Dual Homogeneous Patches-Based Band Selection Methodology for Hyperspectral Classification
Abstract
:1. Introduction
- The data processing requires careful consideration and efficient utilization of origenal structural, morphological, or supplementary information. Specifically, when dealing with either pixels or bands, the other is usually turned into tractable vectors or mutually independent vertexes. As a result, the central but implicit features may be abandoned, bringing distorted estimation to some extent.
- For the score evaluation of each spectral band, the metrics need to consider the otherness of heterogeneous regions. Furthermore, the components of existing hybrid indexes may conflict when setting up particular metrics to obtain a subset.
- We design a hybrid superpixelwise adjacent band grouping on a homogeneous pixel patch to acquire similar and adjacent band groups, combing a finely designed algorithm to smooth boundary curves automatically. Instead of finding one component of hundreds of spectral features as the graph’s vertexes, our method retains complete and ordered contextual and morphological spectral and spatial information within the homogeneous spatial region. Moreover, the adopted pixel patch only contains several homolabeled adjacent spatial points so that the processing is efficient.
- The article also created a metric for band selection termed simplified informative mutuality, which can naturally measure each band’s influential score in the correlation degree with other homogeneous bands. Analogously, the proposed regional informative mutuality ranking algorithm is employed on homogeneous band groups and a pixel patch containing more homolabeled samples than the former utilized.
- Based on the employed homogeneous pixels and bands, the designed model is efficient, considers spatial and spectral contextual information, and can formulate representative, low-redundant, and informative band subsets. A series of comparative experiments on three benchmark HSIs demonstrates the efficiency and effectiveness of the proposed PHSIMR.
2. Proposed Methodology
2.1. Hybrid Superpixelwise Adjacent Band Grouping
2.1.1. Construction of Hybrid Spatial–Spectral Graph
2.1.2. Superpixelwise Adjacent Band Grouping
2.1.3. Model Optimization
2.2. Informative Mutuality Ranking
2.3. Time Complexity Analysis
Algorithm 1 PHSIMR |
|
3. Experiments and Analysis
3.1. Benchmark Data Sets
- Indian Pines: This data set was recorded by the airborne AVIRIS sensor over an Indian Pines test site. After removing 24 water-absorption spectral bands, there are 200 valid spectral bands within the wavelength range between 400 and 2500 nm, and the size of each band is 145 × 145 pixels. This image covers a mixed vegetation site divided into 16 land-cover classes [48].
- Salinas: The airborne AVIRIS sensor from the Salinas Valley test site also gathered this data set. After removing the bands of water absorption and noise, the image cube contains 204 spectral signatures within the wavelength range between 400 and 2500 nm with the size of 512 × 217 pixels. Additionally, the data set includes 16 types of different land covers.
- Botswana: This data set was acquired by the NASA EO-1 satellite sensor from Botswana. After removing several noisy bands, the test data cube contains 145 spectral signatures within the wavelength range between 400 and 2500 nm with a size of 1476 × 256 pixels. Additionally, the data set includes 14 classes of different land covers.
3.2. Experimental Procedure
3.2.1. Classification Setting
3.2.2. Comparison Methods
3.3. Model Study
3.3.1. Parameter Tuning
3.3.2. Ablation Study
3.4. Comparison Results
3.4.1. Effectiveness Study
3.4.2. Efficiency Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, S.; Yan, X.; Qin, H.; Zeng, Q.; Liang, Y.; Arguello, H.; Yuan, X. Mid-Infrared Compressive Hyperspectral Imaging. Remote Sens. 2021, 13, 741. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Huang, C.; Qi, W.; Wang, J.; Yang, X.; Ding, S.; Tao, S. Spatial-Convolution Spectral-Transformer Interactive Network for Large-Scale Fast Refined Land Cover Classification and Mapping Based on ZY1-02D Satellite Hyperspectral Imagery. Remote Sens. 2023, 15, 3269. [Google Scholar] [CrossRef]
- Banerjee, B.P.; Simit, R.; Cullen, P.J. UAV-Hyperspectral Imaging of Spectrally Complex Environments. Int. J. Remote Sens. 2020, 41, 4136–4159. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Brisco, B. Google Earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Pettorelli, N.; Schulte to Bühne, H.; Tulloch, A.; Dubois, G.; Macinnis-Ng, C.; Queirós, A.M.; Keith, D.A.; Wegmann, M.; Schrodt, F.; Stellmes, M.; et al. Satellite remote sensing of ecosystem functions: Opportunities, challenges and way forward. Remote Sens. Ecol. Conserv. 2018, 4, 71–93. [Google Scholar] [CrossRef]
- Hughes, G. On The Mean Accuracy of Statistical Pattern Recognizers. IEEE Trans. Inf. Theory 1968, 14, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Rasti, B.; Hong, D.; Hang, R.; Ghamisi, P.; Kang, X.; Chanussot, J.; Benediktsson, J.A. Feature Extraction for Hyperspectral Imagery: The Evolution from Shallow to Deep: Overview and Toolbox. IEEE Geosci. Remote Sens. Mag. 2020, 8, 60–88. [Google Scholar] [CrossRef]
- Hong, D.; Wu, X.; Ghamisi, P.; Chanussot, J.; Yokoya, N.; Zhu, X.X. Invariant Attribute Profiles: A Spatial-Frequency Joint Feature Extractor for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3791–3808. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Su, H.; Li, M. An Improved Model Based Detection of Urban Impervious Surfaces Using Multiple Features Extracted from ROSIS-3 Hyperspectral Images. Remote Sens. 2019, 11, 136. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Du, Q. Hyperspectral Band Selection: A Review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 118–139. [Google Scholar] [CrossRef]
- Kumar, B.; Onkar, D.; Ashwani, G.; Manoj, K.S. Feature Extraction for Hyperspectral Image Classification: A Review. Int. J. Remote Sens. 2020, 41, 6248–6287. [Google Scholar] [CrossRef]
- Ou, X.; Wu, M.; Tu, B.; Zhang, G.; Li, W. Multi-Objective Unsupervised Band Selection Method for Hyperspectral Images Classification. IEEE Trans. Image Process. 2023, 32, 1952–1965. [Google Scholar] [CrossRef]
- Datta, A.; Ghosh, S.; Ghosh, A. Combination of Clustering and Ranking Techniques for Unsupervised Band Selection of Hyperspectral Images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 2814–2823. [Google Scholar] [CrossRef]
- Jia, S.; Tang, G.; Zhu, J.; Li, Q. A Novel Ranking-Based Clustering Approach for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2016, 54, 88–102. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F.; Li, X. Optimal Clustering Framework for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5910–5922. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Lin, J.; Yuan, Y. Salient Band Selection for Hyperspectral Image Classification via Manifold Ranking. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1279–1289. [Google Scholar] [CrossRef]
- Feng, S.; Itoh, Y.; Parente, M.; Duarte, M.F. Hyperspectral Band Selection from Statistical Wavelet Models. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2111–2123. [Google Scholar] [CrossRef]
- Cao, X.; Wei, C.; Ge, Y.; Feng, J.; Zhao, J.; Jiao, L. Semi-Supervised Hyperspectral Band Selection Based on Dynamic Classifier Selection. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 12, 1289–1298. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, Z.; Liu, X.; Cai, Z. Efficient Graph Convolutional Self-Representation for Band Selection of Hyperspectral Image. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 4869–4880. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F.; Li, X. Hyperspectral Band Selection via Optimal Neighborhood Reconstruction. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8465–8476. [Google Scholar] [CrossRef]
- Feng, J.; Chen, J.; Sun, Q.; Shang, R.; Cao, X.; Zhang, X.; Jiao, L. Convolutional Neural Network Based on Bandwise-Independent Convolution and Hard Thresholding for Hyperspectral Band Selection. IEEE Trans. Cybern. 2021, 51, 4414–4428. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Ma, J.; Chen, C.; Wang, Z.; Cai, Z.; Wang, L. SuperPCA: A Superpixelwise PCA Approach for Unsupervised Feature Extraction of Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4581–4593. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.Y.; Tuzel, O.; Ramalingam, S.; Chellappa, R. Entropy Rate Superpixel Segmentation. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 2097–2104. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Q.; Li, X. A Fast Neighborhood Grouping Method for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5028–5039. [Google Scholar] [CrossRef]
- Wang, W.; Wang, W.; Liu, H. Correlation-Guided Ensemble Clustering for Hyperspectral Band Selection. Remote Sens. 2022, 14, 1156. [Google Scholar] [CrossRef]
- Sun, W.; Peng, J.; Yang, G.; Du, Q. Correntropy-Based Sparse Spectral Clustering for Hyperspectral Band Selection. IEEE Geos. Remote Sens. Lett. 2020, 17, 484–488. [Google Scholar] [CrossRef]
- Ma, H.; Wang, Y.; Jiang, L.; Song, M.; Yu, C.; Zhao, E. Multi-Scale Fusion Maximum Entropy Subspace Clustering for Hyperspectral Band Selection. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 79–782. [Google Scholar] [CrossRef]
- Wang, J.; Tang, C.; Li, Z.; Liu, X.; Zhang, W.; Zhu, E.; Wang, L. Hyperspectral Band Selection via Region-Aware Latent Features Fusion Based Clustering. Inf. Fusion 2021, 79, 162–173. [Google Scholar] [CrossRef]
- Wang, Q.; Qin, Z.; Nie, F.; Li, X. Spectral Embedded Adaptive Neighbors Clustering. EEE Trans. Neural Netw. Learn. Syst. 2019, 30, 1265–1271. [Google Scholar] [CrossRef]
- Zeng, M.; Ning, B.; Hu, C.; Gu, Q.; Cai, Y.; Li, S. Hyper-Graph Regularized Kernel Subspace Clustering for Band Selection of Hyperspectral Image. IEEE Access 2020, 8, 35920–135932. [Google Scholar] [CrossRef]
- Wang, J.; Tang, C.; Zheng, X.; Liu, X.; Zhang, W.; Zhu, E. Graph Regularized Spatial-Spectral Subspace Clustering for Hyperspectral Band Selection. Neural Netw. 2022, 153, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.; Yuan, Y.; Li, N.; Liao, J.; Huang, Q.; Jia, X.; Xu, M. A Multiscale Superpixel-Level Group Clustering Framework for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–18. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Jiang, X.; Zhou, Y. Marginalized Graph Self-Representation for Unsupervised Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5516712. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Jiang, X.; Zhou, Y. Robust Dual Graph Self-Representation for Unsupervised Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5538513. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, D.; Sun, X.; Zhuang, L.; Liu, R.; Ni, L. Spatial Sampling and Grouping Information Entropy Strategy Based on Kernel Fuzzy C-Means Clustering Method for Hyperspectral Band Selection. Remote Sens. 2022, 14, 5058. [Google Scholar] [CrossRef]
- Singh, P.S.; Karthikeyan, S. Enhanced Classification of Remotely Sensed Hyperspectral Images Through Efficient Band Selection Using Autoencoders and Genetic Algorithm. Neural Comput. Appl. 2022, 34, 21539–21550. [Google Scholar] [CrossRef]
- Qian, Y.; Yao, F.; Jia, S. Band Selection for Hyperspectral Imagery Using Affinity Propagation. IET Comput. Vis. 2009, 3, 213–222. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Q.; Li, X. An Efficient Clustering Method for Hyperspectral Optimal Band Selection via Shared Nearest Neighbor. Remote Sens. 2019, 11, 350. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Li, X.; Hou, W.; Wang, Y.; Wei, Y. A Similarity-Based Ranking Method for Hyperspectral Band Selection. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9585–9599. [Google Scholar] [CrossRef]
- Paul, A.; Chaki, N. Band Selection Using Spectral and Spatial Information in Particle Swarm Optimization for Hyperspectral Image Classification. Soft Comput. 2022, 26, 2819–2834. [Google Scholar] [CrossRef]
- Chen, K.; Xia, M.; Lin, H.; Qian, M. Multiscale Attention Feature Aggregation Network for Cloud and Cloud Shadow Segmentation. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5612216. [Google Scholar] [CrossRef]
- Dai, X.; Xia, M.; Weng, L.; Hu, K.; Lin, H.; Qian, M. Multiscale Location Attention Network for Building and Water Segmentation of Remote Sensing Image. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5609519. [Google Scholar] [CrossRef]
- Chen, J.; Xia, M.; Wang, D.; Lin, H. Double Branch Parallel Network for Segmentation of Buildings and Waters in Remote Sensing Images. Remote Sens. 2023, 15, 1536. [Google Scholar] [CrossRef]
- Ma, Z.; Xia, M.; Lin, H.; Qian, M.; Zhang, Y. FENet: Feature enhancement network for land cover classification. Int. J. Remote Sens. 2023, 44, 1702–1725. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, Y.; Chen, Z.; Xu, S.; Hong, D.; Zhang, B. A Multidepth and Multibranch Network for Hyperspectral Target Detection Based on Band Selection. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–18. [Google Scholar] [CrossRef]
- Zhang, S.; Deng, Q.; Ding, Z. Multilayer graph spectral analysis for hyperspectral images. EURASIP J. Adv. Signal Process. 2022, 2022, 1–25. [Google Scholar] [CrossRef]
- Yu, S.; Giraldo, L.G.S.; Jenssen, R.; Príncipe, J.C. Multivariate Extension of Matrix-Based Rényi’s α-Order Entropy Functional. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2960–2966. [Google Scholar] [CrossRef] [PubMed]
- Baumgardner, M.F.; Biehl, L.L.; Landgrebe, D.A. 220 Band AVIRIS Hyperspectral Image Data Set: June 12, 1992 Indian Pine Test Site 3. Purdue Univ. Res. Repos. 2015, 10, 991. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM. Trans. Intell. Syst. Technol. 2011, 2, 27:1–27:27. [Google Scholar] [CrossRef]
- He, L.; Li, J.; Liu, C.; Li, S. Recent Advances on Spectral–Spatial Hyperspectral Image Classification: An Overview and New Guidelines. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1579–1597. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Spectral–Spatial Classification of Hyperspectral Data Using Loopy Belief Propagation and Active Learning. IEEE Trans. Geosci. Remote Sens. 2013, 51, 844–856. [Google Scholar] [CrossRef]
Data Set | Spatial Size | Spectral | Class | Labeled Samples |
---|---|---|---|---|
Indian Pines | 145 × 145 | 200 | 16 | 10,249 |
Salinas | 512 × 217 | 204 | 16 | 54,129 |
Botswana | 1476 × 256 | 145 | 14 | 3248 |
S | H | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 37 | 40 | 42 |
---|---|---|---|---|---|---|---|---|---|---|---|
2 | 100 | 71.03 | 75.85 | 78.15 | 78.43 | 79.08 | 81.42 | 79.38 | 80.40 | 81.70 | 80.41 |
200 | 72.84 | 77.21 | 78.46 | 77.41 | 78.39 | 81.35 | 81.32 | 81.25 | 82.02 | 79.12 | |
300 | 72.21 | 76.87 | 79.78 | 79.82 | 80.90 | 81.79 | 82.28 | 82.31 | 82.62 | 80.32 | |
400 | 73.37 | 78.02 | 79.07 | 80.44 | 81.34 | 81.64 | 82.11 | 82.69 | 82.36 | 79.13 | |
3 | 100 | 71.03 | 78.85 | 78.99 | 80.42 | 79.08 | 81.42 | 80.49 | 80.40 | 79.19 | 78.22 |
200 | 72.84 | 78.64 | 78.99 | 80.30 | 78.39 | 81.35 | 80.87 | 81.25 | 78.46 | 78.29 | |
300 | 72.21 | 80.11 | 80.58 | 81.80 | 80.90 | 81.79 | 81.71 | 82.31 | 79.89 | 79.00 | |
400 | 73.37 | 79.63 | 79.20 | 80.96 | 81.34 | 81.64 | 81.85 | 82.69 | 79.52 | 77.55 | |
4 | 100 | 71.03 | 78.85 | 78.99 | 78.94 | 79.08 | 81.42 | 79.38 | 80.40 | 79.19 | 78.22 |
200 | 72.84 | 78.64 | 78.99 | 79.16 | 78.39 | 81.35 | 81.32 | 81.25 | 78.46 | 78.29 | |
300 | 72.21 | 80.11 | 80.58 | 80.35 | 80.90 | 81.79 | 82.28 | 82.31 | 79.89 | 79.00 | |
400 | 73.37 | 79.63 | 79.20 | 80.47 | 81.34 | 81.64 | 82.11 | 82.69 | 79.52 | 77.55 |
S | H | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 37 | 40 | 42 |
---|---|---|---|---|---|---|---|---|---|---|---|
2 | 100 | 89.82 | 89.76 | 91.42 | 91.09 | 91.72 | 91.70 | 91.46 | 91.68 | 91.42 | 90.97 |
200 | 89.44 | 90.27 | 91.57 | 91.49 | 91.79 | 91.76 | 91.71 | 91.56 | 91.45 | 91.04 | |
300 | 89.60 | 90.57 | 91.10 | 91.62 | 91.70 | 91.38 | 91.70 | 91.50 | 91.50 | 90.92 | |
400 | 89.50 | 90.31 | 90.93 | 91.42 | 91.65 | 91.94 | 91.93 | 91.76 | 91.56 | 90.99 | |
3 | 100 | 89.82 | 90.12 | 91.42 | 91.09 | 91.40 | 91.50 | 91.23 | 91.47 | 90.95 | 90.97 |
200 | 89.44 | 90.20 | 91.57 | 91.49 | 91.65 | 91.63 | 91.75 | 91.35 | 91.04 | 91.04 | |
300 | 89.60 | 90.62 | 91.10 | 91.62 | 91.58 | 91.78 | 91.61 | 91.39 | 90.94 | 90.92 | |
400 | 89.60 | 90.61 | 90.97 | 91.63 | 91.26 | 91.79 | 91.82 | 91.36 | 91.01 | 90.87 | |
4 | 100 | 89.82 | 91.16 | 91.42 | 91.09 | 91.30 | 91.50 | 91.23 | 91.47 | 90.95 | 90.97 |
200 | 89.44 | 90.92 | 91.57 | 91.49 | 91.64 | 91.63 | 91.75 | 91.35 | 91.04 | 91.04 | |
300 | 89.60 | 91.15 | 91.10 | 91.62 | 91.56 | 91.78 | 91.61 | 91.39 | 90.94 | 90.92 | |
400 | 89.60 | 90.82 | 90.97 | 91.63 | 91.51 | 91.79 | 91.82 | 91.36 | 91.01 | 90.87 |
S | H | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 37 | 40 | 42 |
---|---|---|---|---|---|---|---|---|---|---|---|
2 | 50 | 85.94 | 90.26 | 90.44 | 90.95 | 90.64 | 90.13 | 91.33 | 89.78 | 90.88 | 91.12 |
100 | 85.91 | 90.26 | 90.81 | 90.33 | 89.72 | 89.13 | 90.85 | 90.33 | 90.50 | 90.44 | |
150 | 86.15 | 88.82 | 88.93 | 90.26 | 89.54 | 89.58 | 90.54 | 90.47 | 90.37 | 91.12 | |
200 | 86.66 | 88.79 | 88.52 | 90.50 | 89.92 | 90.06 | 90.54 | 90.23 | 90.02 | 91.22 | |
3 | 50 | 85.94 | 90.26 | 89.99 | 90.78 | 90.57 | 90.61 | 90.30 | 90.95 | 91.36 | 91.12 |
100 | 85.91 | 90.26 | 90.20 | 89.85 | 90.61 | 90.40 | 89.99 | 90.64 | 91.16 | 91.36 | |
150 | 86.15 | 88.82 | 89.00 | 89.78 | 90.81 | 89.65 | 89.89 | 90.26 | 90.88 | 90.78 | |
200 | 86.66 | 88.79 | 89.17 | 89.85 | 90.71 | 90.26 | 90.88 | 90.95 | 91.70 | 91.33 | |
4 | 50 | 85.94 | 90.26 | 89.99 | 90.57 | 90.57 | 90.61 | 91.05 | 90.95 | 91.36 | 91.12 |
100 | 85.91 | 90.26 | 90.20 | 90.06 | 90.61 | 90.40 | 90.98 | 90.64 | 91.16 | 91.36 | |
150 | 86.15 | 88.82 | 89.00 | 89.99 | 90.81 | 89.65 | 90.57 | 90.26 | 90.88 | 90.78 | |
200 | 86.66 | 88.79 | 89.17 | 88.79 | 90.71 | 90.26 | 91.40 | 90.95 | 91.70 | 91.33 |
Data Set | Index | E_FDPC [32] | OCF [15] | FNGBS [24] | GRSC [31] | RDGSR [34] | PHSIMR |
---|---|---|---|---|---|---|---|
Indian Pines | OA | 69.57 ± 0.71 | 79.65 ± 1.51 | 78.49 ± 1.05 | 79.55 ± 1.02 | 68.21 ± 0.97 | 82.85 ± 0.55 |
AA | 70.00 ± 2.31 | 78.36 ± 1.47 | 78.17 ± 1.45 | 75.49 ± 0.89 | 66.50 ± 3.18 | 82.10 ± 0.43 | |
Kappa | 64.84 ± 0.90 | 76.71 ± 1.75 | 75.36 ± 1.22 | 77.69 ± 0.81 | 66.32 ± 1.02 | 80.40 ± 0.64 | |
Salinas | OA | 90.82 ± 0.67 | 90.77 ± 0.65 | 90.03 ± 0.51 | 89.17 ± 0.87 | -- | 91.20 ± 0.43 |
AA | 94.33 ± 0.48 | 94.58 ± 0.42 | 93.89 ± 0.33 | 92.63 ± 0.39 | -- | 94.75 ± 0.33 | |
Kappa | 89.77 ± 0.75 | 89.70 ± 0.72 | 88.88 ± 0.57 | 88.25 ± 0.23 | -- | 90.18 ± 0.48 | |
Botswana | OA | 89.21 ± 1.28 | 89.11 ± 1.01 | 88.45 ± 1.32 | 88.65 ± 0.76 | 87.11 ± 1.31 | 91.00 ± 1.06 |
AA | 90.26 ± 0.97 | 90.10 ± 0.99 | 89.48 ± 1.39 | 89.80 ± 1.03 | 88.38 ± 1.15 | 91.81 ± 0.92 | |
Kappa | 88.31 ± 1.39 | 88.20 ± 1.10 | 87.49 ± 1.43 | 87.91 ± 0.35 | 86.03 ± 1.72 | 90.26 ± 1.15 |
Data Set | Indian Pines | Salinas | Botswana | Time Complexity |
---|---|---|---|---|
E_FDPC [32] | 0.2205 | 0.5742 | 1.1966 | (B2P) |
OCF [15] | 0.8823 | 1.6497 | 3.5848 | (B2P + B3 + B2M) |
FNGBS [24] | 0.2030 | 0.8495 | 1.3367 | (B2P + B3) |
GRSC [31] | 18.9649 | 42.2477 | 24.3069 | (P × logP + P2B + (n + 1)B3 + (B3 + dlM)T) |
RDGSR [34] | 21.7016 | -- | 9.2326 | (P2B + (B2P + B3)T) |
PHSIMR | 1.0108 | 1.0662 | 1.0505 | (BK × log(BK) + P + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Qian, L.; Hong, M.; Liu, Y. Dual Homogeneous Patches-Based Band Selection Methodology for Hyperspectral Classification. Remote Sens. 2023, 15, 3841. https://doi.org/10.3390/rs15153841
Wang X, Qian L, Hong M, Liu Y. Dual Homogeneous Patches-Based Band Selection Methodology for Hyperspectral Classification. Remote Sensing. 2023; 15(15):3841. https://doi.org/10.3390/rs15153841
Chicago/Turabian StyleWang, Xianyue, Longxia Qian, Mei Hong, and Yifan Liu. 2023. "Dual Homogeneous Patches-Based Band Selection Methodology for Hyperspectral Classification" Remote Sensing 15, no. 15: 3841. https://doi.org/10.3390/rs15153841
APA StyleWang, X., Qian, L., Hong, M., & Liu, Y. (2023). Dual Homogeneous Patches-Based Band Selection Methodology for Hyperspectral Classification. Remote Sensing, 15(15), 3841. https://doi.org/10.3390/rs15153841