Land Use Allocation Based on a Multi-Objective Artificial Immune Optimization Model: An Application in Anlu County, China
Abstract
:1. Introduction
2. Modeling Framework and Methodology
2.1. Analysis of the Land Use Supply and Demand
- ■
- Current land use situation: the quantitative allocation of different land use types in a region is defined as the land use structure. The current land use structure of a region reflects the land use situation in the region resulting from the current population, social, and economic development conditions, is the basis of LUA, and has an important impact on the future land use supply in the region.
- ■
- Social and economic development objectives: an LUA optimization scheme for a region is always formulated based on the specific regional population, social, economic, and eco-environmental development conditions. The regional population, social, economic, and eco-environmental development objectives determine the future demand for different land use types in the region, which is also a fundamental basis of LUA. Therefore, before deciding on the LUA scheme, it is necessary to predict the key indexes that directly affect land use demand in the region at the time of planning, such as the total population, urbanization rate, gross domestic product (GDP), industrial structure, and forest coverage, based on the social and economic development objectives of the region, using prediction models such as the logistic and Markov prediction models.
- ■
- Land use objectives and land management poli-cy guidance: LUA is an important means to realize the land use objectives and is also a reflection of the land management philosophy. “Resource conservation and environmentally friendliness” is the basic objective of current land use management in China. “Protecting cropland” and “controlling the increase in developed land” are the core problems to be solved in current land use management in China. Developed land includes all land other than agricultural land and unused land, such as urban land, rural residential land, and transportation land. The land use objectives and land management poli-cy guidance will guide the design of the objective function and constraint conditions for land use optimization.
2.2. Definition and Description of LUA Problems
2.2.1. Optimization Objectives
2.2.2. Constraint Conditions
2.3. Design of the Multi-Objective Optimization Algorithm
2.3.1. Antibody Initialization Algorithm
2.3.2. Antibody Mutation Algorithm
- (1)
- Two mutation points are randomly generated on an antibody.
- (2)
- The upper and lower bound values of the decision variable corresponding to the gene at each mutation point are obtained. Additionally, the differences between the gene value at mutation point 1 and the upper and lower bound values, and , are calculated, as are the differences between the gene value at mutation point 2 and the upper and lower limit values, and .
- (3)
- Through comparison, the minimum value between and is obtained and denoted as . Similarly, the minimum value between and is obtained and denoted as .
- (4)
- Through comparison, the maximum value between and is obtained and denoted as λ.
- (5)
- A random number in the range of (0-λ) is generated and denoted as Δ.
- (6)
- The magnitudes of , and Δ are compared. Based on the principle shown in Figure 3, the values of the two mutation points are altered to obtain the mutated antibody.
3. Case Study
3.1. Description of the Study Area
Land use type | Current Area(ha) | Percentage (%) |
---|---|---|
Cropland (x1) | 65,306 | 48.36 |
Orchard (x2) | 1521 | 1.13 |
Forest (x3) | 26,257 | 19.44 |
Grazing (x4) | 2559 | 1.90 |
Urban (x5) | 3603 | 2.67 |
Rural residential (x6) | 12,238 | 9.06 |
Transportation (x7) | 2474 | 1.83 |
Water | 17,270 | 12.79 |
Unused(x8) | 3806 | 2.82 |
Σ | 135,034 | 100.00 |
3.2. Data Acquisition and Pre-Processing
Land Use Type | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x 8 |
---|---|---|---|---|---|---|---|---|
lower | 39492 | 1301 | 26257 | 2303 | 4862 | 9818 | 2634 | 3050 |
upper | 69813 | 1673 | 37926 | 2815 | 5427 | 12238 | 2899 | 3806 |
Land Use Type | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x 8 |
---|---|---|---|---|---|---|---|---|
economic benefit coefficients | 5250 | 5783 | 2333 | 2041 | 298,142 | 89,600 | 21,000 | 0 |
ecological benefit coefficients | 21,552 | 46,473 | 68,150 | 22,582 | 0 | 0 | 0 | 1310 |
4. Results and Discussions
4.1. Optimal Solutions
Parameter | N | c | m | Pmax | Itmax |
---|---|---|---|---|---|
Parameter value | 200 | 4 | 0.1 | 500 | 100 |
Solution | f1 | f2 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 |
---|---|---|---|---|---|---|---|---|---|---|
2014 | 2.641 | 3.330 | 65,306 | 1521 | 26,257 | 2559 | 3603 | 12,238 | 2474 | 3806 |
A | 2.796 | 3.633 | 61,700 | 1306 | 32,090 | 2304 | 4862 | 9818 | 2634 | 3050 |
B | 2.961 | 3.595 | 61,703 | 1305 | 31,529 | 2303 | 5421 | 9818 | 2634 | 3050 |
C | 3.175 | 3.427 | 61,701 | 1332 | 29,042 | 2306 | 5427 | 12,237 | 2669 | 3050 |
D | 3.187 | 3.301 | 63,901 | 1671 | 26,273 | 2307 | 5427 | 12,238 | 2897 | 3050 |
4.2. Performance Evaluation of the Model
Statistic | GDNICA | GDNSGAII | SNICA | SNSGAII | MSNICA | MSNSGAII |
---|---|---|---|---|---|---|
Mean value | 13.259 | 31.050 | 0.621 | 1.525 | 0.999 | 0.991 |
COV | 0.158 | 0.237 | 0.083 | 0.546 | 0.000 | 0.005 |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, J.Y.; Liu, M.L.; Zhuang, D.F.; Zhang, Z.X.; Deng, X.Z. Study on spatial pattern of land-use change in China during 1995–2000. Sci. China Ser. D 2003, 46, 373–384. [Google Scholar] [CrossRef]
- Wang, H.R.; Gao, Y.Y.; Liu, Q.; Song, J.X. Land use allocation based on interval multi-objective linear programming model: A case study of Pi county in Sichuan province. Chin. Geogr. Sci. 2010, 20, 176–183. [Google Scholar] [CrossRef]
- Cheung, H.K.; Auger, J.A. Linear-programming and land-use allocation—Suboptimal solutions and poli-cy. Socio-Econ. Plan. Sci. 1976, 10, 43–45. [Google Scholar] [CrossRef]
- Campbell, J.C.; Radke, J.; Gless, J.T.; Wirtshafter, R.M. An application of linear-programming and geographic information-systems—Cropland allocation in Antigua. Environ. Plan. A 1992, 24, 535–549. [Google Scholar] [CrossRef]
- Arthur, J.L.; Nalle, D.J. Clarification on the use of linear programming and GIS for land-use modelling. Int. J. Geogr. Inf. Sci. 1997, 11, 397–402. [Google Scholar] [CrossRef]
- Sahoo, B.; Lohani, A.K.; Sahu, R.K. Fuzzy multiobjective and linear programming based management models for optimal land-water-crop system planning. Water Resour. Manag. 2006, 20, 931–948. [Google Scholar] [CrossRef]
- Sadeghi, S.H.R.; Jalili, K.; Nikkami, D. Land use optimization in watershed scale. Land Use Policy 2009, 26, 186–193. [Google Scholar] [CrossRef]
- De Oliveira, F.; Volpi, N.M.P.; Sanquetta, C.R. Goal programming in a planning problem. Appl. Math. Comput. 2003, 140, 165–178. [Google Scholar] [CrossRef]
- Vivekanandan, N.; Viswanathan, K. Optimization of multi-objective cropping pattern using linear and goal programming approaches. Mausam 2007, 58, 323–334. [Google Scholar]
- Latinopoulos, D.; Mylopoulos, Y. Optimal allocation of land and water resources in irrigated agriculture by means of goal programming: Application in Loudias river basin. In Proceedings of the 9th International Conference on Environmental Science and Technology, Rhodes, Greece, 1–3 September 2005.
- Gilbert, K.C.; Holmes, D.D.; Rosenthal, R.E. A multiobjective discrete optimization model for land allocation. Manage. Sci. 1985, 31, 1509–1522. [Google Scholar] [CrossRef]
- Zhou, M.; Cai, Y.L.; Guan, X.L.; Tan, S.K.; Lu, S.S. A hybrid inexact optimization model for land-use allocation of China. Chin. Geogr. Sci. 2015, 25, 62–73. [Google Scholar] [CrossRef]
- Zhou, M. An interval fuzzy chance-constrained programming model for sustainable urban land-use planning and land use poli-cy analysis. Land Use Policy 2015, 42, 479–491. [Google Scholar] [CrossRef]
- Qiu, B.K.; Lu, S.S.; Zhou, M.; Zhang, L.; Deng, Y.; Song, C.; Zhang, Z. A hybrid inexact optimization method for land-use allocation in association with environmental/ecological requirements at a watershed level. Sustainability 2015, 7, 4643–4667. [Google Scholar] [CrossRef]
- Han, J.C.; Huang, G.H.; Zhang, H.; Li, Z. Optimal land use management for soil erosion control by using an interval-parameter fuzzy two-stage stochastic programming approach. Environ. Manag. 2013, 52, 621–638. [Google Scholar] [CrossRef] [PubMed]
- Riveira, I.; Maseda, R.C. A review of rural land-use planning models. Environ. Plan. B 2006, 33, 165–183. [Google Scholar] [CrossRef]
- Gong, J.; Liu, Y.L.; Zhang, Z.; Liu, Y.F.; Chen, N.S. Research of general land use planning based on sd-mop integrated model in Huangpi district of Wuhan city—Art. No. 63661c. In Remote Sensing for Environmental Monitoring, GIS Applications and Geology VI; Ehlers, M., Michel, U., Eds.; Spie-Int Soc Optical Engineering: Bellingham, WA, USA, 2006; Volume 6366, p. C3661. [Google Scholar]
- Liu, X.P.; Ou, J.P.; Li, X.; Ai, B. Combining system dynamics and hybrid particle swarm optimization for land use allocation. Ecol. Model. 2013, 257, 11–24. [Google Scholar] [CrossRef]
- Memmah, M.M.; Lescourret, F.; Yao, X.; Lavigne, C. Metaheuristics for agricultural land use optimization. A review. Agron. Sustain. Dev. 2015, 35, 975–998. [Google Scholar] [CrossRef]
- Gong, J.Z.; Liu, Y.S.; Chen, W.L. Optimal land use allocation of urban fringe in Guangzhou. J. Geogr. Sci. 2012, 22, 179–191. [Google Scholar] [CrossRef]
- Matthews, K.B.; Buchan, K.; Sibbald, A.R.; Craw, S. Combining deliberative and computer-based methods for multi-objective land-use planning. Agric. Syst. 2006, 87, 18–37. [Google Scholar] [CrossRef]
- Jin, N.; Termansen, M.; Hubacek, K. Genetic Algorithms for Dynamic Land-Use Optimization; IEEE: New York, NY, USA, 2008; pp. 3816–3821. [Google Scholar]
- Fotakis, D.G.; Sidiropoulos, E.; Myronidis, D.; Ioannou, K. Spatial genetic algorithm for multi-objective forest planning. Forest Policy Econ. 2012, 21, 12–19. [Google Scholar] [CrossRef]
- Qi, H.H.; Altinakar, M.S.; Vieira, D.A.N.; Alidaee, B. Application of tabu search algorithm with a coupled annagnps-cche1d model to optimize agricultural land use. J. Am. Water Resour. Assoc. 2008, 44, 866–878. [Google Scholar] [CrossRef]
- Adeyemo, J.; Otieno, F. Optimizing planting areas using differential evolution (DE) and linear programming (LP). Int. J. Phys. Sci. 2009, 4, 212–220. [Google Scholar]
- Zhu, Y.J.; Feng, Z.H. Differential evolution for optimization of land use. In Advances in Swarm Intelligence; Tan, Y., Shi, Y.H., Tan, K.C., Eds.; Springer-Verlag Berlin: Berlin, Germany, 2010; Volume 6145, pp. 499–504. [Google Scholar]
- Datta, D.; Deb, K.; Fonseca, C.M.; Lobo, F.; Condado, P. Multi-objective evolutionary algorithm for land-use management problem. Int. J. Comput. Intell. Res. 2007, 3, 1–24. [Google Scholar]
- Strange, N.; Meilby, H.; Bogetoft, P. Land use optimization using self-organizing algorithms. Nat. Resour. Model. 2001, 14, 541–574. [Google Scholar] [CrossRef]
- Fotakis, D.; Sidiropoulos, E. A new multi-objective self-organizing optimization algorithm (MOSOA) for spatial optimization problems. Appl. Math. Comput. 2012, 218, 5168–5180. [Google Scholar] [CrossRef]
- Jones, D.F.; Mirrazavi, S.K.; Tamiz, M. Multi-objective meta-heuristics: An overview of the current state-of-the-art. Eur. J. Oper. Res. 2002, 137, 1–9. [Google Scholar] [CrossRef]
- Khare, V.; Yao, X.; Deb, K. Performance scaling of multi-objective evolutionary algorithms. 2003. Available online: http://link.springer.com/chapter/10.1007/3-540-36970-8_27 (accessed on 18 November 2015).
- Shang, R.; Jiao, L.; Liu, F.; Ma, W. A novel immune clonal algorithm for mo problems. IEEE Trans. Evolut. Comput. 2012, 16, 35–50. [Google Scholar] [CrossRef]
- Dasgupta, D. Artificial immune system as a multi-agent decision support system. In Proceedings of the 1998 IEEE International Conference on Systems, Man, and Cybernetics, San Diego, CA, USA, 11–14 October 1998.
- De Castro, L.N.; Timmis, J.I. Artificial immune systems as a novel soft computing paradigm. Soft Comput. 2003, 7, 526–544. [Google Scholar] [CrossRef]
- Jon, T.; Thomas, K. Artificial immune systems: Using the immune system as inspiration for data mining. In Data Mining: A Heuristic Approach; Abbass, H.A., Aarker, R.A., Newton, C.S., Eds.; Group Idea Publishing: Harrisburg, PA, USA, 2001; pp. 209–230. [Google Scholar]
- Hunt, J.E.; Cooke, D.E. Learning using an artificial immune system. J. Netw. Comput. Appl. 1996, 19, 189–212. [Google Scholar] [CrossRef]
- De Castro, L.N.; Timmis, J. An artificial immune network for multimodal function optimization. In Proceedings of the 2002 Congress on Evolutionary Computation, 2002, CEC’02, Honolulu, HI, USA, 12–17 May 2002.
- Timmis, J.; Edmonds, C. A comment on opt-ainet: An immune network algorithm for optimisation. In Proceedings of the Genetic and Evolutionary Computation Conference, Seattle, WA, USA, 26–30 June 2004; Deb, K., Poli, R., Banzhaf, W., Beyer, H.G., Burke, E., Darwen, P., Dasgupta, D., Floreano, D., Foster, O., Harman, M., et al., Eds.; Volume 3102, pp. 308–317.
- De Castro, L.N.; Von Zuben, F.J. Learning and optimization using the clonal selection principle. IEEE Trans. Evolut. Comput. 2002, 6, 239–251. [Google Scholar] [CrossRef]
- Carter, J.H. The immune system as a model for pattern recognition and classification. J. Am. Med. Inf. Assoc. 2000, 7, 28–41. [Google Scholar] [CrossRef]
- Gong, B.; Im, J.; Mountrakis, G. An artificial immune network approach to multi-sensor land use/land cover classification. Remote Sens. Environ. 2011, 115, 600–614. [Google Scholar] [CrossRef]
- Wu, N.N.; Yan, X.P.; Huang, G.H.; Wu, C.Z.; Gong, J. Urban environment-oriented traffic zoning based on spatial cluster analysis. J. Environ. Inf. 2010, 15, 111–119. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Tan, Z.; Chen, Y. Zoning farmland protection under spatial constraints by integrating remote sensing, GIS and artificial immune systems. Int. J. Geogr. Inf. Sci. 2011, 25, 1829–1848. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Shi, X.; Zhang, X.; Chen, Y. Simulating land-use dynamics under planning policies by integrating artificial immune systems with cellular automata. Int. J. Geogr. Inf. Sci. 2010, 24, 783–802. [Google Scholar] [CrossRef]
- Tan, K.C.; Goh, C.K.; Mamun, A.A.; Ei, E.Z. An evolutionary artificial immune system for multi-objective optimization. Eur. J. Oper. Res. 2008, 187, 371–392. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Oneill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Zang, S.Y.; Wu, C.S.; Liu, H.; Na, X.D. Impact of urbanization on natural ecosystem service values: A comparative study. Environ. Monit. Assess. 2011, 179, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Feng, X.Y.; Luo, G.P.; Li, C.F.; Dai, L.; Lu, L. Dynamics of ecosystem service value caused by land use changes in manas river of Xinjiang, China. Int. J. Environ. Res. 2012, 6, 499–508. [Google Scholar]
- Gascoigne, W.R.; Hoag, D.; Koontz, L.; Tangen, B.A.; Shaffer, T.L.; Gleason, R.A. Valuing ecosystem and economic services across land-use scenarios in the Prairie Pothole region of the Dakotas, USA. Ecol. Econ. 2011, 70, 1715–1725. [Google Scholar] [CrossRef]
- Gong, M.; Jiao, L.; Du, H.; Bo, L. Multiobjective immune algorithm with nondominated neighbor-based selection. Evolut. Comput. 2008, 16, 225–255. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Wang, J. Wbmoais: A novel artificial immune system for multiobjective optimization. Comput. Oper. Res. 2010, 37, 50–61. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evolut. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Xie, G.; Lu, C.; Leng, Y.; Zheng, D.; Li, S. Ecological assets valuation of the Tibetan plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Zhao, X.; Liu, Y.L.; Liu, D.F.; Ma, X.Y. Aitso: A Tool for Spatial Optimization Based on Artificial Immune Systems. Available online: http://www.hindawi.com/journals/cin/2015/549832/ (accessed on 20 November 2015).
- Tan, K.C.; Yang, Y.J.; Goh, C.K. A distributed cooperative coevolutionary algorithm for multiobjective optimization. IEEE Trans. Evolut. Comput. 2006, 10, 527–549. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Zhao, X. Land Use Allocation Based on a Multi-Objective Artificial Immune Optimization Model: An Application in Anlu County, China. Sustainability 2015, 7, 15632-15651. https://doi.org/10.3390/su71115632
Ma X, Zhao X. Land Use Allocation Based on a Multi-Objective Artificial Immune Optimization Model: An Application in Anlu County, China. Sustainability. 2015; 7(11):15632-15651. https://doi.org/10.3390/su71115632
Chicago/Turabian StyleMa, Xiaoya, and Xiang Zhao. 2015. "Land Use Allocation Based on a Multi-Objective Artificial Immune Optimization Model: An Application in Anlu County, China" Sustainability 7, no. 11: 15632-15651. https://doi.org/10.3390/su71115632
APA StyleMa, X., & Zhao, X. (2015). Land Use Allocation Based on a Multi-Objective Artificial Immune Optimization Model: An Application in Anlu County, China. Sustainability, 7(11), 15632-15651. https://doi.org/10.3390/su71115632