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How Map Projections Transform Velocity Vectors

Randy Bullock

(bullock@ucar.edu)

LetP be a point moving on the surface of the Earth, whichwe’ll take to be a sphere of radiusR. Suppose

we’re using a map projection given by two functions f and g like so:

x = f(φ, L) and y = g(φ, L).

Here (x, y) are (cartesian) coordinates on the map, and (φ, L) are, respectively, latitude and longitude on

the Earth. (Note: As indicated in the figure below, we adopt the conventions that north latitude and west

longitude are positive.) We want to know how the velocity vector of P, as it moves on the Earth, is related

to the velocity vector of its image point moving on the map. In other words, how does the map projection

transform velocity vectors?

Velocity components of an object moving over the Earth are usually given as a component ve in the

(local) east direction and a component vn in the north direction. These two values, along with the motion of

P as a function of time and the map projection, are the given data for this problem. The first thing we must

do is relate these given velocity components (ve, vn) to the time rates of change of latitude and longitude.
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, which has length R, so we can take N =
1

R

∂P

∂φ
to be the definition of N,

the unit northward­pointing vector at P’s location. Similarly,
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= R
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has length R cosφ

and points westward, so we can take E = −

1

R cosφ

∂P

∂L
to be the unit eastward pointing vector at P.

Notice that we have E ?N = 0, so the vectors E and N are orthogonal, as they should be.
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Using these results we can relate the velocity vector
?
P =

dP

dt
to
?
φ and

?
L as follows:

?
P =

∂P

∂φ

?
φ +

∂P

∂L

?
L

= (RN )
?
φ + (−R cosφ E )

?
L

=
(

−R cosφ
?
L
)

E +
(

R
?
φ
)

N

But from the definition of ve and vn we know that
?
P = ve E + vn N. Thus wemust have ve = −R cosφ

?
L

and vn = R
?
φ .

The rest is straightforward. Differentiating x = f(φ, L) using the chain rule, we have
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∂f

∂φ

?
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∂L

?
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(vn
R

)

+
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∂L

(

−

ve
R cosφ

)

=

(

−

1
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∂L

)

ve +

(

1

R
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)

vn

where we have used the above expressions for ve and vn to eliminate
?
φ and

?
L . A similar result holds for

?y and so we have the relationship between (ve, vn) and ( ?x , ?y ) given by the following matrix equation:
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This is the result we were after. Note that the 2 × 2matrix above (we’ll call it M) is not simply the Jacobian

matrix of the map projection. This is because E and N are not the (φ, L)­coordinate frame on the Earth. The

above matrix is the Jacobian matrix composed (on the right) with a change­of­basis matrix. The velocity

transformation is really just the derivative of themap projection, although sincewe’re not using a coordinate

frame on the Earth, we get a matrix different from the Jacobian matrix representing it.

As an aside, here’s something to think about: the vectors E and N on the Earth do not constitute the

(φ, L)­coordinate frame, but maybe they’re the coordinate frame field for some other set of coordinates?

The answer is “No,” but how do we know that? Hint: I’m not thinking of curvature here.

We’ll spend the rest of this writeup doing examples illustrating the calculation of the matrix M for

several projections in common use: Lambert, Stereographic, Mercator, Plate Carée and Orthographic. We’ll

also do a couple of plotting examples.
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➢ Example 1 : Lambert Conformal Projection. This will actually be the hardest example of all, because the

calculations here aremore difficult than for our other examples. Ignoring, for simplicity, overall translations,

rotations and scale factors, we have x = r sinβ and y = r cosβ, where

r =

[

tan

(

π

4
−

φ

2

)]

c

and β = c L

where c is the cone constant. For our purposes, the key property of r(φ) here is that r′(φ) =

(

−

c

cosφ

)

r(φ).

Calculating derivatives, we get:

∂f

∂φ
=

∂

∂φ
(r sinβ) =

dr

dφ
sinβ =

(

−

c

cosφ

)

r sinβ

∂f

∂L
=

∂

∂L
(r sinβ) = r

d

dL
(sinβ) = r cosβ

dβ

dL
= c r cosβ

∂g

∂φ
=

∂

∂φ
(r cosβ) =

dr

dφ
cosβ =

(

−

c

cosφ

)

r cosβ

∂g

∂L
=

∂

∂L
(r cosβ) = r

d

dL
(cosβ) = −r sinβ

dβ

dL
= −c r sinβ

and so our matrixM becomes
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
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











−

1

R cosφ
(c r cosβ)

1

R

(

−

c
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)

r sinβ

−

1
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(−c r sinβ)

1

R

(

−

c
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)
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
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









=
c r

R cosφ

[

− cosβ − sinβ

sinβ − cosβ

]

=
c r

R cosφ

[

cos γ sin γ

− sin γ cos γ

]

where γ = β + 180◦. So the end result is a rotation through an angle of γ (which is a function of L only),

and a scaling by
c r

R cosφ
, (which is a function of φ only). Note that we can only expressM as a combination

of a rotation and a scaling because the Lambert projection is conformal. It’s only for conformal projections

that the scale factor at each point is the same in all directions at that point.
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➢ Example 2 : Polar Stereographic Projection. Again ignoring overall translations, rotations and scale

factors, we have x = r sinβ and y = r cosβ, where

r = tan

(

π

4
−

φ

2

)

and β = L

Note that this is the limiting form of the Lambert equations when c → 1. So here we can just use the results

for the Lambert Conformal Projection example, replacing c by 1 everywhere.

➢ Example 3 : Mercator Projection. As usual we’ll ignore overall translations, rotations and scale factors.

Then x = −L and y = log tan

(

π

4
+

φ

2

)

. Note that
dy

dφ
=

1

cosφ
. Calculating the partial derivatives of f

and g we get:

∂f

∂φ
=

∂

∂φ
(−L) = 0

∂f

∂L
=

∂

∂L
(−L) = −1

∂g

∂φ
=

dy

dφ
=

1

cosφ

∂g

∂L
=

∂

∂L
log tan

(

π

4
+

φ

2

)

= 0

and so our matrixM is
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=
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











−

1

R cosφ
(−1)

1

R
(0)

−

1
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(0)

1

R

(

1

cosφ

)












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=
1

R cosφ

[

1 0

0 1

]

The end result is a scaling by (R cosφ)
−1

and no rotation. (Or, if you like, a rotation by an angle of zero.)
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➢ Example 4 : Plate Carée Projection. Once again we’ll ignore overall translations, rotations and scale

factors. Then x = −L and y = φ. Turning the crank, we get:

∂f

∂φ
=

∂

∂φ
(−L) = 0

∂f

∂L
=

∂

∂L
(−L) = −1

∂g

∂φ
=

∂

∂φ
(φ) = 1

∂g

∂L
=

∂

∂L
(φ) = 0

and so our matrixM is
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
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R cosφ
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1

R
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−
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1

R
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
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=


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









−

1

R cosφ
(−1)

1

R
(0)

−

1

R cosφ
(0)

1

R
(1)















=
1

R

[

secφ 0

0 1

]

It’s not hard to show that this matrix cannot be expressed as the composition of a rotation and a scaling.

That’s because the Plate Carée projection is not conformal.

➢ Example 5 : Orthographic Projection. As before, we’ll ignore overall translations, rotations and scale

factors. Then x = P ?A and y = P ?B, where A and B are two orthonormal vectors in R3. Thus we have

∂f

∂φ
=

∂

∂φ
(P ?A) =

(

∂P

∂φ

)

?A = R N ?A

∂f

∂L
=

∂

∂L
(P ?A) =

(

∂P

∂L

)

?A = −R cosφE ?A

∂g

∂φ
=

∂

∂φ
(P ?B) =

(

∂P

∂φ

)

?B = R N ?B

∂g

∂L
=

∂

∂L
(P ?B) =

(

∂P

∂L

)

?B = −R cosφE ?B
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and so our matrix is


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
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
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R cosφ
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











−

1

R cosφ
(−R cosφE ?A)

1

R
(RN ?A)

−

1

R cosφ
(−R cosφE ?B)

1

R
(RN ?B)















=

[

E ?A N ?A

E ?B N ?B

]

which worked out pretty nicely. It’s interesting to note that the determinant of this matrix is

(E ?A) (N ?B) − (E ?B) (N ?A) = (E3N) ? (A3B)

= P ? (A3B)

where we have set R = 1 for convenience (otherwise we would have E3N = P/R). Now, A and B

span the picture plane, so this says the matrix becomes singular when P lies in that plane, or in other

words, for points P on the “rim” of the Earth, as seen in this projection. This is not surprising. The

Orthographic Projection ceases to be a parametrization of the Earth’s surface there, so it’s derivative (the

velocity transformation) can’t be expected to be well­behaved at such points.

➢ Example 6 : Enough equations. Let’s draw some pictures. We’ll use a Polar Stereographic projection,

and we’ll choose a tangent vector field on the Earth that has a constant bearing of 30◦, and also a constant

magnitude.

The top plot on the next page shows the vectors drawn on the 40◦ latitude circle, at multiples of 30◦

longitude. Notice that the velocity transformation takes care of the direction of the image vector on the

map.

The bottom plot is drawn to a different overall scale. The vectors are drawn on a 40◦ latitude circle and

also a −20◦ latitude circle. The farther out from the center of the map we get, the larger the local map scale

is, so if a vector has a fixed true length, it should be drawn longer where the map scale is larger. Here, the

ratio of the scale factors at the two latitudes is about 2.5. The velocity transformation handles this rescaling

automatically.

Note again that we can only break up the velocity transformation into a rotation followed by a scaling

because the Polar Stereographic projection is conformal. If we were using a non­conformal projection, the

velocity transformation would still handle the length and direction of the image vector correctly, but you

couldn’t view the transformation as simply a rotation and a scaling.
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➢ Example 7 : Another plotting example, this time with the Orthographic Projection. We chose a point on

the Earth with latitude 40◦ and longitude 105◦. This point will be in the center of the map. We then took

A to be the east vector E for that location, and then B to be the north vector N there. As in the previous

example, we took the vector field to have a constant bearing of 30◦ and a constant magnitude.

The Orthographic Projection is not conformal, so we can’t talk about rotation angles and scale factors

at any point, but the velocity transformation still correctly gives the direction and size of the plotted vector.


