A High-Precision 3D Target Perception Algorithm Based on a Mobile RFID Reader and Double Tags
Abstract
:1. Introduction
- •
- In the context of the shelf scenario, this paper introduces a double-tags phase model and presents a closed-form solution for accurately determining the height and depth of the target in relation to the shelf.
- •
- This paper introduces a two-step positioning algorithm that combines RSS and signal phase for enhanced accuracy. In the first step, the algorithm utilizes the RSS peak information and the double-tags phase model to estimate the initial position. In the second step, the mobile RFID reader and double-tags (MRRDT) algorithm is employed for further calibration which achieves a final 3D position estimation error of approximately 4 cm.
- •
- Compared to existing 3D positioning algorithms based on passive RFID tags, the proposed method offers higher positioning accuracy while maintaining lower computational complexity.
2. System Desgin
2.1. System Architecture
2.2. Estimation of Rough Position
2.2.1. Perception of Rough Length
2.2.2. Perception of Rough Height and Depth
2.3. Calibration for Refinement
2.4. Comparison of the above Two Results
3. Simulation and Analysis
3.1. The Positioning Performance of Targets
3.2. Analysis of Other Influencing Factors
3.2.1. Influence of Different Tags on Spacing and Positioning Performance
3.2.2. Influence of Different Antenna Intervals on Positioning Performance
3.2.3. Influence of Different Sampling Rate and Antenna Interval on Positioning Performance
3.2.4. Influence of Different Speed and Noise on Positioning Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mekni, S.K. Design and Implementation of a an IoT-based Kids Tracking System. In Proceedings of the 2022 2nd International Conference of Smart Systems and Emerging Technologies (SMARTTECH), Riyadh, Saudi Arabia, 9–11 May 2022; pp. 112–117. [Google Scholar]
- Charléty, A.; Le Breton, M.; Larose, E.; Baillet, L. 2D Phase-Based RFID Localization for On-Site Landslide Monitoring. Remote Sens. 2022, 14, 3577. [Google Scholar] [CrossRef]
- Caccami, M.C.; Amendola, S.; Occhiuzzi, C. Method and system for reading RFID tags embedded into tires on conveyors. In Proceedings of the 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA), Pisa, Italy, 25–27 September 2019; pp. 141–144. [Google Scholar] [CrossRef]
- Badriev, A.; Makarova, I.; Buyvol, P. The RFID system for accounting and control of truck tires with two-step identification: A case study. In Proceedings of the 2020 13th International Conference on Developments in eSystems Engineering (DeSE), Liverpool, UK, 14–17 December 2020; pp. 100–104. [Google Scholar] [CrossRef]
- Xu, J.; Li, Z.; Zhang, K.; Yang, J.; Gao, N.; Zhang, Z.; Meng, Z. The Principle, Methods and Recent Progress in RFID Positioning Techniques: A Review. IEEE J. Radio Freq. Identif. 2023, 7, 50–63. [Google Scholar] [CrossRef]
- Motroni, A.; Buffi, A.; Nepa, P. A Survey on Indoor Vehicle Localization Through RFID Technology. IEEE Access 2021, 9, 17921–17942. [Google Scholar] [CrossRef]
- Kubina, B.; Schüßler, M.; Mandel, C.; Maune, H.; Müller, D.; Ziroff, A.; Jakoby, R. A coherent multi-reader approach to increase the working range of passive RFID systems. In Proceedings of the 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA), Nice, France, 5–7 November 2012; pp. 350–355. [Google Scholar]
- Ajroud, C.; Hattay, J.; Machhout, M. Holographic Multi-Reader RFID Localization Method for Static Tags. In Proceedings of the 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT), Istanbul, Turkey, 17–20 May 2022; Volume 1, pp. 1393–1396. [Google Scholar]
- Chen, J.; Li, G.; Zhang, X.; Qin, T. An efficient algorithm for indoor location based on RFID. In Proceedings of the 2011 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 9–11 November 2011; pp. 1–4. [Google Scholar]
- Scherhäufl, M.; Pichler, M.; Stelzer, A. UHF RFID Localization Based on Evaluation of Backscattered Tag Signals. IEEE Trans. Instrum. Meas. 2015, 64, 2889–2899. [Google Scholar] [CrossRef]
- Wang, G.; Qian, C.; Shangguan, L.; Ding, H.; Han, J.; Cui, K.; Xi, W.; Zhao, J. HMO: Ordering RFID Tags with Static Devices in Mobile Environments. IEEE Trans. Mob. Comput. 2020, 19, 74–89. [Google Scholar] [CrossRef]
- Gui, L.; Xu, S.; Xiao, F.; Shu, F.; Yu, S. Non-Line-of-Sight Localization of Passive UHF RFID Tags in Smart Storage Systems. IEEE Trans. Mob. Comput. 2022, 21, 3731–3743. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Jiang, S.; Yang, Y.; Li, K.; Cao, J.; Liu, J. Accurate Localization of Tagged Objects Using Mobile RFID-Augmented Robots. IEEE Trans. Mob. Comput. 2021, 20, 1273–1284. [Google Scholar] [CrossRef]
- Ni, L.; Liu, Y.; Lau, Y.C.; Patil, A. LANDMARC: Indoor location sensing using active RFID. In Proceedings of the 1st IEEE International Conference on Pervasive Computing and Communications, 2003 (PerCom 2003), Washington, DC, USA, 23–26 March 2003; pp. 407–415. [Google Scholar]
- Hekimian-Williams, C.; Grant, B.; Liu, X.; Zhang, Z.; Kumar, P. Accurate localization of RFID tags using phase difference. In Proceedings of the 2010 IEEE International Conference on RFID (IEEE RFID 2010), Orlando, FL, USA, 14–16 April 2010; pp. 89–96. [Google Scholar]
- Yuan, Y.; Yu, D. UHF RFID shelf solution with cascaded reader antenna and positioning capability. In Proceedings of the 2012 IEEE International Conference on RFID (RFID), Orlando, FL, USA, 3–5 April 2012; pp. 149–156. [Google Scholar]
- Liu, T.; Yang, L.; Lin, Q.; Guo, Y.; Liu, Y. Anchor-free backscatter positioning for RFID tags with high accuracy. In Proceedings of the IEEE INFOCOM 2014—IEEE Conference on Computer Communications, Toronto, ON, Canada, 27 April–2 May 2014; pp. 379–387. [Google Scholar]
- Qiu, L.; Huang, Z.; Zhang, S.; Wang, W. RFID Tag Ranging Measurement Based on Multi-frequency Carrier Phase Difference. In Proceedings of the 2014 Seventh International Symposium on Computational Intelligence and Design, Hangzhou, China, 13–14 December 2014; Volume 1, pp. 245–248. [Google Scholar]
- Qiu, L.; Huang, Z.; Wirström, N.; Voigt, T. 3DinSAR: Object 3D localization for indoor RFID applications. In Proceedings of the 2016 IEEE International Conference on RFID (RFID), Orlando, FL, USA, 21–23 September 2016; pp. 1–8. [Google Scholar]
- Chatzistefanou, A.R.; Dimitriou, A.G. Tag Localization by Handheld UHF RFID Reader and Optical Markers. In Proceedings of the 2022 IEEE 12th International Conference on RFID Technology and Applications (RFID-TA), Cagliari, Italy, 12–14 September 2022; pp. 9–12. [Google Scholar]
- Wu, H.; Tao, B.; Gong, Z.; Yin, Z.; Ding, H. A Fast UHF RFID Localization Method Using Unwrapped Phase-Position Model. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1698–1707. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, Z.; Ye, N.; Wang, R.; Li, X.Y. One More Tag Enables Fine-Grained RFID Localization and Tracking. IEEE/ACM Trans. Netw. 2018, 26, 161–174. [Google Scholar] [CrossRef]
- Zhang, S.; Fu, Y.; Jiang, D.; Liu, X. RFID Localization Based on Multiple Feature Fusion. In Proceedings of the 2018 15th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Hong Kong, China, 11–13 June 2018; pp. 1–2. [Google Scholar]
- Fu, S.; Zhang, S.; Jiang, D.; Liu, X. Real-time and Accurate RFID Tag Localization based on Multiple Feature Fusion. In Proceedings of the 2020 16th International Conference on Mobility, Sensing and Networking (MSN), Tokyo, Japan, 17–19 December 2020; pp. 694–699. [Google Scholar]
- Peng, C.; Jiang, H.; Qu, L. Deep Convolutional Neural Network for Passive RFID Tag Localization Via Joint RSSI and PDOA Fingerprint Features. IEEE Access 2021, 9, 15441–15451. [Google Scholar] [CrossRef]
- Hoffman, A.J.; Bester, N.P. RSS and Phase Kalman Filter Fusion for Improved Velocity Estimation in the Presence of Real-World Factors. IEEE J. Radio Freq. Identif. 2021, 5, 75–93. [Google Scholar] [CrossRef]
- Tripicchio, P.; Unetti, M.; D’Avella, S.; Buffi, A.; Motroni, A.; Bernardini, F.; Nepa, P. A Synthetic Aperture UHF RFID Localization Method by Phase Unwrapping and Hyperbolic Intersection. IEEE Trans. Autom. Sci. Eng. 2022, 19, 933–945. [Google Scholar] [CrossRef]
- Wang, H.; Gong, W. RF-Pen: Practical Real-Time RFID Tracking in the Air. IEEE Trans. Mob. Comput. 2021, 20, 3227–3238. [Google Scholar] [CrossRef]
- Hou, C.; Xie, Y.; Zhang, Z. FCLoc: A Novel Indoor Wi-Fi Fingerprints Localization Approach to Enhance Robustness and Positioning Accuracy. IEEE Sens. J. 2023, 23, 7153–7167. [Google Scholar] [CrossRef]
Object | Setting |
---|---|
Area size | 4 m × 4 m × 2.5 m |
Shelf size | 2 m × 1 m × 2 m |
Distance between tag pairs | 5 cm |
Distance between two antennas | 0.2 m |
Reader frequency | 924.5 MHZ |
Sampling rate | 100 Sa/s |
90% Gaussian noise | 6 dBm |
10% Gaussian noise | 15 dBm |
Robot moving speed | 0.2 m/s |
Group | Targets (cm) | Position of MRL in [13] (cm) | Position of (cm) | Position of (cm) |
---|---|---|---|---|
(1.3, 0.6, 1.3) | 3.34, 45.69, 68.86 | 14.47, 2.67, 0.05 | 3.16, 42.52, 62.23 | |
(1.3, 0.8, 1.3) | 3.30, 36.07, 62.85 | 15.19, 2.20, 0.06 | 3.20, 34.50, 55.48 | |
(1.3, 1.0, 1.3) | 3.10, 28.75, 56.15 | 16.23, 2.01, 0.06 | 3.17, 28.16, 48.92 | |
(1.3, 0.8, 0.7) | 1.48, 7.30, 14.12 | 12.37, 1.36, 0.05 | 0.91, 5.32, 11.15 | |
(1.3, 0.8, 1.3) | 3.38, 36.31, 62.71 | 15.45, 2.28, 0.06 | 3.29, 34.51, 55.46 | |
(1.3, 0.8, 1.9) | 4.92, 66.92, 133.99 | 18.90, 3.59, 0.07 | 6.45, 69.44, 122.55 | |
(0.7, 0.8, 1.3) | 6.74, 25.39, 42.53 | 14.93, 2.15, 0.07 | 4.70, 27.97, 49.03 | |
(1.3, 0.8, 1.3) | 3.34, 36.03, 63.64 | 14.81, 2.10, 0.06 | 3.10, 34.41, 56.03 | |
(1.9, 0.8, 1.3) | 9.39, 29.22, 40.17 | 15.80, 2.30, 0.06 | 9.09, 30.64, 31.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, Y.; Gu, T.; Zheng, D.; Zhang, Y.; Huan, H. A High-Precision 3D Target Perception Algorithm Based on a Mobile RFID Reader and Double Tags. Remote Sens. 2023, 15, 3914. https://doi.org/10.3390/rs15153914
Xie Y, Gu T, Zheng D, Zhang Y, Huan H. A High-Precision 3D Target Perception Algorithm Based on a Mobile RFID Reader and Double Tags. Remote Sensing. 2023; 15(15):3914. https://doi.org/10.3390/rs15153914
Chicago/Turabian StyleXie, Yaqin, Tianyuan Gu, Di Zheng, Yu Zhang, and Hai Huan. 2023. "A High-Precision 3D Target Perception Algorithm Based on a Mobile RFID Reader and Double Tags" Remote Sensing 15, no. 15: 3914. https://doi.org/10.3390/rs15153914
APA StyleXie, Y., Gu, T., Zheng, D., Zhang, Y., & Huan, H. (2023). A High-Precision 3D Target Perception Algorithm Based on a Mobile RFID Reader and Double Tags. Remote Sensing, 15(15), 3914. https://doi.org/10.3390/rs15153914