Office of Communications – April 2022

[Global Soil Organic Carbon Sequestration Potential Map – GSOCseq v.1.1 -Technical report]

Corrigendum Updated on [11/04/2022]

The following corrections were made to the PDF after it went to print.

Pag	Location	Text in printed PDF	Text in corrected PDF
e			
44	6.2. Statistics for countries (GSOCseq V.1.1)	Figure 6.8 further breaks down these results into the respective SSM1-3 scenarios. Brazil (71.54 \pm 16.21 Mt yr-1), China (52.89 \pm 15.77 Mt yr-1), United States of America (character(0) Mt yr-1) and India (21.54 \pm 1.93 Mt yr-1) with their extensive agricultural soils dominate the chart and represent 34 percent of the global potential carbon sequestration under the highest C input (SSM3. 20 percent) scenario.	Figure 6.8 shows the top 15 countries with the highest mean SOC sequestration potential that could sequester at least one Mt C on a yearly basis.
129	A136: Russian Federation (the)	GSOCseq layers source: National Submission National Expert(s): TBD Data-holding Institution(s): TBD Input layer specifications: Soil Organic Carbon: Default Dataset (GSOCmap) Land Cover/ Land Use: National Land Cover/Land Use Datasets Clay: National Soil Clay Layer Climate: CRU (Climate Research Unit) Contact Point:	GSOCseq layers source: National Submission National Expert(s): Romanenkov Vladimir; Krenke Aleksandr; Golozubov Oleg; Meshalkina Julia; Gorbacheva Anna; Petrov Ivan; Rukhovich Dmitry; Litvinov Yuri; Nazarenko Olga Data-holding Institution(s): Lomonosov Moscow State University; Institute of Geography of the Russian Academy of Sciences; Analytical center of the Ministry of Agriculture of the Russian Federation; Dokuchaev Soil Science Institute; Academy of biology and biotechnology, Southern Federal University; Agrochemical Center "Rostovsky" Input layer specifications: Soil Organic Carbon: Default Dataset (GSOCmap) Land Cover/ Land Use: National Land Cover/Land Use Datasets Clay: National Soil Clay Layer Climate: CRU (Climate Research Unit) Contact Point: Romanenkov Vladimir

Contact: publishing-submissions@fao.org