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1 Introduction

Since the seminal synthetic control (SC) paper by Abadie and Gardeazabal (2003) and Abadie,

Diamond, and Hainmueller (2010), measuring treatment (intervention) effects on a single

treated unit based on counterfactuals constructed from artificial controls has become a popular

practice in econometrics. Usually, these artificial (synthetic) controls are built from a panel

of untreated peers observed over time, before and after the intervention; see, for example,

Doudchenko and Imbens (2016) and Athey and Imbens (2017) for recent discussions.

However, in the original SC setting, the econometric estimation was traditionally viewed as

a cross-sectional problem, and the time-series nature of the data is often ignored.

1.1 Main Takeaways

This paper has two major contributions. First, we investigate the consequences of estimat-

ing counterfactuals when the data are non-stationary, displaying either deterministic and/or

stochastic trends in a high-dimensional setting, where the dimensionality of the model grows

with the sample size. We propose a simple modification of Tibshirani’s (1996) least absolute

and selection operator (LASSO), which is proved to deliver consistent estimates of the parame-

ters of interest. Our results also have implications for cointegration analysis in high dimensions.

Second, we develop inferential procedures based on partial resampling that can be applied in

situations where the number of observations after the intervention is small when compared to

the number of time periods before the intervention. Our testing procedure can be used even

when there is a single observation after the intervention. Moreover, the proposed test can be

applied with no modification to the original stationary counterfactual setup. The econometric

framework considered here nests the SC method originally proposed by Abadie and Gardeaza-

bal (2003) and further studied in Abadie, Diamond, and Hainmueller (2010), Doudchenko and

Imbens (2016) and Ferman and Pinto (2016), as well as the panel factor (PF) method of Hsiao,

Ching, and Wan (2012), and the artificial counterfactual (ArCo) put forward by Carvalho,

Masini, and Medeiros (2018).

We believe our results are of general importance for the following reasons. First, several

applications of the SC method and its many variants are for trending data. A key example is

the original SC application of Abadie and Gardeazabal (2003) where the variable of interest

was the levels of the Basque Country’s GDP. With nonstationary data, the usual inferential

procedures to evaluate the effects of the intervention (treatment) can be extremely misleading;

see, for example, the discussion in Masini and Medeiros (2019). Second, although it is not usual

for applications involving counterfactual estimation to be truly high dimensional, the number

of pre-intervention observations is frequently rather small compared to the number of variables

used to estimate the artificial control and the use shrinkage estimation methods have been

frequently advocated. Therefore, deriving the statistical properties of counterfactual estimators

under high-dimensions and nonstationarity at the same time is of considerable importance.

Finally, inference in the original SC framework of Abadie and Gardeazabal (2003) and
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Abadie, Diamond, and Hainmueller (2010) is carried out by permutation tests, which tend to

frequently over-reject the null hypothesis; see Ferman and Pinto (2016) for a recent discussion.

Furthermore, it is not clear that their approach will be valid in a non-stationary setting. On

the other hand, recent extensions consider that the number of post-intervention observations

grows as T → ∞. In this scenario, the tests have very little power when effects fade away in

the aftermath of the intervention or when effects concern solely the variance of the variable

of interest. More worrisome, with a long post-intervention period, there could be a larger

probability of contamination effects; that is, the peers used to construct the counterfactual may

be affected by the intervention, which in turn, invalidates the main identification assumption

supporting such methods. Our inferential procedure fits nicely when the time period after the

intervention is very small and can be used in both stationary and non-stationary settings.

We conduct a vast simulation study to evaluate the finite-sample properties of the estimators

and inferential procedures discussed in the paper. We show that the proposed methods works

reasonable well even in very small samples. Furthermore, as an empirical illustration, we

estimate the impact of price changes on product sales by using a novel dataset from a major

retail chain in Brazil with more than 1,000 stores in the country. We show how the methods

discussed in the paper can be used to estimate demand price elasticities, which can be further

used to determine optimal prices for a wide class of products.

1.2 Overview

The econometric method considered in this paper is divided in steps. Suppose we are interested

in estimating the effects on a variable Yt of an intervention that occurred at time t = T0 + 1.

We estimate a counterfactual based on a number of covariates, X t ∈ Rp, constructed from a

number of peers that are assumed to be unaffected by the intervention. We allow the dimension

of X t to grow with the sample size T , i.e. p ≡ pT . The procedure is thus summarized by the

following steps:

1. Based on the sample {Yt,X ′t}
T0
t=1 estimate a regression

Yt = X ′tβ0 + Vt,

where Vt is an error term that will be specified later. To cope with potential high-

dimensionality and potential nonstationarity, the above regression should be estimated

by a modification of the original LASSO method, as proposed in this paper.

2. For t = T0 + 1, . . . , T , estimate the intervention effects by

δ̂t = Yt −X ′tβ̂T0 ,

where β̂T0 is the estimated coefficient in the first step.
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3. Test for null hypothesis in the form

H0 : g(δT0+1, . . . , δT ) = 0

by using the partial resampling procedure that will be described later in the paper. g(·)
is a vector valued continuous function.

In the paper, we show consistency of β̂T0 to β0, where β0 will be carefully defined both

under stationarity and non-stationarity. We also show consistency of the estimated average

intervention effect, ∆̂ = 1
T−T0

∑T
t=T0+1 δ̂t. Finally, we also propose a statistic to test for the

general null hypothesis defined above.

1.3 Comparison with the Literature

Recently, extensions of the SC method, which explore the time dimension, have been proposed

in the literature. Nonetheless, most of the theoretical results have been derived in a more

restrictive setting than the one considered in this paper. Hsiao, Ching, and Wan (2012) was

probably one of the first papers to apply time-series models to the SC framework. However,

neither nonstationarity nor high-dimensionality were formally discussed.1 Li and Bell (2017)

and Carvalho, Masini, and Medeiros (2018) considered counterfactual estimation when data

are high-dimensional. However, the former did not take nonstationarity into account and the

later impose a sort of (trend-)stationarity condition. More specifically, Carvalho, Masini, and

Medeiros (2018) derived the theory for counterfactual estimation based on LASSO under either

stationarity or bounded deterministic trends, that is, deterministic functions of t/T . Extending

the work of Carvalho, Masini, and Medeiros (2018), Chernozhukov, Wuthrich, and Zhu (2018b)

proposed new inference methods to test hypothesis on average treatment effects when both

the number of pre-intervention and post-intervention are large. Similar to the previous papers,

nonstationary data are ruled out. Li (2017) also considered estimators similar to Carvalho,

Masini, and Medeiros (2018) in a low dimensional setting. As before, trend-stationarity is

imposed.

Three recent papers discussed the effects of nonstationarity on counterfactual estimation.

The first one is Bai, Li, and Ouyang (2014). The authors show consistency of the Hsiao, Ching,

and Wan’s (2012) panel approach when the data are integrated of first order. Masini and

Medeiros (2019) provide the asymptotic distribution of the counterfactual estimation under

nonstationarity and develop as well the necessary results to conduct inference. Finally, Ferman

and Pinto (2016) studied the SC estimator in cases with explosive common factors and imperfect

pre-intervention fit. However, all these three papers consider only the low-dimensional case.

Therefore, we are not aware of any other paper that simultaneously consider counterfactual

estimation with both nonstationarity and high-dimensional data. High-dimensionality has been

considered in settings much less general than the ones considered in this paper; see, for example,

1Hsiao, Ching, and Wan (2012) conjectured that if the data are cointegrated, their results would still hold.
Masini and Medeiros (2019) showed that this conjecture turns out to be imprecise.
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Li and Bell (2017), Carvalho, Masini, and Medeiros (2018), and Abadie and L’Hour (2019).

A considerable limitation of those methods is that inference, whenever available, is con-

ducted on the average effects of the intervention, usually derived from an asymptotic argument

over the post-intervention sample or by some sort of permutation test as in Abadie and Gardeaz-

abal (2003) and Abadie, Diamond, and Hainmueller (2010). While the former could be justified

when the post-intervention sample is relatively large, it is inappropriate in most applications of

interest. In addition, as stated before, Ferman and Pinto (2016) showed that permutation tests

tend to frequently over-reject the null hypothesis. Furthermore, there are no results concerning

the construction of confidence intervals for the estimated counterfactuals for each point in time

after the intervention. One of the few exceptions is Brodersen, Galluser, Koehler, Remy, and

Scott (2015), where a Bayesian structural time-series model is used to estimate the counterfac-

tuals and posterior inference is advocated to measure the effects of the intervention. However,

the paper is silent about under which hypothesis such approach is valid.

We should also compare our results with Chernozhukov, Wuthrich, and Zhu (2018a), where

the authors propose a very general conformal inference method to test hypothesis on the coun-

terfactuals when the number of observations after the intervention is small. In their setup non-

stationarity is precluded.2 Furthermore, although the authors considered a high-dimensional

setting, they do not consider the case where the number of regressors grows at a faster rate

than the sample size.

Ferman and Pinto (2016) and Li (2017) discussed inference in the SC framework when

the post-intervention sample is small based Andrews’s (2003) end-of-sample tests. However,

high-dimensionality and unit-roots have not been considered in their papers.

This paper is also related to the literature of unit-roots and cointegration in high-dimensions.

To our knowledge this is the first work to derive the properties of LASSO estimators for coin-

tegrating regressions in the case where the number of regressors is potentially much larger

than the number of observations. Lee, Shi, and Gao (2018) derived the limiting distribution

of LASSO-type estimators under several setups involving nonstationary variables. However,

in the author’s framework the number of regressors is fixed. This is also the case of Liao and

Phillips (2015) and Kock (2016). Recently, Liang and Schienle (2019) proposed a shrinkage

methodology for simultaneous model selection and estimation of vector error correction models

(VECM) when the dimension is large and can increase with sample size. However, the number

of variables is allowed to grow at a smaller rate than the sample size.3 Furthermore, the de-

terminist terms in their model is more restrictive than ours. Another related paper is Onatski

and Wang (2018), where the authors derive the distribution of cointegration test statistics in

a high-dimensional setting. As before, they consider only the case where the dimension of the

model grows at slower rate than the sample size.

2See Assumption 5 and Theorem 3 as well as Lemma 10 in Chernozhukov, Wuthrich, and Zhu (2018a).
Assumption 5, which is required by Theorem 3, explicitly states that the data is stationary and β-mixing.

Lemma 10 requires that P
(

max
1≤t≤T

‖Xt‖∞ ≤ finite constant

)
= 1. This last assumption is clearly violated with

unit-root processes.
3See, for example, the assumptions in Corollary 2.1 in Liang and Schienle (2019).
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1.4 Summary of the Paper

The rest of the paper is organized as follows. We present the setup and assumptions in Section

2 and derive the theoretical results concerning the counterfactual estimation and inference in

Section 3. In Section 3.3 we describe the inferential procedure considered in this paper. We

present the results of a simulation experiment in Section 4 and discuss the empirical application

in Section 5. Section 6 concludes the paper. Finally, we present all proofs in the Appendix.

2 Setup and Assumptions

2.1 Notation

All random variables (real-valued scalars, vectors and matrices) are defined in a common proba-

bility space (Ω,F ,P). We denote random variables by an upper case letter, X for instance, and

its realization by a lower case letter, X = x. Matrices and vectors are written in bold letters.

The expected value operator is with respect to the P law such that E(X) :=
∫

Ω
X(ω)dP(ω).

We reserve the symbol ‖ · ‖ without subscript for a generic (semi)norm. We use ‖ · ‖q and

‖ · ‖L,q to denote, respectively, the `q and Lq norms for q ∈ [1,∞], such that for a d−dimensional

(possibly random) vector X = (X1, . . . , Xd)
′, we have ‖X‖q := (

∑d
i=1 |Xi|q)1/q and, for a scalar

random variable X, ‖X‖L,q = (E|X|q)1/q. ‖X‖∞ := supi≤d |Xi|. If X is a (m × n) (random)

matrix then ‖X‖∞ := supi≤m,j≤n |Xi,j|. We also use the ‖X‖0 := #{i : Xi 6= 0} to denote

the `0 “norm”. Moreover, for a d-dimensional square matrix M , we use ‖X‖2
M to denote the

quadratic form X ′MX. For any vector X, we use diag (X) to denote the diagonal matrix

whose diagonal is the elements of X. 1(A) represents an indicator function on the event A, i.e,

1(A) =

1 if A is true,

0 otherwise.

Finally, unless stated otherwise, all the asymptotics are taken as T0 →∞, and the o(1) and

oP (1) terms are with respect to the limit as T0 → ∞. We denote convergence in probability

and in distribution by “
p−→” and “⇒”, respectively. A full list of symbols used in the paper is

presented in the Appendix.

2.2 Basic Setup

Suppose we have n units (countries, states, municipalities, firms, etc.) indexed by i = 1, . . . , n.

For every time period t = 1, . . . , T , we observe a realization of a real valued random vector

Zt := (Z1t, . . . , Znt)
′.4 Furthermore, we assume that an intervention took place at T0 +1, where

1 < T0 < T . Let Dt ∈ {0, 1} be a binary variable flagging the periods where the intervention

(treatment) was in place. Therefore, following the potential outcome notation, we can express

4We consider a scalar variable for each unit for the sake of simplicity, and the results in the paper can be
easily extended to the multivariate case.
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Zit as

Zit = DtZ(1)
it + (1−Dt)Z(0)

it ,

where Z
(1)
it denotes the potential outcome when the unit i is exposed to the intervention and

Z
(0)
1t is the potential outcome of unit i when it is not exposed to the intervention.

We are ultimately concerned with testing the hypothesis on the potential effects of the

intervention in the unit of interest. Without loss of generality, we set unit 1 to be the one of

interest. The null hypothesis to be tested is:

H0 : δt := Z
(1)
1t − Z

(0)
1t = 0, ∀t > T0. (2.1)

It is evident that for each unit i = 1, . . . , n and at each period t = 1, . . . , T , we observe either

Z
(0)
it or Z

(1)
it . In particular, Z

(0)
1t is not observed from t = T0 + 1 onwards. For this reason, we

henceforth call it the counterfactual – i.e., what would Z1t have been like had there been no

intervention (potential outcome).

To construct the counterfactual, let Z
(0)
0t :=

[
Z

(0)
2t , . . . , Z

(0)
nt

]′
be the collection of all control

variables (all other variables except the ones belonging to unit 1).5 Panel-based methods, such

as the PF and ArCo methodologies, as well as the SC extensions discussed in Doudchenko and

Imbens (2016), construct an artificial counterfactual by considering the following model in the

absence of an intervention:

Z
(0)
1t =M

(
Z

(0)
0t ;θ

)
+ Vt, t = 1, . . . , T, (2.2)

whereM : Z×Θ→ R, Z ⊆ Rn−1, is a known measurable mapping up to a vector of parameters

indexed by θ ∈ Θ and Θ is a parameter space. A linear specification (including a constant)

for the model M(Z0t;θ) is the most common choice among counterfactual models for the

pre-intervention period.

The main idea is to estimate (2.2) using just the pre-intervention sample, t = 1, . . . , T0,

since in this case, Z
(0)
0t := Z0t = (Z2t, . . . , Znt)

′. Consequently, the estimated counterfactual

for the post-intervention period, t = T0 + 1, . . . , T , becomes Ẑ
(0)
1t :=M(Z0t; θ̂T0). Under some

sort of stationarity assumption on Z0t and, more importantly, under the assumption that the

control units are not affected by the intervention, Hsiao, Ching, and Wan (2012) and Carvalho,

Masini, and Medeiros (2018), show that δ̂t := Z1t − Ẑ(0)
1t is an unbiased estimator for δt as the

pre-intervention sample size grows to infinity and

∆̂T =
1

T − T0

T∑
t=T0+1

δ̂t, (2.3)

is
√
T -consistent for ∆T := 1

T−T0

∑T
t=T0+1 δt and is asymptotically normal.

Consider the following assumption.

5We could also have included lags of the variables and/or exogenous regressors into Z0t, but again, to keep
the argument simple, we have considered only contemporaneous variables; see Carvalho, Masini, and Medeiros
(2018) for more general specifications.
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Assumption 1. Z
(0)
t is independent of Ds for all 1 ≤ s, t ≤ T .

To recover the effects of the intervention, Assumption 1 is key. Roughly speaking, it suffices

that E(Z0t|Ds = 1) = E(Z0t|Ds = 0).6

The main purpose of the paper is to extend those results to include both deterministic and

stochastic trends in the DGP of Z
(0)
t . This presents some new challenges, to begin with, the

population parameter θ0 can no longer be identified as the linear projection parameters of Z
(0)
1t

onto a constant and Z
(0)
0t due to the non-stationarity of the regressors. Before we present the

general setup in Section 2.4, next section describes a simple, yet instructive, example of the

proposed methodology.

2.3 Factor Model Example

In order to give a clear exposition about the models and techniques considered in this paper,

we present a very simple example based on an one-factor model. However, note that extending

this analysis to the multiple factor case is a trivial exercise. Suppose that the units in the

absence of intervention are modeled via a single factor Ft such that for each unit i ∈ {1, . . . , n}
and every t ∈ {1, . . . , T} we have

Z
(0)
it = ci + µiFt + UZ

it , (2.4)

where ci ∈ R, UZ
it is an idiosyncratic shock and µi ∈ R is the factor loadings for unit i. We

further impose that the factor follows either a unit root process with a (possibly non-linear)

drift

Ft = fFt + Ft−1 + UF
t , t ≥ 1 (2.5)

for some initial condition F0 = OP (1); or a trend-stationary process

Ft = fFt + UF
t , (2.6)

where in both {fFt }∞t=1 is a deterministic sequence.

For now consider that (UZ
1t, . . . , U

Z
nt, U

F
t ) is a zero-mean, independent and identically dis-

tributed Gaussian random vector which trivially fulfills both conditions described later in As-

sumption 3 in Section 3.

The factor model above results in a common trend (at least for those units with non-zero

loadings, µi 6= 0) and a correlation among the stochastic components of the vector Z
(0)
t due to

the presence of UF
t . We define a linear regression model, which we call pseudo-true model, as

Yt = β′0X t + Vt,

where Yt := Z
(0)
1t and X t :=

[
1,Z

(0)
0t

′]′
. Suppose there are 1 < r + 1 ≤ n units with non-zero

6For a thorough discussion on Assumption 1, including the potential bias resulting from its failure in the
stationary setup, refer to Carvalho, Masini, and Medeiros (2018). Admittedly, Assumption 1 is stronger than

necessary, for an unbiased estimate for instance would be enough to impose E[M(Z
(0)
0t ;θ)|Ds] = E[M(Z0t;θ)].
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loadings (µi 6= 0) including unit 1. Without loss of generality, make those the first r + 1 units.

In that case, we have r independent linear relations among those units resulting in a stationary

process since we can cancel the trends (either deterministic and/or stochastic) by setting Γ̃
′
Z

(0)
t ,

where

Γ̃
′
=


1 −µ1

µ2
0 0

... 0
. . . 0 0r×(n−r−1)

1 0 0 − µ1
µr+1

 ,

and 0r×(n−r−1) is a r × (n− r − 1) matrix of zero elements.

After normalizing to obtain the representation Γ̃
′
= (Ir : −Γ′), we are left with:

Γ′ =


µ̃1

... 0r×(n−r−1)

µ̃r

 ,

where µ̃i := µi
µr+1

for i ∈ {1, . . . , r}. Then, J t = Γ̃
′
Z

(0)
t is stationary with a typical element

given by

Ji,t = ci − µ̃icr+1 + UZ
it − µ̃iUZ

r+1,t = c̃i + Ũit,

where c̃i := ci − µ̃icr+1 and Ũit := UZ
it − µ̃iUZ

r+1,t.

When r = 1, the pseudo-true vector of parameters becomes:

β0 =

(
c1 −

µ1

µ2

c2,
µ1

µ2

, 0, . . . , 0

)′
,

and the covariance structure of the vector
(
UF
t , U

Z
1t, . . . , U

Z
nt

)′
plays no role in determining the

coefficients of the pseudo-true model, since there is only one possible linear combination that

results in a I(0) process. On the other hand, when r ≥ 2, we have

β0 = (c̃1 − ζ ′c̃0, ζ
′, µ̃1 − ζ ′µ̃0, 0, . . . , 0)

′
,

where c̃0 := (c̃2, . . . , c̃r)
′, µ̃0 := (µ̃2, . . . , µ̃r)

′ and ζ denote the linear projection of Ũ1t onto(
Ũ2t, . . . , Ũrt

)′
. Now it becomes evident that the covariance structure of

(
UZ

1t, . . . , U
Z
r+1,t

)′
affects the coefficients of the pseudo-true model through ζ. Finally, the error term for the

factor model is given by

Vt = UZ
1t −

r+1∑
i=2

β0,iU
Z
it .

In a high-dimensional setup (n � T ), with β0 properly defined, we could estimate the

parameters using any regularized regression method. In particular let β̂ be a minimizer of the

LASSO objective function

1

T0

T0∑
t=1

(Yt −X ′tβ)2 + λ‖β‖1,

where λ ≥ 0 is the penalty term. If we assume that the vector of loadings is sparse in the sense
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that the number of loadings different from zero, r+ 1, grows slower than T0 even when n grows

at a faster rate then T , we have the following corollary from our first main result (Theorem 1

in Section 3).

Under certain assumptions that will be defined later in the paper and for any c > 0, if we

set the penalty parameter λ = 4cn2/q/
√
T0 and if r(log n)2/

√
T0 = o(1), we can show that, as

T0 →∞,

δ̂t − δt − Vt = OP [(log n)2r/
√
T0] = oP (1); T0 < t ≤ T.

If further T2 →∞, we have that

∆̂T −∆T = OP

[
log(n)r√

T0

∨ 1√
T2

]
= oP (1).

The first part of the above results gives us an asymptotically (T0 →∞) unbiased estimator

for the intervention effect for every period in the post-intervention sample. The second part

establishes a consistent estimator for the average (across the post-intervention period) effect of

the intervention. The latter relies on the asymptotics for the post-intervention period (T2 →∞)

as well, which is might not be credible in most practical applications.

For this reason, we propose an inference method applying a resampling scheme that is effec-

tive even when we there is a single period in the post-intervention. Let δ̂ := (δ̂T0+1, . . . δ̂T )′. Con-

sider the construction of blocks of size T2 of consecutive observations from the pre-intervention

sample. There are T0 − T2 − 1 such blocks which we denote by

δ̂j :=
(
V̂j, . . . , V̂j+T2−1

)
j = 1, . . . , T0 − T2 + 1,

where V̂t := Yt − β̂
′
X t for 1 ≤ t ≤ T0 is residual of the pre-intervention estimation. We then

estimate the distribution QT (x) := P(δ̂ ≤ x) by the empirical distribution function of (δ̂j), i.e:

Q̂T (x) :=
1

T0 − T2 + 1

T0−T2+1∑
j=1

1
(
δ̂j ≤ x

)
,

where, for a pair of vectors a, b ∈ Rd, we say that a ≤ b ⇐⇒ ai ≤ bi,∀i.
This is a simple, yet effective, way (as shown by our simulation results in Section 4) to

conduct a point-by-point inference in the post-intervention period and recover the joint distri-

bution of δ̂ or, in fact, any continuous function thereof. The second main result (Theorem 2 in

Section 3) implies that, under some mild assumptions, but with r log(n) log(nT0)/
√
T0 = o(1),

we have under the null hypothesis of no intervention that

sup
x∈RT2

|Q̂T (x)−QT (x)| = oP (1),

for fixed T2 as T0 →∞.

Remark 1. Although the example above suggests that we must impose a high degree of sparsity
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on the factor loadings for our procedure to work, this is not true. We only assume that some

of the loadings are zero to show that the procedure works even if only one unit (on top of the

first one) loads on the factor. The key sparsity assumption is on the cointegration relationship

among the variables. Even if all the loadings are non-zero, we can have a cointegration vector

that is sparse.

2.4 General Setup

2.4.1 Non-stationarity

We model the units in the absence of the intervention as a non-stationary (vector) process

{Z(0)
t := (Z1t, . . . , Znt)

′}t≥1.

Assumption 2. (DGP) Consider that the process {Z(0)
it : 1 ≤ i ≤ n, t ≥ 1} is either generated

by

(a) Stochastic Trend:

Z
(0)
it = Z

(0)
it−1 + fit + Uit, t ≥ 1, (2.7)

with Z
(0)
i0 = OP (1), or

(b) Deterministic Trend:

Z
(0)
it = fit + Uit, t ≥ 1. (2.8)

In both cases, {fit}t≥1 is a deterministic sequence, and {U t := (U1t, . . . , Unt)
′}t≥1 ∈ U ⊂ Rn

is a zero-mean weakly dependent stochastic process fulfilling one of the two conditions described

in Assumption 3.

We believe the DGPs in Assumption 2 cover a wide range of relevant situations for the

empirical researcher to model non-stationary behavior. In particular, the factor model (2.4)

can be recovered as a particular case of DGP (2.7) by setting

fit = µif
F
t and Uit = µiU

F
t + UZ

it − UZ
it−1,

when we have the factor evolving as per (2.5); or DGP (2.8) by setting

fit = ci + µif
F
t and Uit = µiU

F
t + UZ

it ,

where the factor follows (2.6).

Even though the factor model fits perfectly in our framework and, in fact, motivated much

of the idea behind the DGPs in Assumption 2, we have decided not to impose it. In fact, we

have chosen not to impose any structure that we did not judged to be necessary to derive the

results below.

Assumption 3. (Moment and Dependency) {U t}t≥1 is a zero mean strong mixing sequence

of n-dimensional random vectors with mixing coefficient given by α(m) = exp(−2cm) for some

c > 0 fulfilling one of the conditions:

11



(a) There exists a real q > 2 such that sup {E|Uit|q+ε : 1 ≤ i ≤ n, t ∈ N} <∞ for some ε > 0;

(b) There exist reals c1, c2, c3 > 0 such that sup {P(|Uit| > u) : 1 ≤ i ≤ n, t ∈ N} ≤ c1 exp(−c2u
c3)

for all u > 0.

In both cases, the smallest eigenvalue of the matrix E(U tU
′
t) is bounded away from 0 uniformly

in t ∈ N.

Assumption 3 deals with the trade-off between moment conditions and serial dependency. In

particular, it requires exponential decay of the strong mixing coefficient to ensure that the q-th

moment of the sum of the zero-mean strong mixing variables is of order T q/2. More importantly,

the exponential decay allows us to invoke a result from Merlevède, Peligrad, and Rio (2009) and

derive a Bernstein-type inequality that, combined with condition (b), results in an exponential

bound for the sum of innovations.

Clearly, Assumption 3(b) implies (a) for all q > 0. The converse is not true even if (a) holds

for all q > 2. We employ (a) to deal with fat tails, whereas we use (b) to handle sub-exponential

growth of units in case of exponential decay of the tails. This includes sub-Gaussian (c3 ≥ 2),

sub-exponential (c3 ≥ 1) and many other families of distributions of interest. Finally, we bound

from below the smallest eigenvalue to ensure that E(ZtZ
′
t) properly scaled is full rank and,

therefore, avoid multicollinearity among the regressors.

For now, the deterministic sequence {fit}t≥1 appearing in both DGPs described in As-

sumption 2 is considered idiosyncratic, i.e., unit-specific. However, in most applications, we

expect to have a common (up to a constant) trend such that fit = µ′if t where µi and f t are

multidimensional.

The DGP described by (2.7) in Assumption 2 may involve an I(1) (integrated of order 1)

processes depending upon the choice of the sequence fit. If we take fit = µi ∈ R, we have a

unit root process with drift µi. Thus, a constant fit generates a linear (deterministic) trend

plus a pure unit-root process. To better understand the link between the sequence fit and the

trend it generates, it is worth considering the continuous version of fit given by fi(t), such that

ait :=
t∑

s=1

fis = O

[∫
fi(t)dt

]
, for integrable fi(t) : R→ R+. (2.9)

Therefore, if fi(t) = O(tc), with c ∈ R, we have ait = O(tc+1) for c 6= 0. For the special case

where c = −1, we have ait = O(log t). More generally, model (2.7) covers a wide class of trend

patterns depending upon the choice of the sequence {fit}, including (we drop the subscript i

in what follows):

No trend: tft → 0, which implies at → 0 as t→∞.

Sublinear: ft → 0 but tft →∞, which implies at/t→ 0 as t→∞.

Linear: ft → c > 0, which implies at → ct as t→∞.
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Sub-exponential: ft →∞ but ft/ exp ct→ 0 for any c > 0, which implies at/ exp ct→ 0

as t→∞ .

Exponential: ft → c1 exp c2t, which implies at → c1/c2 exp c2t as t → ∞ for some

c1, c2 > 0.

Super-exponential: ft/(c1 exp c2t)→∞, which implies at/c1 exp c2t→∞ as t→∞ for

any c1, c2 > 0.

Clearly, both DGPs defined in Assumption 2 can be casted in the following format:

Z
(0)
it = dit + ηit, 1 ≤ i ≤ n, t ≥ 1, (2.10)

where dit is a deterministic trend (which absorbs any constant), and ηit is the trend-free (not

necessarily stationary) stochastic component. (2.8) becomes (2.10) by setting dit = ci + fit

and ηit = Uit and for (2.7) by backward recursion, we conclude that dit = ait :=
∑t

s=1 fit and

ηit = Z
(0)
i0 +

∑t
s=1 Uis.

It is important to understand under which conditions the stochastic part of (2.10) is asymp-

totically dominated by the deterministic one, in the sense that Z
(0)
it /dit → 1, almost surely or

in probability. For (2.8), this is always the case as long as fit → ∞, which implies |dit| → ∞.

For (2.7), since the variance of ηit increases as t→∞, it is no longer enough to have ait →∞.

In fact, since we have ηit = OP (
√
t), we must have ait of an order higher that

√
t, which

is ensured, for instance, by taking fit = tc with c > −1/2. As an illustration, take a ran-

dom walk with drift as an example, Zit = µit +
∑t

s=1 Uis. Then, dit = µit, and we have

Zit/dit = 1 +
∑t

s=1 Us/µit → 1, almost surely or in probability, depending on the law of large

numbers, which is available for the process {U t}. We formalize those facts in the following

proposition.

Proposition 1. Consider the DGPs in Assumption 2, assuming that {U t} fulfills Assumption

3 for 1 ≤ i ≤ n. Therefore, as t→∞,

(a) (Growth Condition) Z
(0)
it /dit → 1 in probability under DGP (2.7) if

√
t/dit = o(1); or

Z
(0)
it /dit → 1 almost surely under DGP (2.8) if fit →∞

(b) (No-Growth) Z
(0)
it = OP (

√
t) under DGP (2.7) if dit/

√
t = O(1); or Z

(0)
it = OP (1) under

DGP (2.8) if fit = O(1).

Moreover, for (2.8) if dit = o(
√
t), then t−1/2Z

(0)
it converges in distribution to a Gaussian

random variable.

From Proposition 1 above, the DGP will satisfy or not the growth condition depending

on the growth rate of dit. In particular, for (2.7), the growth condition depends on whether
√
t/dit → 0 or not. For (2.8), the growth condition does not happen if fit → c <∞. Therefore,

to estimate (2.11) in the high-dimensional set-up (Section 2.4.2), we need to impose a separation

between those two regimes as the number of units increases with the sample size. To that end,

we consider the following assumption.
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Assumption 4. Let h := #H, where H ⊆ {1, . . . , n} be the index set of units {Z(0)
it , 1 ≤ 1 ≤ n}

that fulfill the growth condition of Proposition 1 and dH(T0) := infi∈H |di,T0|. Then, for (2.7)

in Assumption 2, consider

h1/q
√
T0

dH(T0)
= o(1) under Assumption 3(a), and

√
T0 log h

dH(T0)
= o(1) under Assumption 3(b).

For (2.8) in Assumption 2 consider

h1/q

dH(T0)
= o(1) under Assumption 3(a), and

log h

dH(T0)
= o(1) under Assumption 3(b).

2.4.2 High Dimensionality and Sparsity

To simplify the notation, we rename the variable of interest as Yt := Z
(0)
1t . Moreover, we consider

the situation where the number of regressors Z0t in (2.2) can be much larger than the number

of observations.

Our motivation to move to a high-dimensional setup is to be able to accommodate two

cases of interest: (i) when the setup is intrinsically high-dimensional, i.e, the number of units

is in fact much larger than the number of observations available (n� T ) or (ii) the number of

units is small relative to the number of periods available (n < T ), but the target model is well

approximated by a linear combination using some transformation of the regressions through a

set of basic functions, such that the number of effective regressors becomes much larger than

the number of observations. Regardless of the case, we denote the final regressors including

a constant as X t := (1, X1,t, . . . , Xp−1,t)
′, and throughout, we adopt the possibility of p � n.

Hence, the “pseudo-true” model in the absence of an intervention becomes

Yt = X ′tβ0 + Vt, 1 ≤ t ≤ T, (2.11)

where the p-dimensional vector β0 is defined in (2.15) depending on the DGP of Assumption 2

and the number of independent linear I(0) relations.

When p � T , even if β0 is properly identified, there is no hope to consistently estimate it

without some additional assumptions. Therefore, we consider the linear model to be sparse in

the sense that only a few of parameters are actually different than zero, i.e., s0 := ‖β0‖0 < T ;

see Remark 2. Consequently, we have a linear high-dimensional sparse model (LHDSM), which

will be estimated via a weighted least absolute shrinkage and selection operator (WLASSO),

i.e, β̂ := β̂T0(λ,w) is a minimizer of β 7→ Q(β, λ,w) defined as

Q(β, λ,w) :=
1

T0

T0∑
t=1

(Yt −X ′tβ)2 + λ

p∑
i=1

wi|βi|, (2.12)
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where λ ≥ 0 is the common penalty term and w := (w1, . . . , wp)
′ is a vector of almost surely

non-negative weights specific for each parameter.7

Remark 2. For estimation purposes, it will be critical for the model (2.11) to be sparse. How-

ever, since we are not interested in conducting inference on any element of the parameter vector

β0, what matters to us is a consistent forecast of the counterfactual unit with or without model

selection consistency.

2.4.3 The Target model

In this section, we properly define the target model together with its “true parameters” ap-

pearing in (2.11). First, however, we need to properly define a I(0) process as in Davidson

(2009).

Definition 1. A generic scalar process {Gt} is said to be I(0), denoted Gt ∼ I(0), if

GT := GT (s) :=
1

υT

bTsc∑
t=1

[Gt − E(Gt)]⇒ B,

where υ2
T := E

{∑T
t=1 [Gt − E(Gt)]

}2

and B := {B(s), s ∈ [0, 1]} is a standard Wiener process.

Notice from the definition above that stationarity is not (even weakly) required for a process

to be I(0). However, deterministic trends are not allowed, and summability of the covariance

is necessary. Otherwise, if any of those conditions are violated, we could not have υ2
T ∼ cT for

0 < c <∞, which in turn is necessary to ensure that E[B(s)−B(r)]2 = s−r for 0 ≤ s ≤ r ≤ 1.

Ideally (in the mean squared error sense), we would likeM(x) := E(Yt|X t = x). However in

the presence of trends, we would be most likely to have the modelM =Mt time dependent. In

fact, even a common approximation of the conditional expectation model by a linear projection

of Yt onto the space spanned by the columns of X t would result in time-varying parameters

again due to the non-stationary setup.

Let r ∈ {0, 1, . . . , n − 1} be the number of independent linear relations among the n units

that results in a I(0) process. We suppose that if r > 0, at least one of those relations includes

unit 1 such that its coefficient can be normalize to a unit, otherwise we set r = 0. For the DGP

(2.7), r also represents the number of cointegration relations as per Engle and Granger (1987).

For the DGP (2.8), if fit = µift, we have r = n− 1 because for any vector β ∈ Rn−1 such that

(1,β′)µ = 0, the trend ft is canceled; therefore, (1,β′)Z
(0)
t ∼ I(0).

Assumption 5. There is at least one linear combination among the units, with a non-zero

coefficient for the unit 1, that results in a I(0) process (r > 0) and ‖β0‖1 ≤ c <∞.

Failure to comply with the Assumption above results in what is known in the literature as

a spurious regression. We acknowledge that the name “spurious” might be misleading since,

in some cases, it might be possible to construct a nonlinear function of Z0t that results in

7When p < T we might choose λ = 0.
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an I(0) process. Therefore, the DGP is considered spurious only in the sense that all linear

combinations of Z0t are not an I(0) process.

Under Assumption 5, let Γ̃ be a (n×r) matrix containing the r independent linear relations

resulting in I(0) process as described in the previous paragraph. Without loss of generality

since Γ̃ is rank r by definition, we can normalize it such that

J t
(r×1)

:= Γ̃
′
Z

(0)
t ∼ I(0), Γ̃ := (Ir : −Γ′)′. (2.13)

Furthermore, let J1t be the first component of the vector J t and J0t = 1 if r = 1 and

J0t = (1, J2t, . . . , Jrt)
′ for r > 1. Since J t ∼ I(0) we can then define the limit of the average

linear projection of J1t onto J0t as

π
(r×1)

:= lim
T→∞

1

T

T∑
t=1

[E(J0tJ
′
0t)]
−1[E(J0tJ1t)] (2.14)

We can now define the pseudo-true parameters of model (2.11) depending on the number of

I(0) relations among the units. If r = 0, by definition, there is no value for β0 ∈ Rn such that

Vt in (2.11) is I(0). For the remaining cases,

β0 := β0(r) :=

(π,Γ′)′ r = 1

[π′, (1,−π′0)Γ′]′ 2 ≤ r ≤ n− 1,
(2.15)

where Γ(n− r × r) is defined by (2.13), π is defined by (2.14) and π0 := (π2, . . . , πr)
′.

3 Theoretical Results

3.1 The Oracle Inequalities

Hereafter, we outline the steps towards the proof of Proposition 2 (the details are in the

Appendix A), with the basis for both our main result (Theorems 1 and 2). First, due to

the presence of trends in the regressors, not all the components of X t are of the same order

(in probability). Therefore, it is convenient to consider a reparametrization of the objective

function (2.12) using the following linear transformation to partially cancel those trends:

γ := Lβ, W t := L−1X t L := diag [(`1, . . . , `p)
′], (3.1)

where `1 = 1 and for 2 ≤ i ≤ p we set `i = diT0 if the growth condition (Proposition 1(b)) is sat-

isfied; otherwise `i =
√
T0 if DPG(2.7) or 1 if DGP (2.8) in Assumption 2. The reparametrized

objective function then becomes

H(γ) := H(γ, λ,w) :=
1

T0

T0∑
t=1

(Yt −W ′
tγ)2 + λ

p∑
i=1

νi|γi|, (3.2)
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where ν := (ν1, . . . , νp)
′ and νi := wi/`i for 1 ≤ i ≤ p.

The importance of such a reparametrization is that now the new regressors W t are free of

diverging trends, which makes the problem tractable.8 Moreover, a minimizer γ̂ of γ 7→ H(γ)

is related to a minimizer β̂ of β 7→ Q(β) through γ̂ := Lβ̂, and the reparametrized target

parameters become γ0 := Lβ0. By definition, H(γ̂) ≤ H(γ) for all γ. In particular, for

γ = γ0, using the fact that Yt = γ ′0W t + Vt in the transformed variables and letting Σ :=
1
T0

∑T0
t=1W tW

′
t, we have the following basic inequality:

‖γ̂ − γ0‖2
Σ + λ

p∑
i=1

νi|γ̂i| ≤ 2(γ̂ − γ0)′
1

T

T∑
t=1

W tVt + λ

p∑
i=1

νi|γ0i|. (3.3)

Let S ⊆ {1 . . . , p} denote an index set such that for any p-dimensional vector v, vS is

the vector containing only the elements of the vector v indexed by S; thus, #vS = #S and

Sc := S \ {1, . . . , p} its complement. We can bound from above the first term after the

inequality in (3.3) using Hölder’s inequality by ‖γ̂ − γ0‖1‖ 2
T

∑T
t=1W tVt‖∞, and we use the

triangle inequality to rewrite (3.3) as

‖γ̂ − γ0‖2
Σ + λ

∑
i∈Sc

νi|γ̂i| −

∥∥∥∥∥ 2

T

T∑
t=1

W tVt

∥∥∥∥∥
∞

‖γ̂Sc‖1 ≤∥∥∥∥∥ 2

T

T∑
t=1

W tVt

∥∥∥∥∥
∞

‖γ̂S − γ0,S‖1 + λ
∑
i∈S

νi|γ̂i − γ0i|.

Now consider events defined in (3.7)–(3.10) to conclude that on Ω0 ∩ Ω2:

‖γ̂ − γ0‖2
Σ + [λ(1− λ2)− λ0]‖γ̂Sc‖1 ≤ [λ0 + λ(1 + λ2)]‖γ̂S − γ0,S‖1. (3.4)

Consequently, provided that λ > 0 satisfies condition (3.11) for some ξ > 0, we have that the

estimation error γ̂ − γ0 belongs to the cone C (ξ,S) given by

C (ξ,S) := {x ∈ Rp : ‖xSc‖1 ≤ ξ‖xS‖1}. (3.5)

As is common in the high-dimensional literature, we need a certain compatibility between

the norms ‖ · ‖1 and ‖ · ‖Σ. In particular, we adopt the general invertibility factor introduced

by Huang and Zhang (2012) specialized to the case of a quadratic loss function.

Definition 2. For any norm ‖ · ‖ and (p × p) (possibly stochastic) matrix M , the general

invertibility factor (GIF) over the cone (3.5) is given by

χ(ξ,S, ‖ · ‖,M ) = inf

{
‖x‖2

M

‖xS‖1‖x‖
: x ∈ C (ξ,S)

}
. (3.6)

Moreover, we say that M satisfies the GIF condition if χ(ξ,S, ‖ · ‖,M) > 0.

8In fact, the trend is bounded between zero and one by definition.
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If we specialize to the case when ‖x‖ = ‖xS‖1/#S, the GIF becomes the C (ξ,S)-restricted

infimum of
‖x‖2M#S
‖xS‖21

, which is precisely the square of the compatibility constant defined in van de

Geer and Bühlmann (2009). Moreover, we extend the original definition to accommodate a

possibly non-deterministic Σ. Since, as apposed to the deterministic trend case, the Σ does not

converge to a deterministic matrix in the pure stochastic trend case. In a a low dimensional

set-up Masini and Medeiros (2019), shows that Σ converges in distribution to a almost sure

positive definite random matrix.

For S ⊇ S0 := {i : β0i 6= 0} and scalars λ0, λ1, λ
∗
1 > 0 and λ2 ∈ (0, 1) we define the following

auxiliary events:

Ω0 :=

{∥∥∥∥∥ 2

T0

T0∑
t=1

W tVt

∥∥∥∥∥
∞

≤ λ0

}
, (3.7)

Ω1 := {‖Σ−Σ0‖∞ ≤ λ1} , (3.8)

Ω∗1 := {((#S)cχχ1(ξ,S,Σ)} ≥ λ∗1} , (3.9)

Ω2 :=

{
sup
i∈S

νi ≤ 1 + λ2

}
∩
{
inf
i∈Sc

νi ≥ 1− λ2

}
, (3.10)

where Σ := 1
T0

∑T0
t=1W tW

′
t; Σ0 := E(Σ), χ1(ξ,S,Σ) := χ(ξ,S, ‖ · ‖1/#S,Σ) with χ(·, ·, ·, ·)

defined by (3.6) and cχ a non-negative real constant.

Proposition 2. On the event Ω0 ∩ Ω1 ∩ Ω2, provided that λ > 0 satisfies both

λ0 + λ(1 + λ2)

λ(1− λ2)− λ0

≤ ξ and λ1 ≤
χ1(ξ,S,Σ0)

2(1 + ξ)2#S
(3.11)

for some ξ > 0, the following inequalities hold:

‖γ̂ − γ0‖1 ≤
2(1 + ξ)[(1 + λ2)λ+ λ0]#S

χ1(ξ,S,Σ0)
, and

‖γ̂ − γ0‖2
Σ ≤

2[(1 + λ2)λ+ λ0]2#S
χ1(ξ,S,Σ0)

,

where the right hand is taken to be +∞ if χ1(ξ,S,Σ0) = 0.

Also, on the event Ω0 ∩ Ω∗1 ∩ Ω2, provided that λ > 0 satisfies

λ0 + λ(1 + λ2)

λ(1− λ2)− λ0

≤ ξ (3.12)

for some ξ > 0, the following inequalities hold:

‖γ̂ − γ0‖1 ≤
(1 + ξ)[(1 + λ2)λ+ λ0](#S)1+cχ

λ∗1
, and

‖γ̂ − γ0‖2
Σ ≤

[(1 + λ2)λ+ λ0]2(#S)1+cχ

λ∗1
.

The set of oracle inequalities conditional on the event Ω0 ∩ Ω1 ∩ Ω2 compared to those
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conditional on Ω0 ∩Ω∗1 ∩Ω2 are similar and hold for both DGPs in Assumption 2. However, as

mention before, Ω1 cannot hold with probability approaching one in the pure integrated case

since Σ does not converge in probability to Σ0. The event Ω∗1, however, is expected to hold with

high probability as long as we pick λ∗1 > 0 small enough for a range of empirical applications. In

effect this is equivalent to require the smallest restricted eigenvalue of Σ multiplied by (#S)1+cχ

to be bounded away from a zero with high probability.

3.2 Estimation

Proposition 2 combined with the probabilistic bounds from the events in (3.7)–(3.10) fully

characterize the asymptotic behaviour of γ̂ − γ0 and hence, of β̂ − β0.

Results (a) and (b) of Theorem 1 (below) follow under the condition of what we call Par-

tial Asymptotics, i.e., an asymptotic approach only for the pre-intervention period, where the

number of post intervention periods T2 := T − T0 is kept fixed, while T0 →∞. This approach

is tailored to accommodate situations where the number of pre-intervention periods T0 is much

larger than T2, which justifies the sampling error from the estimation of β0 by β̂ to be of smaller

order than Vt. In contrast, for part (c) of Theorem 1, we used the Full Asymptotics approach

to establish the asymptotic properties by considering that the whole sample is increasing, while

the proportion between the pre-intervention and the post-intervention sample size is constant.

In that case, T →∞.

Theorem 1. Under Assumptions 1-5 and, for any c > 0, set the penalty parameter λ of (2.12)

by either

( i) λ = 4cp2/q/
√
T0 under Assumption 3(a); or

( ii) λ = 4(c+ 2 log p)/
√
T0 under Assumption 3(b).

Suppose that GIF condition in Definition 2 is satisfied with ξ = 4. Namely, either:

( i) χ1(ξ,S0,Σ0) ≥ ε for some positive ε > 0; or

( ii) For every ε > 0 there is a λ∗1 > 0 and cχ ≥ 0 such that P
[
χ1(ξ,S0,Σ) < λ∗1/s

cχ
0

]
< ε.

Then, provided that either s0[ψ(p)]2/
√
T0 = o(1) under (i) or s

1+cχ
0 [ψ(p)]2/

√
T0 = o(1) under

(ii) where s0 := ‖β0‖0 and, under Assumption 3(b), log p = o[(T
1/4
0 / log T0)c3 ], we have on Ω2

as T0 →∞:

( a) ‖γ̂ − γ0‖1 = OP [ψ(p)s0/
√
T0] = oP (1)

( b) δ̂t − δt − Vt = OP [ψ(p)2s0/
√
T0] = oP (1) for all T0 < t ≤ T

If further T2 →∞:

( c) ∆̂T −∆T = OP

(
ψ(p)s0√

T0
∨ 1√

T2

)
= oP (1).

where ψ(x) = x2/q under Assumption 3(a) and ψ(x) = log(x) under Assumption 3(b).
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Result (b) of the theorem above give us conditionally on the event Ω2 an asymptotic (as

T0 → ∞) mean-unbiased estimator for the treatment effect δt for every period in the post-

intervention sample. Part (c) give us a consistent estimator (as both T0 and T2 diverges to

infinity) for the average intervention effect across the post intervention period.

In the traditional setup where all the regressors are stationary the event Ω2 happens with

probability 1 by setting wi = 1 for all 1 ≤ i ≤ p. Also in the case of our factor model example

in 2.3, setting wi = 1 for all units, results in Ω2 occurring surely regardless of the factor DGP

considered and/or the deterministic trend associated to it. Since, in that case we have that

νi ≤ 1 for i ∈ S0 and νi = 1 otherwise. This fortunate result is a consequence of all regressors

that do not load on the factor are I(0) processes. The same would be true whenever the process

of the units in Sc0 are of smaller or equal order in probability of the process of in variables in

S0.

To extend this result to the general setup, let wi = wi,t be a possibly stochastic sequence of

almost surely non-negative weights. Then, the event Ω2 happens with probability approaching

1 as long as the events {lim supt supi∈S0
νi,t ≤ 1} and {lim inft infi∈Sc0 vi,t ≥ 1} where νit := wit/`it

also happen with probability approaching one. In particular, if we choose the vector of weights

w in (2.12) according to the proposition below, the event Ω2 occurs with probability approaching

one since by the definition of `i in (3.1), νi → 1 for all 2 ≤ i ≤ p and we are able to state the

following result.

Proposition 3. Under the same conditions of Theorem 1, if we set w1 = 0, such that the inter-

cept is not penalized and for 2 ≤ i ≤ p, set wi = XiT0 under the growth condition (Proposition

1(b)); otherwise, we set wi = 1 if DGP (2.7) or
√
T0 if DGP (2.8) in Assumption 2, then,

P(Ω2)→ 1 as T0 →∞.

In the case when the growth condition holds for Xit, we would like to penalize it setting

wit = di,T0 . However, since we do not directly observe it we are using Xi,T0 instead. Carefully

analysis of the proof of Proposition 3 shows that its approach combined with Assumption 4

suffices for the result.

At this level of generality, namely DGPs with all sort of deterministic and/or stochastic

idiosyncratic trends combination, it seems difficult to derive a rule to choose weights that would

consistently estimate the parameters in all cases without relying on any previous knowledge of

the DGP. For instance, one could test for the order of integration and/or determinist trend in

the unit of interested using classical time series tests since, as previously mention, if all the units

are at most the order (in probability) of the unit of interest we can always set the weights to

unit. If that is not the case, yet another approach, could be to previously test for cointegration

among the variables. For a high-dimension cointegration test refer to Onatski and Wang (2018)

or Liang and Schienle (2019). We believe that Theorem 1 coupled with Proposition 3 can guide

the practitioner to decide which weight to pick in any particular empirical application.
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3.3 Inference

The inference procedure presented in this section is based on the sequence of estimators {δ̂t}t>T0
obtained Section 3.2. More specifically, we consider any continuous mappings φ : RT2 →
Rb whose argument is the T2-dimensional vector (δ̂T0+1 − δT0+1, . . . , δ̂T − δT )′. Thus, we are

ultimately interested in the distribution of φ̂ := φ(δ̂T0+1 − δT0+1, . . . , δ̂T − δT ) under the null

(2.1) where δt = 0 for all t > T0.

As mentioned previously we would like to consider a situation when the pre-intervention

period to be substantially longer than the post intervention period, T0 � T2. It could be well the

case that T2 = 1. The results are based on part (b) of Theorem 1. As a direct corollary, we have

under the asymptotic on the pre-invention period (T0 →∞) that φ̂
p−→ φ0 := φ(VT0+1, . . . , VT )

by the Continuous Mapping Theorem. Consider the construction of φ̂ using only blocks of size

T2 of consecutive observations from the pre-intervention sample. There are T0 − T2 − 1 such

blocks denoted by

φ̂j := φ(V̂j, . . . , V̂j+T2−1) j = 1, . . . , T0 − T2 + 1,

where V̂t := Yt − β̂
′
T0
X t with the subscript T0 in β̂ indicates that the estimator is calculated

using the entire pre-intervention sample.

For fixed j, we have that φ̂j
p−→ φj := φ(Vj, . . . , Vj+T2−1). Under a strict stationarity

assumption on Vt, we have that φj is equal in distribution to φ0 for all j. Hence, we propose

to estimate the distribution QT (x) := P(φ̂ ≤ x) by

Q̂T (x) :=
1

T0 − T2 + 1

T0−T2+1∑
j=1

1(φ̂j ≤ x),

where, for a pair of vectors a, b ∈ Rd, we say that a ≤ b ⇐⇒ ai ≤ bi,∀i.

Theorem 2. For any continuous φ : RT2 → Rb, let φ̂ := φ(δ̂T0+1 − δT0+1, . . . , δ̂T − δT ) and

φ0 := φ(VT0+1, . . . , VT ). Consider the same conditions of Theorem 1 but with Assumption

3(a) fulfilled with q > 4; assume further that {Vt} is a strictly stationary process and s0 =

o{
√
T0/[ψ(p)ψ(pT0)]}, then we have for fixed T2 as T0 →∞

( a) φ̂
p−→ φ0

( b) Q̂T (x)−QT (x)
p−→ 0 for all x ∈ C0 := {continuity point of Q0(x) := P(φ0 ≤ x)}

( c) If Q0(x) is continuous, the result (b) holds uniformity in x ∈ Rb.

( d) If φ is real-valued, then QT [Q̂−1
T (τ)] → τ for all τ ∈ (0, 1) such that Q−1

0 (τ) ∈ C0, where

Q−1(τ) := {inf x : Q(x) ≥ τ}.

By the appropriate choice of φ(·), Theorem 2 provides a simple way to conduct inference.

We could be interested in testing the intervention effects on all post-intervention periods indi-

vidually by setting

φ(δ̂T0+1, . . . , δ̂T ) = (δ̂T0+1, . . . , δ̂T )′,
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or on the average intervention effect across the post-intervention periods

φ(δ̂T0+1, . . . , δ̂T ) =
1

T2

T∑
t=T0+1

δ̂t.

A reasonable choice for testing the null (2.1) using a univariate statistic would be

φ(δ̂T0+1, . . . , δ̂T ) =
1

T2

T∑
t=T0+1

δ̂2
t ,

or, more generally, to set

φ(δ̂T0+1, . . . , δ̂T ) =
1

T2

T∑
t=T0+1

g(δ̂t),

for some positive function g(·), such as |·|. Regardless of the choice, Theorem 2 ensures a correct

asymptotic test size or a correct asymptotic coverage probability for confidence intervals.

For instance, we might be interested in a joint confidence set for the vector δ := (δT0+1, . . . , δT )′;

then, we might take φ̂ = δ̂ − δ where δ̂ := (δ̂T0+1, . . . , δ̂T )′. Notice that, unless T2 = 1, there

several ways to construct a confidence set for a given significance level. For instance, a (1− τ)

confidence cube that takes into account the potential autocorrelation among the δt’s is given

by

CT :=
T×

t=T0+1

[δ̂t − Q̃−1
T (1− τ/2); δ̂t − Q̃−1

T (τ/2)],

where Q̃−1
T (τ) = inf{x ∈ R : Q̂T (xι) ≥ τ} and ι is a vector of T2 ones. As a direct corollary of

Theorem 2 assuming that Q0 is continuous for any τ ∈ (0, 1)

P (δ ∈ CT )→ 1− τ, as T0 →∞.

Alternatively, any test procedure based on an univariate test statistic φ̂ can have its p-value

evaluated simply by 1−Q̂T (φ̂) for a one-tailed test or 1−Q̂T (−|φ̂|)+Q̂T (|φ̂|) for a double-tailed

test.9

4 Simulations

The goal of this section is to conduct a Monte Carlo simulation to corroborate the asymptotic

results in the paper as well as to evaluate the finite sample performance of the inferential

approach advocated in the previous section.

9Technically, φ̂ is not a statistic since it depends on the value of the unknown {δt}t>T0
. However, under the

null of interest (2.1), we have δt = 0.
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4.1 Inference

We simulate two baseline models. The number of Monte-Carlo replications is 10, 000. The first

simulated model consists of equations (2.4) and (2.6) with independent and identically normally

distributed innovations, n = 200, s0 = 5. The second baseline DGP differs from the first one by

considering equations (2.4) and (2.5). In both cases we simulated T = 100 observations and we

set T2 = 3. The test statistic considered is φ(x) = ‖x‖2. We consider several alternatives to the

baseline DGPs by changing the error distributions, the total number of observations (T ), the

number of post-treatment observations (T2), the number of units (n), the sparsity (s0), the shape

of the deterministic component (fFt ), and the degree of autocorrelation in the errors (ρ). Tables

1 and 2 report size results for model (2.4)–(2.6) and (2.4)–(2.5), respectively. The tables show,

for different settings, rejection rates under the null hypothesis of no intervention effect under

three different nominal size values: 0.01, 0.05 and 0.1. The rejection rates are computed for

three estimation frameworks: LASSO means that the counterfactual is estimated by LASSO

with all the n units included in the model. The penalization parameter λ is chosen via Bayesian

Information Criterion (BIC). We set the maximum penalty level to be ‖ 1
T0

∑T0
t=1 YtX t‖∞ with

an exponential path down to λmin = 0.001 along 100 equally spaced intervals in the glmnet

package. Oracle means that the counterfactual is estimated by OLS using only the s0 relevant

units. Finally, True means no estimation, that is, the counterfactual is estimated with the

true values of the parameters (β0). All distributions are standardized (zero mean and unit

variance). Mixed normal means to two Normal distributions with probability (0.3, 0.7), mean

(−10, 10) and variance (2, 1). The AR(1) structure with coefficient ρ is applied to the common

factor innovation UF
1t and the first unit idiosyncratic innovation UZ

1t.

Several conclusions emerge from the tables. First the size distortions of the LASSO are

comparable to the ones from the Oracle and slightly superior than the ones from the true

model. Note that the size distortions from the true model reflects only the estimation error

of the cumulative distribution of Vt. On the other hand, the other two cases reflect also the

estimation error of the β0 parameter. Second, it seems that different error distributions do

not affect the rejection rates. As expected the total sample size (T ) has a strong influence on

the size distortions, which got close to zero as the sample increases. The number of units (n)

seems to influence more in the case of stochastic trends, where the distortions for the case when

n = 1000 can be non-negligible. In addition, high residual autocorrelation, as expected, can

cause more distortions. Finally, the number of observations after the intervention seems also

to have an effect on the text. However, the distortions are not large. Overall, the proposed

inference procedure works extreme satisfactorily, specially for the 0.1 significance level.

Table 3 presents rejection rates under the alternative for the baseline DGP case. We consider

two types of intervention. The first one has only mean effects while the second causes variance

effects. It is clear from the table that the test has nontrivial power against the alternatives.
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4.2 Parameter Estimation

The table reports several statistics averaged over 10,000 replications for each one of four data

generating processes. More specifically, mean `1-norm is the average ‖β̂ − β‖1, mean bias is

the average bias (β̂ − β) over the simulations, mean MSE is the average mean squared error,

and mean ∆ is the average intervention effect over the 10 out-of-sample periods. Note that the

true value of ∆ is zero. MSE ∆ is the average squared error over the simulation and, finally,

median ∆ is the median of the estimates of ∆ over the simulations. Each column in the table

represents a variation of the baseline scenario, in which we set T = 100,s0 = 5, n = 100 and

ρ = 0. Model (1) is given by equations (2.4) and (2.5) where fFt = 0. Model (2) is given by

equations (2.4) and (2.5) where fFt = 1. Model (3) is given by equations (2.4) and (2.6) where

fFt = t. Model (4) is given by equations (2.4) and (2.6) where fFt = t2.

As expected the `1-norm, the bias, and the MSE of the estimators decrease with the sample

size, but increase as the degree of sparsity decreases (s0 grows), as the number of covariates

grows or as the autocorrelation in the errors increases. Nevertheless, the biases are negligible.

Concerning the estimator of the average intervention effect (∆), the estimators are rather precise

when the trends are deterministic. On the other hand, with stochastic trends, the biases are

small only with no error autocorrelation.

5 Empirical Illustrations

5.1 Heterogeneous Effects and the Price Elasticity of Demand

We illustrate the proposed inferential procedures for counterfactual analysis with an application

to optimal price setting in the retail industry in Brazil. Our dataset consist of the daily prices

and quantities sold of a product A, commercialized by one of the major retail chains in Brazil,

which has approximately 1,000 stores distributed in more than 400 municipalities over the

country.10 On average, the company sells more than 29,000 units of this product per day across

the country, which represents an important share of the company’s total revenue. The quantities

are aggregated at the municipal level. Our sample consists of about 50% of the municipalities

where there are stores. The number and size of stores differ across municipalities.

To determine the optimal price of the product (in terms of profit or revenue maximization),

a randomized experiment has been carried out. More specifically, the price of the product

was changed in 107 municipalities (treatment group), while in the other 126 municipalities, the

prices were kept fixed at the original level (control group).11 The selection of the treatment and

control groups was carried out according to the socioeconomic and demographic characteristics

of each municipality as well as to the distribution of stores in each city. Nevertheless, it

is important to emphasize three facts. First, we used no information about the quantities

10Due to a confidentiality agreement, we are not allowed to disclosure either the name of the product or the
name of the retail chain.

11A different experiment was running during the same period in the other half of the municipalities. Therefore,
we decided to exclude these cities in order to avoid potential sources of biases.
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sold of the product in each municipality, which is our output variable, in the randomization

process. This way, we avoid any selection bias and can maintain valid Assumption 1. Second,

although according to municipality characteristics, we keep a homogenous balance between

groups, the parallel trend hypothesis is violated, and there is strong heterogeneity with respect

to the quantities sold and consumer behavior in each city, even after controlling for observables.

Finally, the time-series of sold quantities displays a clear trend. Therefore, due to the facts

described before, we advocate the use of the methodology proposed in this paper and not

alternatives, such as the difference-in-differences estimator.

For each day t, qit represents the total quantities sold of product A in all stores of munici-

pality i, where i = 1, . . . , n and t = 1, . . . , T . Our sample runs from June 20, 2016, to October

31, 2016, representing a total of 134 daily observations. The experiment was conducted during

the period October 18-31, 14 days. During these days, the practiced prices in the munici-

palities belonging to the treatment group were increased in ∆p Brazilian Reais, while for the

other municipalities, they were kept fixed. The first 126 municipalities are in the control group

(i = 1, . . . , 126), whereas the remaining 107 are in the treatment group (i = 127, . . . , 233).

The number of pre-treatment observations is T0 = 120. Panel (a) in Figure 1 presents the

time-series dynamics of the total quantity sold over all municipalities as well as in the control

and treatment groups. Some facts emerge from the visual inspection of the figure. First, there

is a clear trend in the data that seems to be linear and deterministic. Second, there is also a

strong weekly pattern. Panel (b) in Figure 1 displays the histograms of the estimated slope

parameter of a pure linear trend model for the municipalities in the control and treatment

groups during the pre-treatment sample.12 There is a clear heterogeneity in the trend pattern

that precludes the use of the traditional differences-in-differences estimator. These facts are

corroborated with the results presented in Table 5. The table reports the estimated coefficients

of a linear trend model for the total sold quantities in each group as well as the coefficients of

the linear trend, when dummies to control for the days-of-the-week effect are included in the

model. The numbers between parentheses are heteroskedastic-autocorrelation robust (HAC)

standard errors. The table also presents the results of the augmented Dickey-Fuller (ADF)

test for the null of unit roots against the alternative of a trend-stationary model. The null

of unit-roots are strongly rejected for the control group. For the treatment group the null is

rejected at a 7% level. When both groups are merged together, the rejection is at a 6% level.

As it is well known that ADF tests have low power in small samples, the results provide strong

evidence in favor of a trend-stationary model.

To determine the optimal price of the product, it is necessary to obtain the effects of the

price change on the quantities sold. We consider two cases. In the first case, we assume that

the effects are homogeneous across municipalities, and our output variable of interest is the

12For each municipality, we estimate by ordinary least squares the following linear trend model: qit = αi +
βit+ ut. Panel (b) in Figure 1 displays the empirical distribution of β̂ across municipalities.

25



total quantity of the product sold in the treatment group:

qt =
1

107

233∑
i=126

qit.

We estimate the effect according to the following steps:

1. Estimate the parameters of the regression

qt = β0 +
126∑
i=1

βiqit + π1Mont + π2Tuet + π3Wedt + π4Thut + π5Frit + π6Satt + Vt,

= X ′tβ + Vt

(5.1)

by the WLASSO procedure described in the paper using the 120 observations from June

20, 2016, to October 18, 2016 (pre-treatment sample). Mont, . . . , Satt are six dummies

for the days of the week. As we include a constant in the model, we omit the dummy for

Sundays. The penalty parameter of the WLASSO procedure is selected by the BIC.

2. Project the counterfactual for the treatment period as

q̂t = X ′tβ̂

and compute

δt = qt − q̂t.

We evaluate the effects on sales during each one of the 14 days following the initial price

increase. The results are reported in Figure 2 and Table 6. The figure shows the actual sales,

the estimated counterfactual, as well as a 95% confidence interval using the partial resampling

method described in Section 3.3, where φ(x) = x. As expected, the effects are negative and

statistically significant for most of the days. We also run the resampling test for φ(x) =
1
T2

∑T2
j=1 x

2
j and φ(x) = 1

T2

∑T2
j=1 |xj|. Table 6, Panel (a), reports the average effect for all

municipalities in the treatment group as well as the effect per store. Extrapolating the result

for the entire company, the average daily effect yields a reduction in sales of more than 4,000

units, potentially causing a great impact in terms of revenue and profit. The table also reports

the R-squared and the number of selected regressors with the WLASSO method. It is clear

that the model has a good in-sample fit (R-squared=0.96).

To measure the degree of heterogeneity of price elasticities across different municipalities,

we estimate the counterfactuals for each one of the municipalities in the treatment group. We

26



replace (5.1) by the following model:

qjt = βk0 +
126∑
i=1

βkiqit + πk1Mont + πk2Tuet + πk3Wedt + πk4Thut + πk5Frit + πk6Satt + Vjt,

= X ′jtβk + Vjt, j = 126, . . . , 233; k = j − 126.

(5.2)

The results are displayed in Panel (b) of Table 6. The table reports the mean, standard

deviation, maximum and minimum of the average daily effects for each municipality as well

as the effects normalized by the number of stores in each city in the treatment group. The

table also reports the mean, standard deviation, maximum and minimum of the p-value of the

resampling test conducted with φ(x) = 1
T2

∑T2
j=1 x

2
j and φ(x) = 1

T2

∑T2
j=1 |xj| and the proportion

of municipalities where the null of no effect has been rejected. For the squared test, in 19% of the

cities, the increase in prices negatively affected the demand for the product, whereas according

to the absolute test, the effects are negative and significant in 30% of the municipalities.

6 Conclusions

We discussed a flexible method to conduct counterfactual analysis with aggregate data, which

is particularly relevant in situations where there is a single treated unit and “controls” are

not available, such as in regional policy evaluation. The setup considered in the paper al-

lows for potentially high-dimensional and non-stationary data displaying deterministic and/or

stochastic trends. We proposed a weighted version of the LASSO for parameter estimation

in a high-dimensional linear regression framework, which is consistent under very general as-

sumptions. Furthermore, we showed the consistency of the average intervention effect (over

post-intervention observations), and we also developed an inferential procedure based on par-

tial re-sampling to test the general hypothesis on the intervention effects. Our testing procedure

does not rely on post-intervention asymptotics.
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A Proof of the Main Results

A.1 Proof of Proposition 1

In light of representation (2.10), it is enough for the result (a) to show that ηit/dit vanishes in

the appropriate sense as t→∞. Under DGP (2.7), we have

ηit
dit

=
Z

(0)
i0

dit
+

∑t
s=1 Uis√
t

√
t

dit
= oP (1) +OP (1)o(1) = oP (1),

where OP (1) term is a consequence of Assumption 3. Under DGP (2.8), we have simply

ηit/dit = Uit/(ci + fit)→ 0, almost surely as fit →∞.

As for result (b), we have for DGP (2.7), Z
(0)
it = dit + Z

(0)
it +

∑t
s=1 Uit = O(

√
t) + OP (1) +

OP (
√
t) = OP (

√
t) and for DGP (2.8), Z

(0)
it = ci + fit + Uit = O(1) +O(1) +OP (1) = OP (1).

Finally, under DGP (2.7), if dit = o(
√
t), we have the result by the central limit theorem (en-

sured by Assumption 3) combined with Slutsky theorem, since t−1/2Z
(0)
it = o(1)+t−1/2

∑t
s=1 Uit.

A.2 Proof of Proposition 2

On the events defined by (3.7)–(3.10), we conclude from (3.4) combined with the first condition

of (3.11) that the following inequalities hold:

‖γ̂ − γ0‖2
Σ ≤ [λ0 + λ(1 + λ2)]‖γ̂S − γ0,S‖1, and (A.1)

‖γ̂Sc‖1 ≤ ξ‖γ̂S − γ0,S‖1 (A.2)

Trivially, using (A.2), we can write:

‖γ̂ − γ0‖1 = ‖γ̂S − γ0,S‖1 + ‖γ̂Sc − γ0,Sc‖1 ≤ (1 + ξ)‖γ̂S − γ0,S‖1. (A.3)

Now from the definition of λ1 in the event Ω1, we have

|‖γ̂ − γ0‖2
Σ − ‖γ̂ − γ0‖2

Σ0
| = |(γ̂ − γ0)′(Σ−Σ0)(γ̂ − γ0)| ≤ λ1‖γ̂ − γ0‖2

1.

In addition, from the definition of the GIF condition applied to the matrix Σ0, we have on the

cone (3.5)

‖γ̂S − γ0,S‖2
1 ≤
‖γ̂ − γ0‖2

Σ0
#S

χ1(ξ,S,Σ0)
.

Combine the last three displays to conclude that

|‖γ̂ − γ0‖2
Σ − ‖γ̂ − γ0‖2

Σ0
| ≤ λ1(1 + ξ)2‖γ̂ − γ0‖2

Σ0
#S

χ1(ξ,S,Σ0)
.
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Notice that the second condition on (3.11) implies that 2(1 + ξ)2λ1#S/χ1(ξ,S,Σ0) ≤ 1. Then,

we can re-write the previous expression as∣∣∣∣ ‖γ̂ − γ0‖2
Σ

‖γ̂ − γ0‖2
Σ0

− 1

∣∣∣∣ ≤ 2λ1(1 + ξ)2#S
2χ1(ξ,S,Σ0)

≤ 1

2
.

Once again, using the GIF condition on Σ0, the previous result and the inequality (A.1)

yield

‖γ̂S − γ0,S‖1 ≤
‖γ̂ − γ0‖2

Σ#S
‖γ̂S − γ0,S‖1χ1(ξ,S,Σ0)

‖γ̂ − γ0‖2
Σ0

‖γ̂ − γ0‖2
Σ

≤ 2[λ0 + λ(1 + λ2)]#S
χ1(ξ,S,Σ0)

.

Finally, the last inequality combined with (A.3) yields the first result of the Proposition, and

combined with (A.1), it yields the second result.

A.3 Proof of Theorem 1

We divide the proof into three steps. First, we show that under the hypotheses of the Theorem

that the process {W tVt}t≥1 can be properly bounded. Then, we show that the event Ω0 ∩ Ω1

occurs with high probability. Finally, we derive the results of the Theorem.

A.3.1 Bound Control

We have W t = L−1X t = L−1(dt + ηt) where dt := (d1t, . . . , dpt)
′ and ηt := (η1t, . . . , ηpt)

′ for

t ≥ 1. Then, for the DGP (2.8) in Assumption 2, recall that ηt = U t, dt = c + µft and L is

just a deterministic diagonal matrix. Hence, the process {W t} is strong mixing with the same

coefficient as the process {U t}. Moreover the process {Vt}, as a linear combination of U t, is also

strong mixing with the same mixing coefficient as the process {U t}. Therefore, the process

{W tVt} is also strong mixing with the same mixing coefficient as the process {U t} under

Assumption 3. Also, by definition of the scaling matrix L, all the components of the vector

L−1dt are bounded between 0 and 1. If the process {U t} fulfills condition (a) of Assumption

3 so does {Vt} because Vt = U1t −
∑n

i=2 β0,iUit and

‖Vt‖Lq ≤ |‖U1t‖Lq +
n∑
i=2

|β0,i|‖Uit‖Lq = O(‖β0‖1) = O(1).

Then, by Cauchy-Schwartz inequality, we have that {W tVt} fulfills the same condition with

constant q/2 since for some ε > 0 we have

sup
t∈N

sup
i≤p

E|UitVt|q/2+ε/2 ≤
(
sup
t∈N

sup
i≤p

E|Uit|q+ε sup
t∈N

sup
i≤p

E|Vt|q+ε
)1/2

<∞.

Furthermore, if {(Vt,U ′t)′} also fulfills condition (b) of Assumption 3 with the triple (a1, a2, a3)

in the exponential bound, then the process {W tVt} complies with Assumption 3(b) with the
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triple (2a1, a2, a3/2) since for each component of the vector U tVt is bounded by

P(|UitVt| > u) ≤ P(|Uit| >
√
u) + P(|Vt| >

√
u) ≤ 2a1 exp(−a2u

a3/2).

Now consider DGP (2.7). We find bounds for ‖
∑T0

t=1 WitVt‖Lq and ‖
∑T0

t=1 WitWjt‖Lq uni-

formly in t ≤ T0 and 1 ≤ i, j ≤ p. For the latter we have∥∥∥∥∥
T0∑
t=1

WitWjt

∥∥∥∥∥
Lq
≤

T0∑
t=1

ditdjt
`i`j

+
1

`j

∥∥∥∥∥
T0∑
t=1

dit
`i
ηjt

∥∥∥∥∥
Lq

+
1

`i

∥∥∥∥∥
T0∑
t=1

djt
`j
ηit

∥∥∥∥∥
Lq

+
1

`i`j

∥∥∥∥∥
T0∑
t=1

ηitηjt

∥∥∥∥∥
Lq
.

Since dit/`i ∈ [0, 1] for all i by definition, the first term is O(T0) . The second and third

terms are O(T
3/2
0 /lj) and O(T

3/2
0 /li) respectively by result (b) of Lemma 1 and the last one if

O(T 2
0 /(`i`j)) from result (c) of Lemma 1. From which we conclude that∥∥∥∥∥

T0∑
t=1

WitWjt

∥∥∥∥∥
Lq

= O

(
T0 ∨

T
3/2
0

`i ∧ `j
∨ T 2

0

`i`j

)
= O(T0).

For the former, we start by the triangle inequality∥∥∥∥∥
T0∑
t=1

WitVt

∥∥∥∥∥
Lq
≤

∥∥∥∥∥
T0∑
t=1

dit
`i
Vt

∥∥∥∥∥
Lq

+
1

`i

∥∥∥∥∥
T0∑
t=1

ηitVt

∥∥∥∥∥
Lq
.

The first term is O(
√
T0) by result (a) of Lemma 1. For the second term we may use result (c)

and Hölder’s inequality to obtain∥∥∥∥∥
T0∑
t=1

ηitVt

∥∥∥∥∥
Lq
≤

∥∥∥∥∥
T0∑
t=1

ηitU1t

∥∥∥∥∥
Lq

+
n∑
j=2

|β0,j|

∥∥∥∥∥
T0∑
t=1

ηitUjt

∥∥∥∥∥
Lq

= O(T0 ∨ T0‖β0‖1) = O(T0).

Hence, second term is O(T0/`i) by result (a) and therefore∥∥∥∥∥
T0∑
t=1

WitVt

∥∥∥∥∥
Lq

= O(
√
T0 ∨ T0/`i) = O(

√
T0).

A.3.2 Probability Bounds on Ω0 and Ω1

In light of the results in the previous subsection we can set λ0 = λ/2 with λ as stated in the

theorem. For DGP (2.8), results (b) and (c) of Lemma 2 allow us to conclude that for all c > 0:

P(Ωc
0) = P

(∥∥∥∥∥ 1

T0

T0∑
t=1

W tVt

∥∥∥∥∥
∞

>
λ0

2

)
=

O(c−q/2) under Assumption 3(a)

O[exp(−c/2)] under Assumption 3(b).

We start by showing that P(Ω1) → 1. Recall that P(Ωc
1) = P (‖Σ−Σ0‖∞ > λ1). Set

λ1 = χ1(ξ,S,Σ0)/[2(1 + ξ)2s] and x = λ1

√
T0 in Lemma 2. Results (d) and (e) in Lemma 2
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imply that

P(Ωc
1) =

O
[(

p2/qs√
T0

)q]
= o(1) under Assumption 3(a),

O
{
exp
[
2 log p− χ1

√
T0

4(1+ξ)2s

]}
= o(1) under Assumption 3(b),

where the o(1) terms follow by assumption of the theorem since p4/qs/
√
T0 = o(1) and s log p/

√
T0 =

o(1).

Also, from the relation λ = 2λ0, we may choose λ2 > 0 arbitrarily close to 0 such that the

condition (3.11) in Proposition 2 is fulfilled with ξ arbitrarily close to 3. For instance, setting

λ2 = 1/10 yields
λ0 + λ(1 + λ2)

λ(1− λ2)− λ0

=
1 + 2(1 + λ2)

2(1− λ2)− 1
=

3 + 2λ2

1− 2λ2

= 4 =: ξ.

Provided that the GIF condition holds, i.e., χ1(4,S,Σ0) > 0, we have for λ as stated in the

theorem and for all c > 0:

P(Ω0 ∩ Ω1) ≥ 1−

O(c−q/2) under Assumption 3(a),

O[exp(−c/2)] under Assumption 3(b).

Similarly for the DGP (2.7) under Assumption 3(a) by setting λ as stated in the theorem

yields

P(Ωc
0) = P

(∥∥∥∥∥ 1

T

T∑
t=1

W tVt

∥∥∥∥∥
∞

>
λ0

2

)
= O(c−q/2) and

P(Ω∗1
c) ≤ ε.

A.3.3 Final Results

Combining the previous display with the results of Proposition 2, we conclude for λ as stated

in the theorem that on Ω2 we have

‖γ̂ − γ0‖1 = OP (λs0) and ‖γ̂ − γ0‖2
Σ = OP (λ2s0).

Notice that λ = O[ψ(p)/
√
T0] with ψ(x) = x2/q under Assumption 3(a) and ψ(x) = log x under

Assumption 3(b). Then, result (a) of the theorem follows since s0 = o(λ−1) by assumption. For

the remaining results, we use the fact that

δ̂t − δt = Vt + (γ̂T0 − γ0)′W t, T0 < t ≤ T.

For (b), we have, according to Hölder’s inequality, that |δ̂t − δt − Vt| = |(γ̂ − γ0)′W t| ≤
‖γ̂ − γ0‖1‖W t‖∞. The first term is OP (λs0) from (a), and the second term is OP [ψ(p)] from

Lemma 2(a). Hence, δ̂t − δt − Vt = OP [ψ(p)2s0/
√
T0] = oP (1) also by Assumption. For (c), we
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have

∆̂T −∆T :=
1

T2

∑
t>T0

δ̂t − δt =
1

T2

∑
t>T0

Vt − (γ̂ − γ0)′
1

T2

∑
t>T0

W t.

The first term is OP (1/
√
T2) under Assumption 3, and the absolute value of the second term

is upper bounded by Hölder’s inequality, since

‖γ̂ − γ0‖1

∥∥∥∥∥ 1

T2

∑
t>T0

W t

∥∥∥∥∥
∞

≤ ‖γ̂ − γ0‖1

(∥∥∥∥∥ 1

T2

∑
t>T0

W t − E(W t)

∥∥∥∥∥
∞

+

∥∥∥∥∥ 1

T2

∑
t>T0

E(W t)

∥∥∥∥∥
∞

)
.

The first term in parentheses is OP [ψ(p)/
√
T2] by Lemma 2(b), whereas the second is O(1).

Therefore, under the assumptions of the theorem, the term in parentheses is OP (1). The term

outside the parentheses is OP [ψ(p)s0/
√
T0] by result (a). Hence, (γ̂ − γ0)′ 1

T2

∑
t>T0

W t =

OP [ψ(p)s0/
√
T0] and, therefore

∆̂T −∆T = OP

[
ψ(p)s0√

T0

∨ 1√
T2

]
.

A.4 Proof of Proposition 3

According to the Proposition, let R is the index set of the stochastic (non-deterministic) wi.

From the definition of Ω2 we conclude that

Ω2 =

{
sup
i∈S

νS ≤ 1 + λ2

}
∩
{
inf
i∈Sc

νSc ≥ 1− λ2

}
⊇
{
sup
i∈H
|νi − 1| ≤ λ2

}
.

To see that it is indeed the case, recall that the intercept is always included in the model

(belongs to S). Hence, ν1 = 0 ≤ 1 + λ2 for any λ2 ∈ (0, 1). For i > 1, νi is either 1, in that

case trivially 1− λ2 ≤ νi ≤ 1 + λ2, or νi = 1 + ηiT0/diT0 .

We now show that supi∈R |ηit/dit| = oP (1) as t → ∞. For DGP (2.7), we have ηiT0/diT0 =(
1√
T0

∑T0
t=1 Uit

) √
T0

diT0
for i ∈ H in Assumption 2. Thus,

sup
i∈H
|ηiT0/diT0 | ≤ sup

i∈H

∣∣∣∣∣ 1√
T0

T0∑
t=1

Uit

∣∣∣∣∣
√
T0

infi∈H |diT0|
.

Let dR(T0) := infi∈R |diT0 |. Since {Ut} is a zero mean strong-mixing process by assumption,

we can apply Lemma 2(b) to conclude that

sup
i∈R
|νi − 1| =

OP

[
(#R)1/q

√
T0

dR(T0)

]
= oP (1) under Assumption 3(a),

OP

[√
T0 log(#R)
dR(T0)

]
= oP (1) under Assumption 3(b).

For DGP (2.8) in Assumption 2 we have that ηiT0/diT0 = UiT0/diT0 . Then, supi∈H |UiT0/diT0| ≤
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supi∈H |UiT0|/ infi∈H |diT0 |. Applying Lemma 2(a), we have that

sup
i∈H
|νi − 1| =

OP

[
(#R)1/q

dR(T0)

]
= oP (1) under Assumption 3(a),

OP

[
log(#R)
dR(T0)

]
= oP (1) under Assumption 3(b),

where all the oP (1) terms follow from Assumption 4.

A.5 Proof of Theorem 2

Part (a) follows directly from Theorem 1 (b), combined with the continuous mapping theorem.

We prove (b) by showing that both Q̂T (x) − Q0(x) = oP (1) and QT (x) − Q0(x) = o(1), as

T0 → ∞ for all x ∈ C0, the continuity points of Q0(x) := P(φ0 ≤ x). The result then follows

by the triangle inequality. For the latter, as a consequence of result (a), we have φ̂ ⇒ φ0.

For the former, let Q̃T (x) := 1
τ

∑τ
j=1 1(φj ≤ x} be the unfeasible counterpart of Q̂(x), where

τ := T0 − T2 + 1. We first show that Q̃T (x) −Q0(x) vanishes in probability as T0 → ∞. Due

to the strict stationarity assumption, E[Q̃T (x)] = 1
τ

∑τ
j=1 P(ψj ≤ x) = P(ψ0 ≤ x) =: Q0(x).

Hence, Q̃T (x) is unbiased for Q0(x). So, it is enough to show that E
[
Q̃2
T (x)

]
converges to zero.

Notice that the sequence {Aj := 1(φj ≤ x)}j is stationary. For this reason,

E
[
Q̃2
T (x)

]
=

1

τ

∑
|k|<τ

(
1− |k|

τ

)
γk, γk := E(A1A1+k).

In addition, 0 ≤ Aj ≤ 1, so we can bound the first T2 − 1 covariances by 1 and the remaining

covariances using a mixing inequality due to Ibragimov (1962), as for |k| ≥ T2, we have γk ≤
4α(k− T2 + 1), where α(m) is the mixing coefficient of the process {Vt}t. In fact, the sequence

{Aj(νj, . . . , νj+T2−1}j is also strong mixing. Then,

E
[
Q̃2
T (x)

]
≤ 2T2 + 1

τ
+

8

τ

τ∑
k=T2

α(k − T2 + 1).

Finally, since T0 →∞ implies τ →∞, we have that the first term converging to zero, and the

second term converges to zero due to Assumption 3, which establishes that Q̃T (x) −Q0(x) =

oP (1) for all x.

Now we write Q̂(x) = 1
τ

∑τ
j=1 I[φj + (φ̂j − φj) ≤ x] and, for any ε > 0, we define the event

AT (ε) := {supj ‖φ̂j − φj‖∞ ≤ ε} . On AT , we have that

Q̃(x− ει) ≤ Q̂(x) ≤ Q̃(x+ ει),

where ι ∈ Rb is a vector of 1s. If we add a further condition that BT (ε, x) := {|Q̃(x − ει) −
Q0(x− ει)| ∨ |Q̃(x+ ει)−Q0(x+ ει)| ≤ ε}, we have

Q0(x− ει)− ε ≤ Q̂(x) ≤ Q0(x+ ει) + ε.
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Now take ε→ 0 to conclude that, conditional on AT ∩BT , we have |Q̂(x)−Q0(x)| ≤ ε for all

x ∈ C0.

Therefore, it is enough to show that P(AT ∩BT ) = 1 establishes the result (b). BT is a

sure event as Q̃(x) → Q0(x) for all x ∈ C0. As for AT , notice that for 1 ≤ t ≤ T0, we have

V̂t − Vt = (γ̂T0 − γ0)′W t. As a consequence, by Hölder’s inequality,

sup
t≤T0
|V̂t − Vt| ≤ ‖γ̂T0 − γ0‖1 sup

t≤T0
‖W t‖∞ = ‖γ̂T0 − γ0‖1 sup

t,i
|Wit|.

The first term is OP [s0ψ(p)/
√
T0] by Theorem 1(a), and the second term is OP [ψ(pT0)] by

Lemma 2(a). Then, under the assumptions of the theorem, we conclude that supt≤T0 |V̂t−Vt| =
OP [s0ψ(p)ψ(pT0)/

√
T0] = oP (1). Since φ(·) is continuous, the last result implies supj ‖φ̂j −

φj‖∞ = oP (1).

For (c) and (d), we use the fact that (b) is equivalent (refer to Theorem 6.3.1 of Resnick

(1999)) to say that for any subsequence {Tj}, we can extract a further subsequence {Tjk} such

that Q̂Tjk (ω, x) → Q0(x) for all ω ∈ Ω3 and x ∈ C0 with P(Ω3) = 1. For (c), since Q0(x)

is assumed continuous and for each fixed ω, Q̂Tjk (ω, x) is a cdf, the last convergence can be

made uniform by Polya’s theorem, i.e., supx∈Rb |Q̂Tjk (ω, x)−Q0(x)| → 0 for all ω ∈ Ω3, where

P(Ω3) = 1. The result then follows by using the equivalence (in the other direction) of Theorem

6.3.1 of Resnick (1999).

For (d), we know that, for each ω ∈ Ω3 and x ∈ C0, Q̂Tjk (ω, x) → Q0(x) is equivalent to

Q̂−1
Tjk

(ω, x) → Q−1
0 (x). We refer to Lemma 21.2 of van der Vaart (2000), which implies once

again by Theorem 6.3.1 of Resnick (1999) that Q̂−1
T (x)

p−→ Q−1
0 (x). For the same reasoning

Q−1
T (x) → Q−1

0 (x) is equivalent to QT (x) → Q0(x) for all x ∈ C0. By the triangle inequality,

we have Q̂−1
T (x)−Q−1

T (x) = oP (1) for x ∈ C0, then we write

QT
[
Q̂−1
T (τ)

]
= QT

[
Q−1

0 (τ) + Q̂−1
T (τ)−Q−1

0 (τ)
]
.

Then, conditional on the event D(ε) :=
{∣∣∣Q̂−1

T (x)−Q−1
0 (x)

∣∣∣ ≤ ε
}

, defined for an arbitrary

ε > 0, and by the monotonicity of QT (·), we have

QT
[
Q−1

0 (τ)− ε
]
≤ QT

[
Q̂T (τ)

]
≤ QT

[
Q−1

0 (τ) + ε
]
.

Additionally, consider the event

E (ε) :=
{∣∣QT [Q−1

0 (τ)− ε]−Q0[Q−1
0 (τ)− ε]

∣∣ ∨ ∣∣QT [Q−1
0 (τ) + ε]−Q0[Q−1

0 (τ) + ε]
∣∣ ≤ ε

}
to write that, conditioned on D(ε) ∩ E (ε), we have

Q0

[
Q−1

0 (τ)− ε
]
− ε ≤ QT

[
Q̂T (τ)

]
≤ QT

[
Q−1

0 (τ) + ε
]

+ ε.

Take the limit as ε→ 0 to conclude that, for fixed τ ∈ (0, 1), if Q−1
0 (τ) ∈ C0 and on D(ε)∩E (ε),
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we have that
∣∣∣QT [Q̂T (τ)

]
− τ
∣∣∣ ≤ ε, as Q0

[
Q−1

0 (τ)
]

= τ for x ∈ C0. Finally, the conditioning

event happens with probability approaching 1.

B Auxiliary Lemmas

Due to the lack of different characters, the variable denominations in this appendix are not

necessarily consistent with the remainder of the article.

Lemma 1. Let {Xt, t ∈ N} be a real-valued zero mean strong mixing process with mix-

ing coefficient given by α(m) = exp(−2cm) for some c > 0, such that for some q > 2,

supt∈N E|Xt|q+ε < Cq < ∞ for some ε > 0. Also define the partial sum St :=
∑t

s=1 Xt,

then

(a) ‖ST‖Lq = O(
√
T )

(b) ‖
∑T

t=1 St‖Lq = O(T 3/2)

(c) ‖
∑T

t=1 StXt‖Lq/2 = O(T ) if q > 4

(d) ‖
∑T

t=1 S
2
t ‖Lq = O(T 2)

Proof. Result (a) can be found in Rio (1994); (b) follows from (a) and the triangle inequality

since ∥∥∥∥∥
T∑
t=1

St

∥∥∥∥∥
Lq
≤

T∑
t=1

‖St‖Lq =
T∑
t=1

(O(
√
t) = O(T 3/2).

For (c), we have that S2
t = (St−1 + Xt)

2 = S2
t−1 + 2St−1Xt + X2

t . After taking summations

across t and rearranging we are left with

T∑
t=1

St−1Xt =
1

2

(
S2
T −

T∑
t=1

X2
t

)
.

Then, by the triangle inequality we have for q > 4:

2

∥∥∥∥∥
T∑
t=1

St−1Xt

∥∥∥∥∥
Lq/2

=

∥∥∥∥∥S2
T −

T∑
t=1

X2
t

∥∥∥∥∥
Lq/2

=

∥∥∥∥∥S2
T −

T∑
t=1

(X2
t − EX2

t )−
T∑
t=1

EX2
t

∥∥∥∥∥
Lq/2

≤
∥∥S2

T

∥∥
Lq/2 +

∥∥∥∥∥
T∑
t=1

(X2
t − EX2

t )

∥∥∥∥∥
Lq/2

+
T∑
t=1

EX2
t .

Since the Lq norm is sub-multiplicative, the first term is upper bounded by ‖ST‖2
Lq/2 , which is

O(T ) by (a). The second term is also O(T ) by (a) since X2
t −EX2

t is a zero mean strong mixing
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process with finite moments of order q/2 + δ/2. Finally the last is O(T ) and we conclude that

‖
∑T

t=1 St−1Xt‖Lq/2 = O(T ). The result (c) then follows from the triangle inequality because∥∥∥∥∥
T∑
t=1

StXt

∥∥∥∥∥
Lq/2
≤

∥∥∥∥∥
T∑
t=1

St−1Xt

∥∥∥∥∥
Lq/2

+

∥∥∥∥∥
T∑
t=1

X2
t

∥∥∥∥∥
Lq/2

= O(T ).

Finally for (d) we have by the triangle inequality followed by (a):∥∥∥∥∥
T∑
t=1

S2
t

∥∥∥∥∥
Lq
≤

T∑
t=1

∥∥S2
t

∥∥
Lq =

T∑
t=1

O (t) = O(T 2).

Lemma 2. Let {X t := (X1t . . . Xpt)
′, t ∈ N} be a Rp-valued zero mean strong mixing random

vector process with mixing coefficient given by α(m) = exp(−2cm) for some c > 0. Also consider

that following class of function

Ψ := {ψ : R→ R : ψ(x) = |x|q, ψ(x) = expxr, q > 2, r > 0}.

Suppose that:

(i) There exists q > 2 such that supt supi≤p E|Xit|r+δ < Cq <∞ for some δ > 0 and

(ii) there exist positive constants a1, a2 and a3, such that supt supi≤p P(|Xit| > u) ≤ a1 exp(−a2x
a3)

for all x > 0.

Then, for every x > 0, we have

(a) P (‖X t‖∞ ≥ x) ≤ C1p/ψ(x).

(b) P
(

1√
T

∥∥∥∑T
t=1X t

∥∥∥
∞
≥ x

)
≤ C2p/x

q

(c) P
(

1√
T

∥∥∥∑T
t=1X t

∥∥∥
∞
≥ x

)
≤ R1,T .

(d) P
[

1√
T

∥∥∥∑T
t=1X tX

′
t − E(X tX

′
t)
∥∥∥
∞
≥ x

]
≤ C3p

2/xq

(e) P
[

1√
T

∥∥∥∑T
t=1X tX

′
t − E(X tX

′
t)
∥∥∥
∞
≥ x

]
≤ R2,T

where Cj, j = 1, 2, 3 are constants depending on q and c. Also,

R1,T = p exp

{
2c2

[
σ +

1

4c2
1(log T )4

]
− x

2

}
+
√
Tp

{
1

[
x

2
≤ µ1

(
M

2

)]
+ 1

[
x

2
> µ1

(
M

2

)]
a1 exp [−a2(M/2)a3 ]

}
R2,T = p2 exp

{
2c2

[
κ+

1

4c2
1(log T )4

]
− x

2

}

+
√
Tp2

1
x

2
≤ ω

√√√√µ2

(√
M

2

)+ 1

x
2
> ω

√√√√µ2

(√
M

2

) 2a1 exp

[
−a2

(
M

2

)a3/2] ,
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where M :=
√
T

2c1(log T )2
and, for k > 0,

µk(x) := |EXk
it1(|Xit| > x)| ≤ 2

a1

a
k/a3
2

γ

(
k

a3

+ 1, a2x
a3

)
, (B.1)

where γ(s, a) :=
∫∞
a
xs−1 exp(−x)dx is the incomplete upper Gamma function. For instance,

when k = a3 = 1, (B.1) turns out to be 2a1
a22

(1 + a2x) exp(−a2x).

If we further impose that log p = o(Ma3/2), then, as T →∞,

R1,T → p exp
(

2c2σ −
x

2

)
R2,T → p2 exp

(
2c2κ−

x

2

)
.

Proof. First, for any (p1 × p2) real-valued random matrix Y and ψ ∈ Ψ, we have by Markov’s

inequality that, for any x > 0,

P(‖Y ‖∞ ≥ x) ≤ E[ψ(‖Y ‖∞)]

ψ(x)
≤
p1p2 supi≤p1;j≤p2 E[ψ(|Yi,j|)]

ψ(x)
. (B.2)

Part (a) then follows by setting Y = X t in (B.2) and apply the definition Cψ. In case ψ(x) =

|x|q, for part (b) set Y = 1√
T

∑T
t=1X t or for the part (d) set Y = 1√

T

∑T
t=1X tX t − E(X tX

′
t)

in (B.2), and we have Lemma 6 of Carvalho, Masini, and Medeiros (2018).

For part (c), if ψ(x) = exp(x), we use a truncation argument. For now, fix M > 0 and

let X≤it := Xit1(|Xit| ≤ M/2) − E[Xit1(|Xit| ≤ M/2)] and X>
it := Xit1(|Xit| > M/2) −

E[Xit1(|Xit| > M/2)] for 1 ≤ i ≤ p and t ≥ 1. Since X t is zero mean by assumption, we

have that Xit = X≤it + X>
it . Furthermore, by construction, X≤it is a bounded (by M) zero-

mean random variable. Therefore, from Theorem 2 in Merlevède, Peligrad, and Rio (2009),

there exist positive constants c1 and c2, depending only on c, such that for all T ≥ 2 and

0 < q < 1
c1M(log T )2

, the following inequality holds:

logE

[
exp

(
q

T∑
t=1

X≤i,t

)]
≤ c2q

2(Tσ2
i +M2)

1− c1Mq(log T )2
, i = 1, . . . , p,

where σ2
i := supt

∑
k∈Z |E

(
X≤itX

≤
it+k|

)
< ∞. If we set q = 1√

T
, take M =

√
T

2c1(log T )2
and

σ2 := supi≤p σ
2
i , we have

logE

[
exp

(
1√
T

T∑
t=1

X≤i,t

)]
≤ 2c2

[
σ2 +

1

4c2
1(log T )4

]
.

Let X≤t := (X≤1t, . . . , X
≤
pt)
′. Then, applying (B.2) with Y = 1√

T

∑T
t=1X

≤
t and ψ(x) = exp(x),

we have

P

(∥∥∥∥∥ 1√
T

T∑
t=1

X≤t

∥∥∥∥∥
∞

≥ x

)
≤ p exp

[
2c2

(
σ +

1

4c2
1(log T )4

)
− x
]
.
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We now bound 1√
T

∑T
t=1X

>
t , where X>

t := (X>
1t, . . . , X

>
pt)
′. First, notice that

P [|Xit1(|Xit| > M/2)| ≥ x] ≤ P(|Xit| > M/2) ≤ a1 exp(−a2(M/2)a3).

Also,

|E[Xit1(|Xit| > M/2)]| ≤
∫
Xi
|x|1(|x| > M/2)dFit(x) ≤ 2

∫ ∞
M/2

xf(x)dx,

where Fit(x) := P(Xit ≤ x) and f(x) = a1a2a3x
a3−1 exp(−a2x

a3), i.e., f := dF
dx

with F (x) :=

1 − a1 exp(−a2x
a3). The last integral cannot be solved analytically when a3 is not a positive

integer. Apart from a change in variable, it is related to the incomplete upper gamma function

as defined above.

Then, by the triangle inequality, we have

P(|X>
it | ≥ x) = P {|Xit1(|Xit| > M/2)− E[Xit1(|Xit| > M/2)]| ≥ x}

≤ P
[
|Xit1(|Xit| > M/2)| ≥ x− µ1

(
M

2

)]
≤ 1

[
x ≤ µ1

(
M

2

)]
+ 1

[
x > µ1

(
M

2

)]
P(|Xit| > M/2)

≤ 1

[
x ≤ µ1

(
M

2

)]
+ 1

[
x > µ1(

M

2
)

]
a1 exp [−a2(M/2)a3 ] .

Apply the union bound to conclude that

P

(∥∥∥∥∥ 1√
T

T∑
t=1

X>
t

∥∥∥∥∥
∞

≥ x

)
≤
√
Tp sup

t
sup
i≤p

P(|X>
it | ≥ x)

≤
√
Tp

{
1

[
x ≤ µ1

(
M

2

)]
+ 1

[
x > µ1

(
M

2

)]
a1 exp [−a2(M/2)a3 ]

}
.

Combining both bounds using the fact that {|A + B| ≥ x} ⊆ {|A| ≥ x/2} ∪ {|B| ≥ x/2}, we

have

P

(∥∥∥∥∥ 1√
T

T∑
t=1

X t

∥∥∥∥∥
∞

≥ x

)
≤ p exp

{
2c2

[
σ +

1

4c2
1(log T )4

]
− x

2

}
+
√
Tp

{
1

[
x

2
≤ µ1

(
M

2

)]
+ 1

[
x

2
> µ1

(
M

2

)]
a1 exp(−a2(M/2)a3)

}
.

For (e) set ψ(x) = exp(x) and Y = 1√
T

∑T
t=1W t where W t := X tX

′
t − E(X tX

′
t) in (B.2)

to obtain

P

(∥∥∥∥∥ 1√
T

T∑
t=1

W t

∥∥∥∥∥
∞

≥ x

)
≤
p2 sup1≤i,j≤p E

[
exp
(

1√
T

∑T
t=1 Wi,j,t

)]
exp(x)

.

We can conduct a similar truncation argument to the proof of part (c). Let Wi,j,t = W≤
i,j,t+W

>
i,j,t

whereW≤
i,j,t := XitXjt1

[
(|Xit| ∨ |Xjt|) ≤

√
M/2

]
−E

{
XitXjt1

[
(|Xit| ∨ |Xjt|) ≤

√
M/2

]}
and
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W>
i,j,t = XitXjt1

[
(|Xit| ∨ |Xjt|) >

√
M/2

]
− E

{
XitXjt1

[
(|Xit| ∨ |Xjt|) >

√
M/2

]}
; then by

construction, for each 1 ≤ i, j ≤ p, we have that {W≤
i,j,t}t≥1 is a zero mean, bounded by M , a

strong mixing sequence with the same exponential decay of {X t}t≥1. For that reason,

P

(∥∥∥∥∥ 1√
T

T∑
t=1

W≤
t

∥∥∥∥∥
∞

≥ x

)
≤ p2 exp

{
2c2

[
κ+

1

4c2
1(log T )4

]
− x
}
,

where κ2 := sup1≤i,j≤p supt
∑

k∈Z |E (Wi,j,tWi,j,t+k)| < ∞. For the second term, we have, by

Hölder’s inequality,∣∣∣E (XitXjt)1
(
|Xit| ∨ |Xjt| >

√
M/2

)∣∣∣ ≤ E
[
|XitXjt|1

(
|Xit| ∨ |Xjt| >

√
M/2

)]
≤
{
E
(
X2
it

)
E
[
X2
jt1
(
|Xit| ∨ |Xjt| >

√
M/2

)]}1/2

≤
{
EX2

itE
[
X2
jt1
(
|Xjt| >

√
M/2

)]}1/2

≤ ω
[
µ2

(√
M/2

)]1/2

,

where supt supi E (X2
it) ≤ ω2 <∞ and µ2(·) is defined in (B.1).

Then, by the triangle inequality,

P(|W>
i,j,t| ≥ x) = P

{∣∣∣XitXjt1
(
|Xit| ∨ |Xjt| >

√
M/2

)
− E

[
XitXjt1

(
|Xit| ∨ |Xjt| >

√
M/2

)]∣∣∣ ≥ x
}

≤ P
{∣∣∣XitXjt1

(
|Xit| ∨ |Xjt| >

√
M/2

)∣∣∣ ≥ x− ω
[
µ2

(√
M/2

)]1/2
}

≤ 1

{
x ≤ ω

[
µ2

(√
M/2

)]1/2
}

+ 1

{
x > ω

[
µ2

(√
M/2

)]1/2
}
P
(
|Xit| ∨ |Xjt| >

√
M/2

)
≤ 1{x ≤ ω

[
µ2

(√
M/2

)]1/2

}

+ 1

{
x > ω

[
µ2

(√
M/2

)]1/2
}

2a1 exp
[
−a2(M/2)a3/2

]
.

Once again, apply the union bound to conclude

P

(∥∥∥∥∥ 1√
T

T∑
t=1

W>
t

∥∥∥∥∥
∞

≥ x

)
≤
√
Tp2 sup

t≤T
sup

1≤i,j≤p
P(|W>

i,j,t| ≥ x).

Combining both bounds using the fact that {|A + B| ≥ x} ⊆ {|A| ≥ x/2} ∪ {|B| ≥ x/2}, we
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have

P

(∥∥∥∥∥ 1√
T

T∑
t=1

W t

∥∥∥∥∥
∞

≥ x

)
≤ p2 exp

{
2c2

[
κ+

1

4c2
1(log T )4

]
− x

2

}
+
√
Tp21

{
x

2
≤ ω

[
µ2

(√
M/2

)]1/2
}

+ p21

{
x

2
> ω

[
µ2

(√
M/2

)]1/2
}

2a1 exp
[
−a2(M/2)a3/2

]
.

For the second part of the Lemma, we use the upper bound for the incomplete upper

gamma function given by Natalini and Palumbo (2000), which states that for s > 1, b > 1 and

a > b
b−1

(s− 1), we have γ(s, a) < bas−1 exp(−a). Applying this bound in (B.1) with b = 2, we

have that for all k > 0 and y > 2k/a3:

µk(y) := 2
a1

a
k/a3
2

γ(k/a3 + 1, a2y
a3) < 4a1y

k exp(−a2y
a3),

from which we conclude that µk(y)→ 0 as y →∞.

Since M → ∞ is T → ∞, we have for each x > 0, there is a Tx ∈ N such that x >

2

{
µ1(M/2) ∨ ω

[
µ2

(√
M/2

)]1/2
}

, whenever T > Tx. Thus, for T > Tx, we have

R1,T = p exp

{
2c2

[
σ +

1

4c2
1(log T )4

]
− x

2

}
+
√
Tpa1 exp [−a2(M/2)a3 ]

R2,T = p2 exp

{
2c2

[
κ+

1

4c2
1(log T )4

]
− x

2

}
+
√
Tp22a1 exp

[
−a2

(
M

2

)a3/2]
.

Hence, as long as log p = o(Ma3/2), we have the second result of the Lemma.
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C List of Symbols

C.1 The Romans

c, c1, c2, . . . Generic positive constants

d Generic Deterministic Trend

e Exponential

f Deterministic Trends

g

h Cardinality of set H
i, j, k, t, s Units/regressors, time index

`, L Scaling matrix and its entries

m Lag of alpha mixing

q Number of moments

r Number of I(0) relations

s, s0 Cardinality of index set

n, p Number of units and regressors

w Individual weights of the LASSO

A Random element of proof of Theorem 3

B Standard Brownian motion

F Factor of the common factor model

G Generic random vector of Assumption 3 and Definition 1

H Transformed objective function

M Generic matrix used in GIF

I(·) Integrated process

J Linear combination of I(0) processes

O, o,OP , oP Landou notation

Q LASSO Objective function

R Remainder of Lemma 2

T, T0, T1, T2 Sample size and Treatment, Pre and Post

U , UZ , UF Innovation

V Regression error

X, Y,W,Z(0), Z(1) Units and its transformation
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C.2 The Greeks

α Mixing coefficient

β,β0, β̂ Parameter, True and Estimated

γ,γ0, γ̂ Transformed parameter, True and Estimated

δ, δ̂,∆, ∆̂ Treatment effect, ATE and Estimates

ε Arbitrary small positive constant

ζ Linear Projecion in the Factor Model

η The stochastic component of the DGP

θ,Θ Parameters of the generic model

ι Vector of 1’s

κ Auxiliry Lemma 1 Appendix

λ, λ0 Penalty parameter

µ Constant of the deterministic trend

ν Combined weight trend

ξ Cone constant

π Projection of I(0) process

ρ Simulation autocorrelation coefficient

σ Variance of the innovation

τ Quantiles

υ Variance of the defining I(0) process

φ, φ̂, φj The Inference function

χ GIF Constant

ψ,Ψ Deterministic Trends

Ω,Ω0,Ω1, . . . , ω Sample space, events

γ, γ̃ Cointegration matrix

Σ,Σ0 Covariance matrix of WW ′

C.3 Miscellaneous

N,Z,R Naturals, integers and real

C Cone

H Test hypothesis

F Sigma algebra

P,E Probability and expectation operator

D Intervention indicator

U Innovation

M Generic model

G Process to define I(0)

H Set index of growth condition

S,S0 Set index

R index set in the proof of Proposition 3
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Table 1: Rejection Rates under the Null (empirical size): Deterministic Trends

Baseline DGP: (2.4) and (2.6) with T = 100, independent and identically normally distributed innovations,

n = 200, s0 = 5, T2 = 3 and 10, 000 Monte-Carlo simulations. The test statistic considered is φ(x) = ‖x‖2. All

distributions are standardized (zero mean and unit variance). Mixed normal equal to 2 Normal distributions with

probability (0.3, 0.7), mean (−10, 10) and variance (2, 1). The AR(1) structure with coefficient ρ is applied to

the common factor innovation UF
1t and the first unit idiosyncratic innovation UZ

1t. The penalization parameter λ

is chosen via Bayesian Information Criterion (BIC). We set the maximum penalty level to be ‖ 1
T0

∑T0

t=1 YtXt‖∞
with an exponential path down to λmin = 0.001 along 100 equally spaced intervals in the glmnet package.

Oracle means OLS estimation in the pre-intervention period with known active regressors S0 (perfect model

selection). True means no estimation in the pre-intervention period. True parameter β0 was used.

LASSO Oracle True
0.01 0.5 0.1 0.01 0.05 0.1 0.01 0.05 0.1

Innovation Distribution
Normal 0.0205 0.0637 0.1169 0.0297 0.0755 0.1275 0.0207 0.0583 0.1079
χ2(1) 0.0198 0.0602 0.1078 0.0231 0.0703 0.1277 0.0198 0.0591 0.1076

t-stud(3) 0.0187 0.0632 0.1144 0.0275 0.0781 0.1299 0.0208 0.0602 0.1086
Mixed-Normal 0.0205 0.0603 0.1105 0.0300 0.0775 0.1339 0.0186 0.0572 0.1049

Sample Size
T = 50 0.0270 0.0768 0.1320 0.0494 0.1144 0.1740 0.0262 0.0694 0.1210

100 0.0205 0.0637 0.1169 0.0297 0.0755 0.1275 0.0207 0.0583 0.1079
150 0.0194 0.0632 0.1094 0.0220 0.0644 0.1212 0.0152 0.0536 0.1050
200 0.0182 0.0578 0.1042 0.0202 0.0592 0.1116 0.0164 0.0526 0.1018
500 0.0138 0.0530 0.1016 0.0140 0.0544 0.1004 0.0104 0.0514 0.1006

Number of Total Units
n = 200 0.0205 0.0637 0.1169 0.0297 0.0755 0.1275 0.0207 0.0583 0.1079

300 0.0236 0.0671 0.1175 0.0281 0.0743 0.1281 0.0198 0.0579 0.1053
500 0.0268 0.0748 0.1206 0.0289 0.0780 0.1327 0.0224 0.0626 0.1099
1000 0.0325 0.0778 0.1304 0.0273 0.0755 0.1298 0.0193 0.0554 0.1089

Number of Relevant (non-zero) Covariates
s0 = 2 0.0201 0.0634 0.1152 0.0210 0.0653 0.1195 0.0174 0.0573 0.1036

5 0.0205 0.0637 0.1169 0.0297 0.0755 0.1275 0.0207 0.0583 0.1079
50 0.0223 0.0661 0.1153 0.2480 0.3547 0.4290 0.0196 0.0606 0.1079
97 0.0217 0.0626 0.1088 1.0000 1.0000 1.0000 0.0233 0.0607 0.1091

Determinist Component

fFt =
√
t 0.0280 0.0809 0.1367 0.0255 0.0745 0.1299 0.0195 0.0572 0.1068

t 0.0205 0.0637 0.1169 0.0297 0.0755 0.1275 0.0207 0.0583 0.1079
t3/2 0.0317 0.0823 0.1407 0.0314 0.0855 0.1413 0.0224 0.0630 0.1112
t2 0.0253 0.0685 0.1177 0.0263 0.0742 0.1280 0.0178 0.0508 0.1005

Serial Correlation
ρ = 0 0.0205 0.0637 0.1169 0.0297 0.0755 0.1275 0.0207 0.0583 0.1079
0.5 0.0216 0.0607 0.1134 0.0278 0.0749 0.1281 0.0199 0.0574 0.1037
0.7 0.0246 0.0720 0.1245 0.0308 0.0812 0.1384 0.0191 0.0590 0.1046
0.9 0.0342 0.0889 0.1404 0.0486 0.1111 0.1745 0.0220 0.0635 0.1111

Post Intervention Periods
T2 = 1 0.0166 0.0583 0.1061 0.0151 0.0572 0.1099 0.0121 0.0562 0.1027

2 0.0198 0.0631 0.1109 0.0273 0.0685 0.1185 0.0125 0.0566 0.1033
3 0.0205 0.0637 0.1169 0.0297 0.0755 0.1275 0.0207 0.0583 0.1079
4 0.0301 0.0717 0.1247 0.0370 0.0896 0.1467 0.0256 0.0670 0.1151
5 0.0286 0.0686 0.1184 0.0448 0.0933 0.1537 0.0279 0.0650 0.1127
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Table 2: Rejection Rates under the Null (empirical size): Stochastic Trends

Baseline DGP: (2.4) and (2.5) with T = 100, independent and identically normally distributed innovations,

n = 200, s0 = 5, T2 = 3 and 10, 000 Monte-Carlo simulations. The test statistic considered is φ(x) = ‖x‖2. All

distributions are standardized (zero mean and unit variance). Mixed normal equal to 2 Normal distributions with

probability (0.3, 0.7), mean (−10, 10) and variance (2, 1). The AR(1) structure with coefficient ρ is applied to

the common factor innovation UF
1t and the first unit idiosyncratic innovation UZ

1t. The penalization parameter λ

is chosen via Bayesian Information Criterion (BIC). We set the maximum penalty level to be ‖ 1
T0

∑T0

t=1 YtXt‖∞
with an exponential path down to λmin = 0.001 along 100 equally spaced intervals in the glmnet package.

Oracle means OLS estimation in the pre-intervention period with known active regressors S0 (perfect model

selection). True means no estimation in the pre-intervention period. True parameter β0 was used.

LASSO Oracle True
0.01 0.5 0.1 0.01 0.05 0.1 0.01 0.05 0.1

Innovation Distribution
Normal 0.0324 0.0824 0.1384 0.0319 0.0770 0.1348 0.0220 0.0611 0.1095
χ2(1) 0.0260 0.0765 0.1385 0.0244 0.0727 0.1308 0.0209 0.0598 0.1060

t-stud(3) 0.0282 0.0831 0.1444 0.0261 0.0779 0.1355 0.0194 0.0581 0.1118
Mixed-Normal 0.0357 0.0912 0.1444 0.0330 0.0862 0.1426 0.0208 0.0615 0.1103

Sample Size
T = 50 0.0566 0.1155 0.1791 0.0512 0.1071 0.1663 0.0247 0.0641 0.1086

100 0.0324 0.0824 0.1384 0.0319 0.0770 0.1348 0.0220 0.0611 0.1095
150 0.0226 0.0686 0.1208 0.0216 0.0664 0.1174 0.0156 0.0526 0.0988
200 0.0193 0.0630 0.1145 0.0190 0.0617 0.1143 0.0156 0.0542 0.1022
500 0.0106 0.0546 0.1026 0.0108 0.0544 0.1010 0.0104 0.0520 0.0966

Number of Total Units
n = 200 0.0324 0.0824 0.1384 0.0319 0.0770 0.1348 0.0220 0.0611 0.1095

300 0.0391 0.0875 0.1479 0.0274 0.0748 0.1290 0.0184 0.0581 0.1039
500 0.0471 0.0953 0.1520 0.0281 0.0802 0.1358 0.0198 0.0610 0.1088
1000 0.0583 0.1085 0.1575 0.0293 0.0764 0.1300 0.0224 0.0590 0.1042

Number of Relevant (non-zero) Covariates
s0 = 2 0.0256 0.0698 0.1272 0.0225 0.0667 0.1213 0.0188 0.0558 0.1054

5 0.0324 0.0824 0.1384 0.0319 0.0770 0.1348 0.0220 0.0611 0.1095
50 0.0497 0.1117 0.1797 0.2541 0.3636 0.4441 0.0174 0.0572 0.1058
97 0.0574 0.1251 0.1950 1.0000 1.0000 1.0000 0.0203 0.0579 0.1060

Deterministic Component
fFt = 0 0.0324 0.0824 0.1384 0.0319 0.0770 0.1348 0.0220 0.0611 0.1095

1 0.0314 0.0815 0.1373 0.0316 0.0815 0.1393 0.0205 0.0615 0.1122√
t 0.0264 0.0693 0.1191 0.0294 0.0814 0.1380 0.0215 0.0605 0.1083
t 0.0265 0.0711 0.1225 0.0292 0.0768 0.1334 0.0184 0.0560 0.1050

Serial Correlation
ρ = 0 0.0324 0.0824 0.1384 0.0319 0.0770 0.1348 0.0220 0.0611 0.1095
0.5 0.0297 0.0785 0.1313 0.0280 0.0761 0.1320 0.0178 0.0572 0.1019
0.7 0.0275 0.0773 0.1335 0.0264 0.0781 0.1342 0.0211 0.0575 0.1064
0.9 0.0299 0.0752 0.1278 0.0323 0.0823 0.1359 0.0222 0.0631 0.1107

Post Intervention Periods
T2 = 1 0.0321 0.0753 0.1273 0.0304 0.0714 0.1201 0.0295 0.0690 0.1151

2 0.0289 0.0777 0.1316 0.0271 0.0762 0.1311 0.0219 0.0759 0.1224
3 0.0324 0.0824 0.1384 0.0319 0.0770 0.1348 0.0220 0.0611 0.1095
4 0.0396 0.0930 0.1522 0.0345 0.0879 0.1430 0.0212 0.0608 0.1087
5 0.0516 0.1088 0.1695 0.0464 0.1021 0.1641 0.0293 0.0661 0.1181
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Table 3: Rejection Rates under the alternative (empirical power).

Baseline DGP: (2.8) and (2.7) with T = 100, iid normally distributed innovations, n = 200 units, s0 = 5,

T2 = 3 and 10, 000 Monte-Carlo simulations per case. Empirical rejection rate of the test statistic φ(x) = ‖x‖2.

The penalization parameter λ is chosen via Bayesian Information Criteria (BIC). We set the maximum penalty

level to be ‖ 1
T0

∑T0

t=1 YtXt‖∞ with an expoential path down to λmin = 0.001 along 100 equally spaced intervals

in the glmnet package. σ2 is the variance of unit 1 at t = T0.

Deterministic Trends
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Mean Intervention δt = cσ1{t > T0}
c = 0.2 0.10 0.12 0.14 0.16 0.17 0.19 0.20 0.22 0.23 0.25

0.4 0.23 0.27 0.32 0.35 0.37 0.40 0.43 0.46 0.47 0.48
0.6 0.48 0.51 0.56 0.60 0.63 0.65 0.67 0.69 0.70 0.71
0.8 0.76 0.79 0.82 0.86 0.88 0.89 0.91 0.91 0.92 0.93
1.0 0.94 0.95 0.97 0.97 0.97 0.98 0.98 0.98 0.99 0.99

Variance Intervention δt = cσZ1{t > T0} where Z ∼ N(0, 1)
c = 0.2 0.09 0.12 0.13 0.15 0.17 0.18 0.20 0.22 0.24 0.25

0.4 0.26 0.29 0.32 0.36 0.38 0.39 0.41 0.44 0.46 0.48
0.6 0.50 0.54 0.58 0.63 0.66 0.69 0.70 0.71 0.73 0.74
0.8 0.78 0.81 0.85 0.88 0.89 0.91 0.92 0.92 0.92 0.93
1.0 0.93 0.95 0.96 0.97 0.97 0.97 0.98 0.98 0.99 0.99

Stochastic Trends
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Mean Intervention δt = cσ1{t > T0}
c = 0.1 0.19 0.20 0.24 0.28 0.30 0.32 0.33 0.36 0.38 0.39

0.2 0.63 0.67 0.72 0.73 0.76 0.78 0.80 0.81 0.81 0.83
0.3 0.95 0.96 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98
0.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Variance Intervention δt = cσZ1{t > T0}
c = 0.1 0.17 0.20 0.22 0.25 0.27 0.30 0.32 0.33 0.35 0.37

0.2 0.57 0.60 0.65 0.68 0.70 0.72 0.75 0.76 0.78 0.79
0.3 0.91 0.92 0.94 0.96 0.96 0.97 0.97 0.98 0.98 0.98
0.4 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 4: Monte Carlo Results: Estimation

The table reports several statistics averaged over 10,000 replications for each one of four data generating

processes. More specifically, mean `1-norm is the average ‖β̂ − β‖1, mean bias is the average bias (β̂ − β)

over the simulations, mean MSE is the average mean squared error, and mean ∆ is the average intervention

effect over the 10 out-of-sample periods. Note that the true value of ∆ is zero. MSE ∆ is the average squared

error over the simulation and, finally, median ∆ is the median of the estimates of ∆ over the simulations. Each

column in the table represents a variation of the baseline scenario, in which we set T = 100,s0 = 5, n = 100

and ρ = 0. Model (1) is given by equations (2.4) and (2.5) where fFt = 0. Model (2) is given by equations (2.4)

and (2.5) where fFt = 1. Model (3) is given by equations (2.4) and (2.6) where fFt = t. Model (4) is given by

equations (2.4) and (2.6) where fFt = t2.

Model Statistic Baseline
Sample Size Sparsity Regressors Autocorrelation

T = 500 T = 1000 s0 = 1 s0 = 10 n = 50 n = 200 ρ = 0.2 ρ = 0.5

(1)

mean `1-norm 1.36 0.26 0.13 0.19 3.04 0.99 1.72 1.46 1.87
mean bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mean MSE 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
mean ∆ -0.03 -0.03 0.02 0.01 -0.04 0.01 0.01 0.03 -0.19
MSE ∆ 1.57 0.25 0.17 0.33 3.48 1.00 2.27 2.13 4.99
median ∆ -0.03 -0.03 0.02 0.01 -0.04 0.01 0.01 0.03 -0.19

(2)

mean `1-norm 2.46 0.34 0.15 0.63 4.38 1.52 3.55 2.91 3.83
mean bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mean MSE 0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01
mean ∆ 0.10 -0.02 -0.01 -0.28 -0.08 -0.17 -0.30 0.08 -0.17
MSE ∆ 3.20 0.29 0.15 0.93 6.24 1.56 5.72 4.53 13.21
median ∆ 0.10 -0.02 -0.01 -0.28 -0.08 -0.17 -0.30 0.08 -0.17

(3)

mean `1-norm 3.45 0.66 0.32 1.02 5.82 1.96 4.61 3.68 3.95
mean bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mean MSE 0.01 0.00 0.00 0.00 0.02 0.01 0.01 0.01 0.01
mean ∆ 0.01 -0.02 0.00 -0.08 0.00 0.13 0.00 -0.11 -0.08
MSE ∆ 4.81 0.39 0.23 1.73 7.41 2.25 7.74 5.87 15.51
median ∆ 0.01 -0.02 0.00 -0.08 0.00 0.13 0.00 -0.11 -0.08

(4)

mean `1-norm 1.46 0.64 0.58 0.33 2.93 1.24 1.66 1.52 1.93
mean bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mean MSE 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00
mean ∆ -0.06 0.01 -0.01 -0.29 -0.03 -0.06 -0.07 -0.06 -0.08
MSE ∆ 0.22 0.12 0.12 0.25 0.30 0.18 0.26 0.32 0.73
median ∆ -0.06 0.01 -0.01 -0.29 -0.03 -0.06 -0.07 -0.06 -0.08
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Figure 1: Quantities sold.

Panel (a) displays the daily evolution of total quantities sold in all municipalities and in the treatment and
control groups. The sample period runs from June 20, 2016 to October 31, 2016. The experiment starts in
October 18, 2016 and ends in October 31, 2016 (14 observations). The starting date of the experiment is
represented by the vertical red line. Panel (b) shows the estimated slope coefficients in a pure linear trend
model for the quantities sold in each municipality during the pre-treatment sample.
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Figure 2: Actual and counterfactual sales.

Panel (a) shows the aggregated actual and counterfactual sales over the pre-treatment and post-treatment
periods. The sample period runs from June 20, 2016 to October 31, 2016. The experiment starts in October
18, 2016 and ends in October 31, 2016 (14 observations). The starting date of the experiment is represented
by the vertical red line. Panel (b) shows the aggregated actual and counterfactual sales for the post-treatment
period. 95% confidence intervals for the counterfactual path is also displayed.
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