sides contain two occurrences of xs,
whereas the law actually holds for different choices of xs, as long as they have the same
length.

We have implemented a small extension to basic QuickSpec that, given a limited set of
interesting condition predicates, is able to produce conditional laws using those predicates
as conditions.

For the example, we can explicitly specify length xs = length ys as a condition predicate,
in which case QuickSpec produces the law:

length xs1 = length xs2⇒ zip xs1 (xs2 ++ ys) = zip xs1 xs2

This is indeed the expected, most general version of the law.
The extension formulates the problem of generating conditional laws in terms of gen-

erating unconditional laws, by means of introducing a new type with selection functions,
for every condition predicate that is explicitly specified by the user. For example, for the
condition predicate length xs ≡ length ys, the extra type (called ListsSameLength below)
that is introduced looks as follows:

data ListsSameLength a = Lists [a ] [a ]

xs1,xs2 :: ListsSameLength→ [a]
xs1 (Lists xs ) = xs
xs2 (Lists ys) = ys

After this new type is introduced, QuickSpec also needs a way to generate two lists of the
same length. The default method of doing this in QuickSpec given a condition predicate is
to use the QuickCheck combinator suchThat that repeatedly generates a random value until
it satisfies a predicate.

instance Arbitrary a⇒ Arbitrary (ListsSameLength a) where
arbitrary =

do (xs,ys)← arbitrary ‘suchThat‘ (λ (xs,ys). length xs≡ length ys))
return (Lists xs ys)

All the above code is automatically generated from the given predicate length xs≡ length ys,
and enough to produce conditional laws having that predicate as a condition. Basic Quick-
Spec indeed finds the following (now unconditional) law:

zip (xs1 p) (xs2 p++ ys) = zip (xs1 p) (xs2 p)

Here, p is a variable that quantifies over ListsSameLength. Our extension then automatically
pretty-prints the above law as the conditional law about zip and ++ we saw earlier.

In general, using suchThat may not be an effective way to produce a generator for
generating arbitrary values that satisfy a given predicate. This is why our condition extension
allows the user to specify their own generators if they wish. It is actually possible to
automatically derive a generator from a given predicate, which has been described in related
work (Claessen et al., 2014; Duregård, 2016).

The reader may wonder why we require user assistance at all when dealing with conditions.
Why do we not simply consider all Boolean predicates in the given signature as conditions,
or even consider all equations between terms of the same type as conditions? There are two
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reasons for this. First, the sheer number of possibilities of general conditional equations
is several orders of magnitudes larger than for unconditional equations. Secondly, pruning
for conditional equations is much more difficult than for unconditional ones. To prune
conditional equations, we would need full first-order logic reasoning, something we do not
currently know how to use to a priori prune away whole classes of equations to consider.

Solving these problems in a general way is therefore future work. We believe that
letting the user specify the interesting conditions to use is a good compromise between
simplicity and power. Our approach allows for complex equations but only with simple,
well-understood conditions; these sorts of laws are very common in functional programming.

3.9 A summary of QuickSpec’s architecture

We have now seen all of QuickSpec’s architecture. Figure 5 summarises the entire design.
The main QuickSpec pipeline is drawn in bold. In the leftmost box, QuickSpec enumerates

schemas in order of size. The schemas go through the schema layer of Section 3.2.3, which
either discards each schema or adds it to the candidate set, and potentially instantiates it,
sending instances to the term layer of Section 3.2.2. Both layers maintain a set of candidates
(for pruning) as well as a decision tree for those candidates (for testing); the schema layer’s
decision tree contains the one-variable instances of the candidates.

When a law is discovered, it is added to the pruner, and the candidate terms and schemas
are renormalised. The pruner consists of the implementation of Knuth-Bendix completion
mentioned in Section 3.2.3, on top of which sit layers that strip away higher-order functions
(Section 3.5) and types (Section 3.7).

As described in Section 3.2.2, we do not want to explore every term, but only those whose
subterms are in the candidate term set. The schema enumeration does exactly this, but uses
candidate schemas instead of terms; this explains the arrow from “Candidate schemas” to
“Enumerate schemas”.

Towards the end of Section 3.2.3, under Associative-commutative functions, we described
a feature which reorders the discovered laws in the hope of finding a nicer formulation of
them. This component sits at the end of the pipeline, filtering out laws just before they are
printed.

The dotted box represents the polymorphism layer: everything inside the dotted box deals
only with monomorphic terms, schemas and laws. This layer takes care of introducing
and eliminating polymorphism as described in Section 3.5. In particular, schemas are
monomorphised before they reach the schema layer, and the discovered laws are made
polymorphic as they leave the box on the right. This layer also generates the appropriate
type instances of all candidate schemas.

Finally, the diagram does not show QuickSpec’s conditional equation support 3.8. Condi-
tional equations are implemented on top of QuickSpec: a preprocessing step transforms the
signature to introduce the new types and selection functions, and the final laws are printed
by a conditional-aware algorithm.
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Fig. 5: QuickSpec’s architecture. The bolded part is the main pipeline. Everything inside
the dotted box only deals with monomorphic laws.

4 Case Studies

In this section we try out QuickSpec on four difficult examples which the previous version,
QuickSpec 1, was too slow to handle well (see section 5.1). These examples are: Henderson’s
functional geometry combinators for describing pictures (Section 4.1), a large collection of
list functions from the Haskell standard library (Section 4.2), an example from mathematics
where we use QuickSpec to explore the theory about octonions (Section 4.3), and finally
the Map datastructure from the Haskell standard library (Section 4.4). We had four goals in
trying these examples:

1. To demonstrate how QuickSpec can be used to improve understanding of programs
and find bugs.
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2. To look at the generated laws critically, and use them to suggest ways to improve
QuickSpec.

3. To stress-test QuickSpec and make sure it copes.
4. To have fun exploring interesting signatures that we did not fully understand.

The code for the experiments is available from the QuickSpec GitHub repository:
github.com/nick8325/quickspec/tree/master/examples

4.1 Functional geometry

Henderson’s functional geometry (Henderson, 1982; Henderson, 2002) is a set of combi-
nators for describing pictures. In his papers, he uses these combinators to reconstruct an
M. C. Escher woodcut out of simple building blocks. Let’s see what laws his combinators
satisfy!

The five basic combinators (four of them illustrated in Figure 6) are above, which draws
one picture above another, beside, which draws one picture beside another, over, which
draws two pictures at the same spot, rot, which rotates a picture by 90◦, and f lip, which
flips a picture horizontally.

An unusual feature of Henderson’s combinators is that pictures do not have a built-in size.
Rather, when you draw a picture, you give a size, and the picture fits itself to that size. The
above and beside combinators divide the available space into two, one for each sub-picture.
We would therefore not expect above and beside to be associative as, for example, in the
picture beside x (beside y z), the picture x gets 50% of the space while y and z get 25%
each. We weren’t sure what laws would hold, though, and what better way to find out than
by using QuickSpec!

Henderson defines a denotational semantics for his pictures as a function taking a position
and size for the drawing and returning a set of primitive shapes (whose nature is left
unspecified). We simply implemented this semantics in Haskell, gave the combinators to
QuickSpec, and ran it. Based on our experience we chose to explore terms up to size 7, this
is usually a good initial choice covering many interesting properties.

We decided that we would like to explore simpler combinators on their own before
adding the more complex ones, so we ran QuickSpec incrementally, first exploring over,
then adding beside and above, then adding rot, and finally f lip.

The laws for over are not surprising: it is commutative, associative and idempotent. We
also get over x (over x y) = over x y, which follows from associativity and idempotence,
but happens to be discovered before associativity. This is because QuickSpec considers
over x (over x y) to be simpler than over (over x y) z; perhaps QuickSpec should wait a bit
after discovering a law before printing it, to see if it discovers a generalisation.

over x x = x

over x y = over y x

over x (over x y) = over x y

over (over x y) z = over x (over y z)

Once we add above and beside, things get more interesting. The following four laws state
that, when drawing two pictures in the same place using over, any commonalities between
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the pictures can be factored out:

over (above x y) (above x z) = above x (over y z)

over (above x z) (above y z) = above (over x y) z

over (beside x y) (beside x z) = beside x (over y z)

over (beside x z) (beside y z) = beside (over x y) z

We can visualise the first law like so; the others are similar:

x
y over

x
z

=
x

y over z

The four laws are in fact consequences of the following two laws, which QuickSpec
discovers shortly afterwards, which state that over and above commute with each other, as
do over and beside:

above (over x z) (over y w) = over (above x y) (above z w)

(a) above bunny bunny (b) beside bunny bunny

(c) rot bunny (d) f lip bunny

Fig. 6: Picture combinators and bunnies.
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beside (over x z) (over y w) = over (beside x y) (beside z w)

Really, we might wish that QuickSpec had only printed these two laws and not the
previous four. This is the same problem we had with the over combinator. Anyway, after
these laws we get a final, rather pleasing, one:

beside (above x z) (above y w) = above (beside x y) (beside z w)

Both sides of this equation draw four figures, x, y, z and w, in a square. The left-hand
side draws x-z-y-w, top-to-bottom, left-to-right, while the right-hand side draws x-y-z-w,
left-to-right, top-to-bottom. The law states that both constructions produce the same figure.

Adding rot, we get four new laws:

over (rot x) (rot y) = rot (over x y)

above (rot y) (rot x) = rot (beside x y)

beside (rot x) (rot y) = rot (above x y)

rot (rot (rot (rot x))) = x

The first law states that rot distributes over over (not surprising, as pretty much everything
distributes over over). The second and third laws show that rotating an above gives a beside,
and vice versa. Notice that in one of the laws the x and y are swapped on the left-hand
side; the geometrically-astute reader can use this fact to deduce that rot rotates the picture
anti-clockwise:

rot x y =
rot y

rot x

rot
x
y = rot x rot y

Finally, rotating a picture by 360◦ gets you back where you started.
Lastly, we add f lip and get the following four laws:

f lip ( f lip x) = x

rot ( f lip (rot x)) = f lip x

over ( f lip x) ( f lip y) = f lip (over x y)

above ( f lip x) ( f lip y) = f lip (above x y)

We see that flipping a picture twice does nothing, that rotating then flipping then rotating is
the same as flipping,12 that f lip distributes over over, and that it also distributes over above.
Note that f lip does not distribute over beside: this indicates that f lip flips its argument
horizontally rather than vertically.

12 Rotating a bunny in your head may help to visualise this.
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Henderson also defines two larger combinators, quartet and cycle, in terms of the
primitive ones. The quartet function takes four figures and draws them in a square formation,
while cycle takes a figure and lays out its four rotations symmetrically in a square, like so:

QuickSpec discovers the definition of quartet:

above (beside x y) (beside z w) = quartet x y z w

It also discovers three laws about cycle:

rot (cycle x) = cycle x

f lip (cycle (rot x)) = cycle ( f lip x)

over (cycle x) (cycle y) = cycle (over x y)

The first law states that cycle is rotationally symmetric. The second law says that, very
curiously, cycling f lip x versus rot x gives two pictures that are mirror images of one
another! Again, the reader may visualise this by drawing bunnies. Finally, cycle distributes
over over.

4.1.1 An odd set of laws

These are not the laws we originally found. When we first ran QuickSpec, it claimed that
rot was not rotationally symmetric, but only 180◦ rotationally symmetric! This caused lots
of head-scratching until we realised that another law was subtly wrong:

above (rot x) (rot y) = rot (beside x y)

We take a picture in which x is to the left of y and we rotate it anticlockwise. Afterwards,
x should end up below y, but according to the law, it ends up above! It turns out that in
Henderson’s 2002 paper, the definition of above is slightly wrong: it swaps its arguments,
and should more rightly be called below. Thus, an unexpected property (cycle not being as
symmetric as expected) has alerted us to a bug in the implementation! Bugs often manifest
themselves as missing or warped QuickSpec properties.

It turns out that this bug is quite exciting. The cycle combinator uses above to lay out
the picture, and when above is buggy cycle produces an entirely different picture, seen in
Figure 7(a). When we rotate the picture, we get Figure 7(b): this buggy cycle is indeed not
rotationally symmetric.
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(a) cycle bunny (b) rot (cycle bunny)

Fig. 7: The buggy cycle is not rotationally symmetric.

When we run QuickSpec on the buggy cycle, we no longer get the law rot (cycle x) =
cyclex, but instead we get the following three laws:

rot (rot (cycle x)) = cycle x

rot (cycle (cycle x)) = cycle (cycle x)

cycle (rot (rot x)) = rot (cycle x)

The first law shows that cycle is 180◦ rotationally symmetric, as Figure 7 demonstrates.
The second, though, we found quite staggering: constructing the picture cycle (cycle x)
gives a 4x4 pattern which is rotationally symmetric! Trying it with bunnies gives the nice
patchwork in Figure 8. Notice that the whole picture is rotationally symmetric, while each
quarter of the picture is 180◦symmetric, as predicted by QuickSpec. We have tried this
construction on a few line drawings and made some quite “arty” pictures.

The third law above explains the previous two more deeply:

cycle (rot (rot x)) = rot (cycle x)

In other words, cycle isn’t rotationally symmetric because rotating cycle x gives a figure
in which the four xs have been rotated by 180◦(as Figure 7 confirms). Rotating cycle x twice
gives a figure where each x has been rotated a whole 360◦, which explains why cycle is still
180◦ rotationally symmetric. Finally, we can use this law to reason that

rot (cycle (cycle x))

= cycle (rot (rot (cycle x)))

= cycle (cycle (rot (rot (rot (rot x)))))

= cycle (cycle x)

which explains why cycle (cycle x) is rotationally symmetric.
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Fig. 8: cycle (cycle bunny).

4.1.2 The empty picture

Henderson also defines an empty picture blank, which represents a blank space. Note that
blank is not an identity for above and beside, for the same reason that these operators are
not associative.

We originally included blank, along with over, as the very first functions we put in our
signature. Unfortunately, along with the laws we expected like

over x blank = x

above blank blank = blank

beside blank blank = blank

we also got 11 much uglier laws, including:

beside blank (above x blank) = above (beside blank x) blank

rot (beside blank x) = above (rot x) blank
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f lip (above x blank) = above ( f lip x) blank

Notice that these laws are all instances of more general laws that we discovered earlier in
this section. For example, the third law is a combination of

f lip (above x y) = above ( f lip x) ( f lip y)

with the fact that f lip blank = blank. The trouble is that each of these laws is smaller than
its generalisation, which means that QuickSpec discovers the special case first. One solution
might be for QuickSpec to generate terms containing few distinct function symbols before
terms containing many; that way, we would find the general case above (which contains
f lip and above) before the special case (which also contains blank). As a workaround, we
instead added blank to the signature last, after exploring everything else, so all the general
laws were already discovered. By doing so we only got the few laws we expected.

4.1.3 Summary

QuickSpec worked very nicely on the functional geometry combinators. It found revealing
laws about all of the combinators, such as observing that f lip flips horizontally and rot
rotates anticlockwise. It enabled us to find a bug in the above combinator, and even pointed
out a nice construction for making patchwork drawings! Performance-wise, QuickSpec
performed well: the basic set of combinators takes 25 seconds to explore.

We also saw that the order in which QuickSpec is asked to explore functions can affect
results, with the blank function better left until last, when general properties of the other
functions have already been discovered. Furthermore, QuickSpec sometimes discovered
a law which it later generalised; the initial law was therefore redundant. These problems
suggest that simply generating laws in order of size is not optimal; in the future we plan to
investigate better ways to order the discovered laws.

4.2 A stress test: lists

Our next example is a pure stress test: we wanted to see how far we could push QuickSpec
before it breaks. We did this by giving QuickSpec a very large signature consisting of many
functions all at once.

For this experiment, we gave QuickSpec as many list functions as we could think
of, namely: length, map, concat, [], (:), (++), reverse, sort, usort (which sorts
a list and removes duplicates), (>>=), (>=>), foldr, foldl, scanr, scanl, filter,
partition, break, span, takeWhile, dropWhile, take, drop, zip, unzip, zipWith.
We also gave it the auxiliary functions sum, 0, succ, (+), (,), fst, snd, and asked it to
generate terms up to size 7 on these 33 functions. This took about 42 minutes, during which
QuickSpec discovered 398 laws, generated over 50 000 terms and ran around 874 000 tests.
It is not sensible to run QuickSpec in such an undirected way; we just wanted to see if it
would cope.

Increasing the size to 8, QuickSpec gets most of the way but then starts to run out of
memory and slows to a crawl, and eventually hits our time-out limit of two hours. If we
limit it to the first 26 functions in our list, it is able to explore all terms of size 8 within two
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hours, finding some 586 laws. To complete the whole signature, it appears that QuickSpec
would need to test well over 100 000 terms: this should be entirely possible in principle,
with an optimised implementation. Indeed, a finely-tuned implementation should be able to
go beyond size 8.

So QuickSpec survives its encounter with the huge signature, at least up to size 7. It does,
however, generate too many laws. We do discover some nice list laws, such as (when i and
j are natural numbers)

drop j (take ( j+ i) xs) = take i (drop j xs)

but we also get a lot which are not so interesting:

zip (map f xs++ys) xs = zip (map f xs) xs

map ( f x) (take (succ 0) xs) = zipWith f (scanl g x [ ]) xs (∗)

The first law is really a consequence of the fact that zip truncates its arguments to the length
of the shortest one, and the fact that

length (map f xs++ys) > length (map f xs) = length xs

so we could prune it away if we had used our extension for finding conditional equations.
The second law can be proved by case analysis on whether xs is empty or not. Case analysis
would be a useful extension to the pruner but might also remove interesting laws; we should
add it as a user-configurable option.

The upshot is that running QuickSpec on such a huge signature works, but is not yet user-
friendly—laws relating lots of unconnected list functions are bound to be a bit eccentric.
However, the user can at least get an initial set of laws this way, and then restrict the
signature to focus testing a bit more.

In the future we plan to develop heuristics that eliminate strange laws at the cost of
completeness. For example, the user might specify a bound on the number of distinct
functions appearing in one law, which would sacrifice law (∗) above.

4.3 The Octonions

Can QuickSpec be useful for domains beyond functional programming? In this experiment,
we apply QuickSpec to mathematics, and ask it to explore the properties of a somewhat
exotic kind of numbers, called the octonions (Baez, 2002). The octonions are one of only
four normed division algebras, the others being the more well known real numbers, the
complex numbers and the quaternions. However, unlike the real or complex numbers,
multiplication on octonions is neither associative nor commutative. Mathematicians have
found weaker axioms that octonions satisfy; we wanted to see if QuickSpec could find them.
In particular, we wanted to see if QuickSpec can discover that octonions are instances of
an algebraic structure called a Moufang loop. Moufang loops are similar to groups, but not
necessarily associative, and were invented by Ruth Moufang when studying geometry in
planes with octonion coordinates (Moufang, 1935). Formally, a Moufang loop is a loop
satisfying any one of four equivalent Moufang identities:

x∗ (y∗ (x∗ z)) = ((x∗ y)∗ x)∗ z (M1)
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y∗ (x∗ (z∗ x)) = ((y∗ x)∗ z)∗ x (M2)

(x∗ y)∗ (z∗ x) = (x∗ (y∗ z))∗ x (M3)

(x∗ y)∗ (z∗ x) = x∗ ((y∗ z)∗ x) (M4)

Representation in Haskell. While complex numbers can be represented as pairs of real
numbers and quaternions as quadruples of reals, the octonions can be thought of as 8-
tuples of reals, as the name suggests. Perhaps more elegantly, by using the Cayley-Dickson
construction, octonions can also be expressed as pairs of quaternions, just as quaternions
can be represented as pairs of complex numbers and complex numbers as pairs of reals. We
use this construction when modelling the octonions in Haskell and include operations for
addition, multiplication and inverse.

We gave QuickSpec multiplication (∗), inverse (−1) and the constant 1, and asked it to
produce terms up to size 7. In just 3 seconds it came back with the equations below:

1−1 = 1 inverse of identity element (1)

x∗1 = x right identity axiom (2)

1∗ x = x left identity axiom (3)

(x−1)−1 = x involution of inverse (4)

x∗ x−1 = 1 right inverse axiom (5)

(x∗ x)∗ y = x∗ (x∗ y) left alternative loop property (6)

(x∗ y)∗ x = x∗ (y∗ x) flexible loop property (7)

(x∗ y)∗ y = x∗ (y∗ y) right alternative loop property (8)

y−1 ∗ x−1 = (x∗ y)−1 antiautomorphic inverse property (9)

y∗ (y−1 ∗ x) = x left inverse property (10)

(x∗ y)∗ (z∗ x) = x∗ ((y∗ z)∗ x) Moufang identity (11)

(x∗ y)∗ (y∗ y) = x∗ (y∗ (y∗ y)) (12)

(x∗ (y∗ x))∗ z = x∗ (y∗ (x∗ z)) left Bol loop property (13)

Are these equations likely to be interesting to a mathematician? As the authors themselves
are not mathematicians, we used the simple heuristic of assuming that mathematicians give
interesting properties names. As it turns out, of the 13 properties QuickSpec found all except
(12) have names.13 Some of the properties discovered are basic axioms of quasigroups and
loops in algebra, while others capture more exotic properties of the octonions. Equation (11)
is the Moufang identity (M4), so QuickSpec does indeed discover that the octonions form a
Moufang loop. The three equations (6–8) hint at the fact that multiplication of octonions
is diassociative, meaning that any expression containing only two variables can be freely
reassociated, a property which cannot be expressed equationally.

There is a small caveat to this case study: we model octonions as 8-tuples of real
numbers, but we cannot use arbitrary real numbers for testing, as most real numbers are

13 The names and descriptions of the properties can be found in for instance (Smith & Romanowska,
1999), http://groupprops.subwiki.org/wiki/ or https://en.wikipedia.org/wiki/
Quasigroup.

http://groupprops.subwiki.org/wiki/
https://en.wikipedia.org/wiki/Quasigroup
https://en.wikipedia.org/wiki/Quasigroup
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uncomputable. Instead, we test the laws on a subset of the octonions, namely 8-tuples
of rational numbers. As a consequence, QuickSpec might suggest some false positives:
equations which hold for all rational octonions but not for some octonions not in this subset.
However, all the laws discovered in this case-study hold for all octonions. Furthermore,
since the octonion operations are built only from continuous functions on the real numbers
such as multiplication, one can prove that any equation that holds for rational octonions in
fact holds for all octonions.

This case study shows that a tool like QuickSpec has the potential to be used as a
mathematician’s assistant, automatically exploring algebraic structures to suggest properties
which could be interesting to prove, suggest areas of further investigation and perhaps even
reveal unexpected connections between structures.

4.4 The Map data structure

In this case-study we explore QuickSpec’s capabilities of dealing with conditional equations.
The standard Haskell Data.Map library implements finite key-value maps. We asked
QuickSpec to explore the following functions of the map library:

empty :: Ord a⇒ Map a b
insert :: Ord a⇒ a→ b →Map a b→Map a b
(∪) :: Ord a⇒Map a b→Map a b→Map a b
lookup :: Ord a⇒ a →Map a b→Maybe b

Here are the equations that QuickSpec finds for ∪:

m∪m = m
m∪ empty = m
empty∪m = m
m∪ (m∪n) = m∪n
m∪ (n∪m) = m∪n
(m1∪m2)∪m3 = m1∪ (m2∪m3)

We see that ∪ is idempotent and associative and has an identity element, as we expect.
What is surprising is that ∪ is not commutative. In fact, it cannot be commutative, as when
the maps given to ∪ have a key in common but with different values, one of the maps must
take precedence. The fourth and fifth equations follow from idempotence and associativity,
but QuickSpec generates them anyway. This is because they are regarded as being simpler
than associativity.

We find the following equations about insert:

insert i a m∪m = insert i a m
insert i a (m∪n) = insert i a m∪n
insert i a (insert i a m) = insert i a m
insert i a (insert j a m) = insert j a (insert i a m)

The second equation indicates that ∪ is left-biased, and the third shows that insert is
idempotent. The last equation indicates that the order we insert keys makes no difference,
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but it is not as general as we would like: the equation says that we must use the same data
value a for both insertions. The reader might like to think about why the more general law

insert i a (insert j b m) = insert j b (insert i a m)

is not found.
Finally, we find the following equations for lookup:

lookup i empty = Nothing
lookup i (insert i a m) = Just a
lookup i (insert j a empty) = lookup j (insert i a empty)

The first two are what we would expect. The last equation is a bit unsatisfying: it requires
the argument to insert to be empty, and we would have liked to see a more general version
of the equation.

Summing up, for both insert and lookup, QuickSpec found overly specific laws. The
reason is that the generalisations of these laws only hold conditionally. Perhaps we can find
them using QuickSpec’s extension for conditional equations (Section 3.8)?

If we specify i 6= j as a condition predicate, QuickSpec generates the following equations:

i 6= j⇒ insert i a (insert j b m) = insert j b (insert i a m)

i 6= j⇒ lookup i (insert j a m) = lookup i m

The first law generalises our previous insert law. This law reveals why the generalisation
we suggested earlier was not found: it is incorrect! If i = j then the order of insertion does
matter, as the second insertion will overwrite the first.

The second law allows us to show our law from above,

lookup i (insert j a empty) = lookup j (insert i a empty),

by case analysis on whether i = j.
Coming up with the correct condition predicates is not always easy. In particular, placing

several conditions on the same variable is something which is difficult in the current design,
because of the way conditions are represented as types. There is clearly more future work to
be done here; we would like QuickSpec to combine condition predicates freely, just as it
does with functions when building terms.

4.5 Performance Analysis

We have demonstrated how QuickSpec can help the user to discover interesting laws about
their programs. In this section we measure how expensive that process is, and use the results
to suggest ways to speed up QuickSpec further.

We ran QuickSpec on several examples, and measured the runtime, the memory use, the
total number of terms generated, and the total number of test cases evaluated.14 We then
judged these numbers in three different ways.

14 All tests were run on a laptop with a 2.6GHz Intel i7-5600U processor and 12GB of RAM running
64-bit Linux.
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First, we ran the same examples on QuickSpec 1, the previous state of the art, and
compared the numbers. The results are found in Table 2. QuickSpec 1 ran out of memory
on all of our examples except for the octonions, so we used that as an example. We also
took the pretty-printing example, and recorded the numbers at the point where QuickSpec 1
ran out of memory; we estimate that its numbers would have been perhaps 3 times higher
had it run to completion.

QuickSpec 2 is indeed much faster than QuickSpec 1, running the two examples in
seconds rather than minutes. Furthermore, the memory use does not get out of control. We
can see that the number of test cases is reduced much more dramatically than the number of
terms; this is because QuickSpec 2 cuts out redundant terms, and as Section 3.2 notes, these
are the ones which are most expensive to test.

Number of terms Number of tests
QS1 QS2 Reduction QS1 QS2 Reduction

Pretty-printing 110 000 2 800 39 × 75 000 000 24 000 3 000 ×
Octonions 925 871 1.06 × 780 000 13 900 56 ×

Execution time (s) Memory use (MB)
QS1 QS2 Reduction QS1 QS2 Reduction

Pretty-printing 1 200 7 170 × 12 000 137 87 ×
Octonions 1 800 30 60 × 110 116 0.95 ×

Table 2: Performance of QuickSpec 1 versus QuickSpec 2. Pretty-printing numbers for
QuickSpec 1 are taken at the time that it ran out of memory.

Next, we took the laws that QuickSpec discovered and tested them using QuickCheck,
again measuring the runtime and the total number of test cases evaluated. By taking the
ratio of QuickSpec’s runtime to QuickCheck’s, we can find the overhead of discovering
the laws compared to simply testing them. An overhead of 1 represents a perfect theory
exploration system which is able to discover all conjectures without making any wrong
guesses; we should not expect to get an overhead of 1. The results are found in Table 3.

We measured the overhead both in terms of how many test cases QuickSpec executed
and how much time it took. The number of tests tells us how long QuickSpec would take if
we implemented its algorithms with perfect efficiency: how much time is spent in actually
testing the program?

We will start by looking at the testing overhead. The octonions immediately stand out:
QuickSpec requires only 6% more tests to discover the 13 laws compared to testing them
with QuickCheck, cheap indeed. One reason is that in this domain it is rather easy to find
values which separate terms which are not equal. In fact, a single test case was enough to
separate all candidate terms!

For the functional geometry example (here including over, above, beside, rot, flip, quartet
and cycle and exploring up to size 7) we get the largest overhead. One reason for this is that
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Laws Number of tests Execution time (s)
QC QS Overhead QC QS Overhead

Pretty-printing 16 16 000 24 000 1.5 × 1.2s 7.1s 5.9 ×
Functional Geometry 18 18 000 68 000 3.8 × 1.1s 76s 69 ×
Large List Library 398 398 000 874 000 2.2 × 2200s
Octonions 13 13 000 13 900 1.06 × 25s 33s 1.32 ×

Table 3: Performance of QuickSpec versus QuickCheck. We configured both to try each law
on 1000 test cases (the default for QuickSpec). As we had to manually translate all of the
discovered laws into QuickCheck properties, we did not run QuickCheck on the large list
library.

QuickSpec’s schema instantiation is inefficient for idempotent functions such as over: if
a schema contains over ? ?, its one-variable instance will contain over x x; this is equal to
x, and so we will always instantiate the schema. Indeed, when we remove over from the
signature, the number of terms falls by a factor of 5.

For the pretty-printing example, QuickSpec needs 50% more tests than QuickCheck, and
for the large list library, it needs just over twice as many. In all four examples, the testing
overhead for discovering the laws is quite small.

On the other hand, the time overhead is higher than the testing overhead, sometimes
considerably. This implies that most of the time is not spent testing the program, but
in QuickSpec itself. Time spent pruning is a necessary overhead, but none of the exam-
ples spend a substantial amount of time in pruning. Rather, we noticed several possible
bottlenecks:

• We save work by throwing away most schemas without generating their instances.
However, once we discover a schema equation we generate all of its instances, which
is wasteful, and leads to the performance problem we saw above with idempotent
functions like over.
It would be better to instantiate each schema gradually so that, after discovering
a one-variable equation, we try to generalise it to a two-variable equation, then a
three-variable equation, and so on. The number of instances of an n-variable schema is
nn, but the number of two-variable instances is only 2n, so this idea seems promising.
For over, we would fail to generate any two-variable laws and then stop.

• In the huge lists example, QuickSpec ends up spending most of its time renormalising
the candidate terms after having discovered a new law (i.e. on the penultimate line of
the function consider on page 12). This is simply because there are a lot of candidate
terms. It would be better to normalise the candidate terms lazily: when the decision
tree gives us an equation to be QuickChecked, normalise both sides of the equation
first in case they become equal, but don’t otherwise normalise the candidate terms.

• The implementation itself is not yet highly-optimised. For example, after QuickSpec
explores a background theory it throws away the decision tree, only remembering the
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discovered laws. This leads to duplicated work when exploring the main signature,
which is quite noticeable when running the geometry example.

As a final comparison, we measured how much memory QuickSpec used on our four
examples and how many terms it generated. The results are found in Table 4.

All the examples (including the large list library) fit comfortably in the test computer’s
memory. However, the geometry and large list examples are quite memory-hungry. Most of
that memory is consumed by the decision tree.

The decision tree is not large in nodes—the number of nodes is one more than the number
of generated terms. The culprit is the test results that are stored in the edges of the tree. In
particular, the geometry combinators and some of the list combinators return large results.
The need to store tens of thousands of test results is what mostly determines memory use.

While analysing these numbers, we hit upon a simple memory-saving idea: instead
of storing test results in the decision tree, only store their hashes and forget the results
themselves. When we implemented this idea, the geometry example used a factor of 10 less
memory. We plan to provide this feature in a future release of QuickSpec.

Number of terms Memory use (MB)

Pretty-printing 2800 137
Functional Geometry 23000 3093
Large List Library 52000 4627
Octonions 871 116

Table 4: Memory use of QuickSpec.

Summary Our performance analysis shows that QuickSpec is far ahead of previous theory
exploration systems, and that it is very good at discovering laws using only a small amount
of testing, suggesting that its performance could in theory be competitive with QuickCheck—
discovering the laws need not be much more expensive than testing them.

On the other hand, it is also clear that the implementation currently lags slightly behind
the design, although we were happy with its performance while running the case studies
ourselves. We found several potential bottlenecks in the implementation and suggested ways
to fix them which, we hope, will make QuickSpec even faster in future.

4.6 Lessons learned

Finally, we would like to present some heuristics for using QuickSpec effectively, which
we found while carrying out the case studies. These recommendations are based on our
practical experience with the tool so far, and should just be taken as a starting point for users
wishing to experiment with QuickSpec on their own.

While QuickSpec can cope with large signatures of 25 functions or more (such as in
the list library case study), the user might be the bottleneck. With such large signatures
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QuickSpec can produce many laws and it will be quite difficult to understand the output.
In this case, it is better to focus in on smaller parts of the signature and run QuickSpec
several times on different combinations of functions. As a rule of thumb, a good starting
point seems to be a signature consisting of up to 10 functions, but this varies from theory to
theory. It is furthermore unlikely (in most cases) that any interesting property will feature
more than a handful of different functions.

As for maximum term size, a good heuristic seems to be around 7–9, as this seems to
cover plenty of interesting and useful properties; most interesting properties seem to be
relatively small. Again, this may vary from theory to theory.

Finally, it is often important to add auxiliary functions to the signature, as in the pretty-
printing example. The nature of these functions varies a lot from theory to theory, but
functions connecting your datatypes to well-understood datatypes like lists often lead to
interesting laws.

5 Related work

The first version of QuickSpec, QuickSpec 1 (Claessen et al., 2010), already performed better
than other comparable theory exploration systems like IsaCoSy and IsaScheme (Johansson
et al., 2011; Montano-Rivas et al., 2012). We begin with a performance comparison on
some of the examples in previous sections between our new version, QuickSpec 2, with the
old QuickSpec 1, before discussing other related work.

5.1 Comparison to QuickSpec 1

QuickSpec 1 does not interleave testing and pruning: first it tests terms to discover equations,
then it prunes the equations.15 This causes it to perform a lot of needless testing. Furthermore,
it does not use schemas. This increases the number of terms generated, and means that
the user has to specify how many variables of each type to try. QuickSpec 2 uses as many
variables as needed. Finally, QuickSpec 1 does not support polymorphism: the user must
manually instantiate each polymorphic function at all the types required, and the system
does not know that these instances are related, leading to the same law being found at
several different types.

When running QuickSpec 1, the user must specify both a depth limit and a size limit. It
then enumerates terms in order of depth, filtering out the ones that are too large.

Pretty Printing. Looking back to our initial example of Hughes’s pretty printing library
from Section 2, we already notice a huge performance improvement: while QuickSpec 2
only needs six seconds, QuickSpec 1 runs tests for about 20 minutes before running out
of memory. QuickSpec 2 found 16 laws and ran about 25 500 tests for terms up to size 9.
QuickSpec 1 only reached terms up to depth 4 before running out of memory, meaning that
it was not close to finding all the laws that QuickSpec 2 found, the biggest of which has a
term of depth 5.

15 It is more refined than SlowSpec, because it enumerates terms rather than equations.
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Functional Geometry. We tried QuickSpec 1 on the combinators over, above, beside, rot,
f lip, quartet and cycle (see Section 4.1), exploring up to size 7. After 2 hours, QuickSpec
1 was still testing and we gave up. QuickSpec 2, on the other hand takes just 25 seconds on
the same example, generates 18 laws, and runs a total of 68 000 tests.

The Large List Library. Giving QuickSpec 1 the large list library signature from Sec-
tion 4.2 is totally out of the question: we estimate it would generate millions of terms and
need to evaluate billions of values.

The Octonions. On the octonions (see Section 4.3), we ran both QuickSpec 1 and Quick-
Spec 2 up to size 7, and this is the only example where also QuickSpec 1 coped. However,
the difference in runtime is huge: 3 seconds for QuickSpec 2 compared to 15 minutes for
QuickSpec 1. QuickSpec 1 also finds three extra laws that QuickSpec 2 managed to prune
away:

(x∗ y)∗ (y−1) = x (1)

x−1 ∗ (x∗ y) = y (2)

x−1 ∗ (y−1 ∗ x) = (y∗ x)−1 ∗ x (3)

The order in which QuickSpec 2 explores the theory, combined with a new more powerful
pruner, allows it to reduce the number of dull laws presented to the user.

5.2 Other Theory Exploration systems

QuickSpec shares some features with several previous theory exploration systems, although
these have mainly been used in the context of lemma discovery for theorem proving,
rather than program understanding. While QuickSpec can be used either as a light-weight
verification tool using testing, or connected to a theorem prover to generate candidate
lemmas, most other theory exploration systems have focused only on the latter. IsaCoSy
(Johansson et al., 2011) and IsaScheme (Montano-Rivas et al., 2012) are theory exploration
systems for the proof assistant Isabelle/HOL. These are predecessors to our system Hipster
(Johansson et al., 2014), which combines QuickSpec with an inductive theorem prover i
Isabelle/HOL. Hence, the proving power of IsaCoSy, IsaScheme and Hipster/QuickSpec
is similar, but they differ in how effectively they discover relevant lemmas. IsaCoSy and
IsaScheme are able to discover relevant lemmas about standard recursive library functions
with high precision, but are slower than even the first version of QuickSpec. The major flaw
in these systems is that they enumerate and test equations, and not terms like QuickSpec
(Section 3.2.2). In IsaScheme the user provides the system with schemes, which are higher-
order templates with holes that the system instantiates. These are reminiscent of our schemas,
except that QuickSpec discovers the schemas automatically, and only instantiates holes with
variables. IsaCoSy only generates terms that are irreducible, given the equations discovered
so far. QuickSpec uses a similar approach as it discards any term which can be proved equal
to one previously seen. IsaCoSy also supports polymorphism, but without a heuristic to
limit polymorphic instances, so it spends a lot of time exploring silly instances.

MATHsAiD is a theorem discovery tool aimed at helping mathematicians to discover the
standard lemmas and theorems in new theory developments (Bundy et al., 2015), similarly
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to how we used QuickSpec in our case study about the octonions in Section 4.3. MATHsAiD
has successfully been used to automatically (re)discover some recently published theorems
in the theory of Zariski spaces. MATHsAiD generates theorems using many heuristics.
It starts by picking a main predicate (e.g. equality) for the new conjecture along with a
so-called term of interest. These are combined to form a conjecture shell, which contains
some holes that are filled in by applying forward reasoning guided by heuristic rules.
MATHsAiD’s terms of interest are similar to QuickSpec’s schemas. However, MATHsAiD
also has a set of pre-defined “meta-schemas” which contains holes for functions. Terms
of interest are generated by instantiating these meta-schemas with available functions.
QuickSpec does not rely on such meta-schemas, and does not have any restrictions on the
shape of terms it can generate.

Daikon is a tool for automatic discovery of invariants, preconditions and postconditions
for imperative programming languages such as Java, C, C++ and Perl (Ernst et al., 2007).
Daikon is provided with a grammar describing pre-defined invariant patterns and returns
those that are observed to hold as the program is executed. Daikon can also discover
conditional invariants, where the condition is a pre-defined predicate provided by the
user. Daikon thus discovers invariants which hold at particular program points, essentially
assertions which could be inserted in the code. QuickSpec, on the other hand, discovers
properties based on the program API. The Daikon approach is tailored towards imperative
programs while QuickSpec is more appropriate for analysing pure functions.

6 Conclusion

We have presented QuickSpec, a tool for automatically finding equational laws by testing.
We believe that QuickSpec can lower the barrier to entry of formal specifications for func-
tional programmers. As we have showed in our case studies and examples, the discovered
specifications are a great way of understanding programs and can even reveal bugs. For
Hughes’s pretty printing library, described in section 2, we showed that QuickSpec not
only automatically found all the laws in the original specification, but also led us to a more
general specification through a new auxiliary function. In the case study on Henderson’s
functional geometry library (section 4.1), we showed how unexpected laws discovered by
QuickSpec can reveal bugs in the implementation.

QuickSpec is not only a useful tool for programmers, but is used in several theorem
proving applications, in particular for inductive proofs. QuickSpec is used to discover basic
lemmas which are required for proving more complex conjectures in two state-of-the-art
inductive theorem provers called HipSpec and Hipster (Claessen et al., 2013; Johansson
et al., 2014).

The problem of discovering equations without extreme exponential blowup is a challeng-
ing one. In QuickSpec, we solve it by efficiently identifying and pruning uninteresting parts
of the search space, partly through schemas and partly through not testing redundant terms.
This, combined with efficient testing and pruning infrastructure, means that QuickSpec now
can deal with realistic programs and find satisfying and complex equational laws in a matter
of seconds.
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A Source code for pretty-printing example

For reference, we give here the complete source code of the pretty-printing example, both
the implementation and the QuickSpec declarations.

{-# LANGUAGE DeriveDataTypeable, TypeOperators #-}
import Control.Monad
import Test.QuickCheck
import QuickSpec hiding (background,(�), text,nest,($$))

First we define the type of layouts, closely following Hughes’s model implementation. A
layout is a list of lines, each of which is represented as a (indentation level, text) pair:

newtype Layout = Layout [(Int,String)]
deriving (Typeable,Eq,Ord,Show)

We define an Arbitrary instance for generating random documents, which simply generates
a random nonempty list:

instance Arbitrary Layout where
arbitrary = do

NonEmpty lines← arbitrary
return (Layout lines)

The definitions of the combinators follow Hughes exactly:

text :: String→ Layout
text s = Layout [(0,s)]

nest :: Int→ Layout→ Layout
nest k (Layout l) = Layout [(i+ k,s) | (i,s)← l ]

($$) :: Layout→ Layout→ Layout
Layout xs $$ Layout ys = Layout (xs++ ys)

(�) :: Layout→ Layout→ Layout
Layout xs � Layout ys =

combine (init xs) (last xs) (head ys) (tail ys)
where

combine xs (i,s) (j, t) ys =
Layout xs $$
Layout [(i,s++ t)] $$
nest (i+ length s− j) (Layout ys)

The nesting function is our own addition to the pretty-printing API, described in the text:

nesting :: Layout→ Int
nesting (Layout ((i, ): )) = i

Next we write down the signatures for QuickSpec. We start with a signature which contains
all the background functions. For the purposes of this example, we tell QuickSpec to explore
all terms up to size 9.
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background =

signature {
maxTermSize = Just 9,
constants = [

constant "\"\"" "", -- the empty string ""

constant "++" ((++) :: String→ String→ String),
constant "0" (0 :: Int),
constant "+" ((+) :: Int→ Int→ Int),
constant "length" (length :: String→ Int)]}

Next, we define a signature for the pretty-printing combinators themselves. The final line of
the signature is QuickSpec’s syntax for declaring the Layout type.

sig =

signature {
constants = [

constant "text" text,
constant "nest" nest,
constant "nesting" nesting,
constant "$$" ($$),
constant "<>" (�)],

instances = [baseType (⊥ :: Layout)]}

Finally, we run QuickSpec like so:

main = quickSpecWithBackground background sig

The full output of QuickSpec, which takes 10 seconds to run on the computer described in
Section 4.5, is reproduced below.

== Signature ==

"" :: [Char]

(++) :: [Char] -> [Char] -> [Char]

0 :: Int

(+) :: Int -> Int -> Int

length :: [Char] -> Int

== Laws ==

1. length "" = 0

2. x + 0 = x

3. 0 + x = x

4. xs ++ "" = xs

5. "" ++ xs = xs

6. x + y = y + x

7. length (xs ++ ys) = length (ys ++ xs)

8. (x + y) + z = x + (y + z)

9. (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

10. length xs + length ys = length (xs ++ ys)
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== Signature ==

text :: [Char] -> Layout

nest :: Int -> Layout -> Layout

nesting :: Layout -> Int

($$) :: Layout -> Layout -> Layout

(<>) :: Layout -> Layout -> Layout

== Laws ==

1. nest 0 x = x

2. nesting (text xs) = 0

3. nesting (x $$ y) = nesting x

4. nesting (x <> y) = nesting x

5. nesting (nest x y) = x + nesting y

6. x <> text "" = x

7. (x $$ y) $$ z = x $$ (y $$ z)

8. x <> nest z y = x <> y

9. (x $$ y) <> z = x $$ (y <> z)

10. (x <> y) <> z = x <> (y <> z)

11. nest x (y <> z) = nest x y <> z

12. nest (x + y) z = nest x (nest y z)

13. text xs <> text ys = text (xs ++ ys)

14. nest x y $$ nest x z = nest x (y $$ z)

15. nest (nesting x) (text "") <> x = x

16. text xs <> (text "" $$ x) = text xs $$ nest (length xs) x

17. text (xs ++ ys) $$ nest (length xs) x =

text xs <> (text ys $$ x)

18. text xs <> (x $$ nest (nesting x) y) =

(text xs <> x) $$ nest (length xs) y

19. (text xs <> x) $$ (text "" <> x) =

text xs <> (nest (length xs) x $$ x)

20. text "" <> ((text xs <> x) $$ y) = (text xs <> x) $$ y
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