Trade-off assessment in the Senegal River Basin

ICID Saskatoon 2018

Amaury Tilmant
Jasson Pina

The Senegal River basin

- Located in western Africa
- Drainage area = 337000 km2
- Shared by four countries: Guinea, Mali, Mauritania and Senegal
- Traditional uses:
 - transportation (navigation)
 - food production: fisheries + flood recession agriculture
- More recently: hydroelectricity
- Significant year-to-year variability of river discharges:
 - exposes water users to a high hydrological risk
- Significant development potential in the basin. Coordination through the river basin authority: OMVS

The Senegal River basin

Artificial flood (AF)

By Bourrichon (https://creativecommons.org/licenses/by-sa/3.0)]

HEM for the Senegal River basin

- As river basins develop it becomes more and more relevant
 - To seek efficient allocation policies
 - To understand the linkages between
 - Economic sectors
 - Water users
 - Water users and their biophysical and social environment
- In the Senegal River basin, the following hydro-economic principles apply:
 - Water should be used where and when its user value is the greatest
 - Water should be stored in reservoirs upstream
 - Water for consumptive uses should be withdrawn downstream
- How to find the balance between these principles?

- Maximizes expected net benefits from hydropower generation and irrigated agriculture
 - Constraints: M&I uses, artificial flood (eflows), navigation
- Up to 10 reservoirs / 12 hydropower plants
- 11 irrigation demand nodes / 52 crops

- Maximizes expected net benefits from hydropower generation and irrigated agriculture
 - Constraints: M&I uses, artificial flood (eflows), navigation
- Solved using Stochastic Dual Dynamic Programming (SDDP)
- Generic HEM coded in MATLAB + efficient Gurobi solver

Scenarios - Senegal River basin

 Development scenarios represent alternative levels of water resources' commitment in the basin

- Management scenarios reflect alternative allocation policies between competing uses
 - Food security: flood recession agriculture, fisheries and irrigation
 - •
 - Energy security: hydropower generation

Hydropower generation

Annual energy generation

Cultivated area – flood recession agriculture

Marginal value of water

Water accounting (2030)

Short-run values and costs (million US\$/y)

-50				
-30	Guinea	Mali	Senegal	Mauritania
Fisheries	0.4	0.6	3.6	8.4
■ Irrigation	17.4	3.0	187.7	78.2
■ Hydropower	199.3	142.9	2.8	0.0
■ Evaporation	-4.7	-5.8	-0.4	0.0
Storage services	57.4	35.6	3.6	0.0
■ Natural inflows	117.0	29.6	1.1	0.0

Indicators

 Satisfaction level = degree to which one objective is achieved in a particular scenario (compared to the max achievable performance in the corresponding "best" scenario)

Indicator	Scale & units	« best » management scenario
Flood recession ag	Flooded area (ha)	Food security
Energy	Energy (MWh)	Energy security
Navigation	Probability of exceeding min flow (-)	Navigation
Fisheries	Fish catch (T)	Food security

Trade-off (2030)

Basin-wide net revenues (2015, 2030, 2050)

Conclusions and recommendations

 Future developments of the basin will exacerbate the existing trade-offs between competing uses

Baseline 2015

Full-development 2050

Conclusions and recommendations

- Future developments of the basin will exacerbate the existing trade-offs between competing uses
- Inter and intra-country trade-offs

Baseline 2015

Full-development 2050

Conclusions and recommendations

- Food production sector more vulnerable to hydro-climatic variability
- The performance of the Senegal river system can be significantly improved through the coordinated operation of the multireservoir system
- Impact of climate change on trade-offs has yet to be carried out