A Deep Learning-Based Mapping Model for Three-Dimensional Propeller RANS and LES Flow Fields
Abstract
:1. Introduction
2. Related Work
2.1. RANS
2.2. LES
2.3. The Difference Between RANS and LES
2.4. Application of Deep Learning in Turbulence Modelling
3. Method
3.1. Data Processing for Propeller Flow Field Data
3.2. Mapping Model
3.3. Model Input
3.3.1. Feature Extraction for Single Velocity Components
3.3.2. Feature Extraction for Three Velocity Components
3.3.3. Two-Stream Model
3.4. Regression Module
4. Experiments
4.1. Dataset
4.2. Experimental Environment and Experimental Settings
4.3. Experiment of Feature Extraction Model for Flow Fields
4.3.1. Flow Field Customization Error Rate
4.3.2. Experiments of Flow Field Input and Voxelization
4.3.3. Experiments of Mapping Model Input
4.4. Experiment of Regression of Flow Fields
4.5. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Slotnick, J.P.; Khodadoust, A.; Alonso, J.J.; Darmofal, D.L.; Gropp, W.D.; Lurie, E.A.; Mavriplis, D.J.; Venkatakrishnan, V. Enabling the Environmentally Clean Air Transportation of the Future: A Vision of Computational Fluid Dynamics in 2030. Philos. Trans. 2014, 372, 20130317. [Google Scholar] [CrossRef] [PubMed]
- Brunton, S.L.; Noack, B.R.; Koumoutsakos, P. Machine Learning for Fluid Mechanics. Annu. Rev. Fluid Mech. 2020, 52, 477–508. [Google Scholar] [CrossRef]
- Moin, P.; Mahesh, K. Direct Numerical Simulation: A Tool in Turbulence Research. Annu. Rev. Fluid Mech. 1998, 30, 539–578. [Google Scholar] [CrossRef]
- Ferziger, J.H. Large Eddy Simulation: Its Role in Turbulence Research. In Theoretical Approaches to Turbulence; Springer: New York, NY, USA, 1985; pp. 51–72. [Google Scholar]
- Orszag, S.A.; Patterson, G.S. Numerical Simulation of Three-Dimensional Homogeneous Isotropic Turbulence. Phys. Rev. Lett. 1972, 28, 76–79. [Google Scholar] [CrossRef]
- Durbin, P.A. Some Recent Developments in Turbulence Closure Modeling. Annu. Rev. Fluid Mech. 2015, 50, 77–103. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. The Numerical Computation of Turbulent Flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- Launder, B.E.; Spalding, D.B. Lectures in Mathematical Models of Turbulence; Academic Press: London, UK, 1972. [Google Scholar]
- Spalart, P.R.; Allmaras, S.R. A One-Equation Turbulence Model for Aerodynamic Flows. In Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1992; p. 439. [Google Scholar]
- Plested, J.; Gedeon, T. Deep Transfer Learning for Image Classification: A Survey. arXiv 2022, arXiv:2205.09904. [Google Scholar]
- Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object Detection in 20 Years: A Survey. Proc. IEEE 2023, 111, 257–276. [Google Scholar] [CrossRef]
- Mo, Y.; Wu, Y.; Yang, X.; Liu, F.; Liao, Y. Review of the State-of-the-Art Technologies of Semantic Segmentation Based on Deep Learning. Neurocomputing 2022, 493, 626–646. [Google Scholar] [CrossRef]
- Fukami, K.; Fukagata, K.; Taira, K. Super-Resolution Reconstruction of Turbulent Flows with Machine Learning. J. Fluid Mech. 2019, 870, 106–120. [Google Scholar] [CrossRef]
- Yu, W.; Zhao, F.; Yang, W.; Xu, H. Integrated Analysis of CFD Simulation Data with K-Means Clustering. Appl. Therm. Eng. 2019, 153, 299–305. [Google Scholar] [CrossRef]
- Ling, J.D.; Templeton, J.A. Advances in Turbulence Modeling Using Machine Learning. Hypothetical J. 2022. [Google Scholar]
- Kochkov, D.; Smith, J. Machine Learning-Augmented Turbulence Models for Large-Eddy Simulation of Flows over Rough Surfaces. Phys. Rev. Fluids 2021, 6, 024604. [Google Scholar]
- Tao, W.Q. Numerical Heat Transfer; Xi’an Jiaotong University Press: Xi’an, China, 2001. [Google Scholar]
- Qian, Z.; Wang, F.; Guo, Z.; Lu, J. Performance Evaluation of an Axial-Flow Pump with Adjustable Guide Vanes in Turbine Mode. Renew. Energy 2016, 99, 1146–1152. [Google Scholar] [CrossRef]
- Cheah, K.W.; Lee, T.S.; Winoto, S.H.; Zhao, Z.N. Numerical Flow Simulation in a Centrifugal Pump at Design and Off-Design Conditions. Int. J. Rotating Mach. 2007, 2007, 83641. [Google Scholar] [CrossRef]
- Nguyen, D.A.; Ma, S.B.; Kim, S.; Kim, J.H. Influence of Inflow Directions and Setting Angle of Inlet Guide Vane on Hydraulic Performance of an Axial-Flow Pump. Sci. Rep. 2023, 13, 3468. [Google Scholar] [CrossRef] [PubMed]
- Achari, A.M.; Das, M.K. Application of Various RANS-Based Models Towards Predicting Turbulent Slot Jet Impingement. Int. J. Therm. Sci. 2015, 98, 332–351. [Google Scholar] [CrossRef]
- Smagorinsky, J. General Circulation Experiments with the Primitive Equations. Mon. Weather Rev. 1963, 91, 99–164. [Google Scholar] [CrossRef]
- Gopalan, H.; Stoellinger, M.; Heinz, S. Analysis of a Realizable Unified RANS-LES Model. In Proceedings of the 48th AIAA Aerospace Sciences Meeting & Exhibit, Orlando, FL, USA, 4–7 January 2010. AIAA Paper 2010-1102. [Google Scholar]
- Rodi, W.; Ferziger, J.H.; Breuer, M.; Pourquie, M.J.B.M. Status of Large Eddy Simulation: Results of a Workshop. J. Fluids Eng. 1997, 119, 248–262. [Google Scholar] [CrossRef]
- Piomelli, U. Large-Eddy Simulation: Achievements and Challenges. Prog. Aerosp. Sci. 1999, 35, 335–362. [Google Scholar] [CrossRef]
- Edeling, W.N.; Cinnella, P.; Dwight, R.P.; Bijl, H. Bayesian Estimates of Parameter Variability in the k-ε Turbulence Model. J. Comput. Phys. 2014, 258, 73–94. [Google Scholar] [CrossRef]
- Parish, E.J.; Duraisamy, K. Paradigm for Data-Driven Predictive Modeling Using Field Inversion and Machine Learning. J. Comput. Phys. 2016, 305, 758–774. [Google Scholar] [CrossRef]
- Wang, J.-X.; Wu, J.-L.; Xiao, H. Physics-Informed Machine Learning Approach for Reconstructing Reynolds Stress Modeling Discrepancies Based on DNS Data. Phys. Rev. Fluids 2017, 2, 034603. [Google Scholar] [CrossRef]
- Hanrahan, S.; Kozul, M.; Sandberg, R.D. Studying Turbulent Flows with Physics-Informed Neural Networks and Sparse Data. Int. J. Heat Fluid Flow 2023, 104, 109232. [Google Scholar] [CrossRef]
- Jin, J.; Ye, Y.; Li, X.; Li, L.; Shan, M.; Sun, J. A Mapping Model of Propeller RANS and LES Flow Fields Based on Deep Learning Methods. Appl. Sci. 2023, 13, 11716. [Google Scholar] [CrossRef]
Input Size (m) | Voxel Size | Time of Voxel Generation(s) | Rate | Rate | Rate | Average Prediction Time (s) |
---|---|---|---|---|---|---|
1 × 1 × 0.5 | 0.01 × 0.01 × 0.01 | 336 | 2.87% | 26.94% | 22.54% | 693 |
1 × 1 × 0.5 | 0.0125 × 0.0125 × 0.0125 | 292 | 3.04% | 27.75% | 34.59% | 589 |
0.9 × 0.9 × 0.5 | 0.01 × 0.01 × 0.01 | 315 | 2.71% | 27.12% | 22.58% | 626 |
0.8 × 0.8 × 0.4 | 0.01 × 0.01 × 0.01 | 269 | 2.76% | 27.55% | 22.60% | 542 |
0.8 × 0.8 × 0.4 | 0.0125 × 0.0125 × 0.0125 | 230 | 2.73% | 27.59% | 22.73% | 467 |
0.8 × 0.8 × 0.4 | 0.02 × 0.02 × 0.01 | 153 | 3.64% | 35.57% | 30.86% | 315 |
0.7 × 0.7 × 0.4 | 0.01 × 0.01 × 0.01 | 217 | 3.17% | 29.83% | 25.43% | 420 |
0.6 × 0.6 × 0.4 | 0.01 × 0.01 × 0.01 | 173 | 3.18% | 30.62% | 28.89% | 354 |
Model Input | Rate | Rate | Rate | |
---|---|---|---|---|
Single Velocity Component | 2.75% | 27.55% | 22.89% | 473 |
Three Velocity Component | 2.73% | 27.59% | 22.73% | 467 |
Time-stream + Single Velocity Component | 5.56% | 41.27% | 69.83% | 542 |
Time-stream + Three Velocity Components | 5.43% | 40.94% | 69.98% | 535 |
Model Input | Rate | Rate | Rate |
---|---|---|---|
Time-stream + Three Velocity Components | 5.64% | 7.78% | 9.26% |
Three Velocity Components | 5.85% | 8.42% | 9.78% |
Error Rate | |||
---|---|---|---|
mapping between RANS and LES | 2.73% | 27.59% | 22.73% |
x | y | z | (m/s) | (m/s) | (m/s) | |||
---|---|---|---|---|---|---|---|---|
Result | Label | Result | Label | Result | Label | |||
−0.16585 | −0.08994 | −0.21504 | 2.15706 | 2.19746 | 0.14224 | 0.14532 | 0.29168 | 0.29109 |
−0.16508 | −0.08907 | −0.21451 | 2.15313 | 2.15768 | 0.14123 | 0.14672 | 0.29196 | 0.28270 |
−0.16503 | −0.08974 | −0.21626 | 2.15808 | 2.16042 | 0.14013 | 0.15002 | 0.29114 | 0.28450 |
−0.16578 | −0.08829 | −0.21483 | 2.14943 | 2.15647 | 0.13969 | 0.15043 | 0.29172 | 0.28002 |
−0.16585 | −0.09063 | −0.21638 | 2.16025 | 2.15890 | 0.14129 | 0.15098 | 0.29034 | 0.27628 |
−0.16587 | −0.08892 | −0.21644 | 2.15362 | 2.15467 | 0.13917 | 0.15431 | 0.29166 | 0.26920 |
−0.16385 | −0.08907 | −0.21554 | 2.15616 | 2.15543 | 0.13933 | 0.15653 | 0.29141 | 0.26843 |
−0.16391 | −0.08757 | −0.21501 | 2.15019 | 2.15571 | 0.13741 | 0.15702 | 0.29236 | 0.28698 |
−0.16496 | −0.08727 | −0.21354 | 2.14572 | 2.15565 | 0.13927 | 0.13605 | 0.29261 | 0.26581 |
−0.16501 | −0.08827 | −0.21607 | 2.15193 | 2.15477 | 0.13775 | 0.15723 | 0.29230 | 0.28890 |
−0.16582 | −0.08804 | −0.21334 | 2.14704 | 2.15098 | 0.14111 | 0.15702 | 0.29198 | 0.28945 |
−0.16381 | −0.09057 | −0.21604 | 2.16112 | 2.15386 | 0.14047 | 0.15436 | 0.29006 | 0.27584 |
−0.16390 | −0.09010 | −0.21757 | 2.16120 | 2.15779 | 0.13828 | 0.15675 | 0.28969 | 0.27541 |
−0.16383 | −0.08856 | −0.21707 | 2.15608 | 2.18456 | 0.13682 | 0.13467 | 0.29152 | 0.28534 |
−0.16499 | −0.09118 | −0.21700 | 2.16223 | 2.09779 | 0.14071 | 0.13575 | 0.28947 | 0.27355 |
−0.16576 | −0.08996 | −0.21754 | 2.15976 | 2.17690 | 0.13850 | 0.13890 | 0.29016 | 0.27628 |
−0.16503 | −0.08902 | −0.21773 | 2.15670 | 2.09443 | 0.13735 | 0.13752 | 0.29094 | 0.26750 |
−0.16500 | −0.08677 | −0.21533 | 2.14615 | 2.06082 | 0.13620 | 0.13605 | 0.29291 | 0.26581 |
−0.16583 | −0.08682 | −0.21438 | 2.14438 | 2.06082 | 0.13809 | 0.13605 | 0.29214 | 0.26554 |
−0.16585 | −0.08737 | −0.21597 | 2.14746 | 2.06082 | 0.13699 | 0.13605 | 0.29236 | 0.26581 |
−0.16582 | −0.09121 | −0.21787 | 2.16155 | 2.09789 | 0.13943 | 0.13678 | 0.28929 | 0.27476 |
−0.16586 | −0.08881 | −0.21822 | 2.15459 | 2.12824 | 0.13693 | 0.15567 | 0.29151 | 0.27895 |
−0.16585 | −0.08768 | −0.21740 | 2.15043 | 2.18457 | 0.13613 | 0.15919 | 0.29295 | 0.27568 |
−0.16236 | −0.08905 | −0.21556 | 2.15768 | 2.10101 | 0.13863 | 0.15366 | 0.29105 | 0.28543 |
−0.16502 | −0.08824 | −0.21605 | 2.15187 | 2.15473 | 0.137549 | 0.15724 | 0.29217 | 0.28836 |
Mapping Model | Average Prediction | |||
---|---|---|---|---|
3D mapping model | 2.73% | 27.59% | 22.73% | 467 |
2D mapping model | 5.78% | 8.12% | 9.87% | 1974 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, J.; Ye, Y.; Li, X.; Li, L.; Shan, M.; Sun, J. A Deep Learning-Based Mapping Model for Three-Dimensional Propeller RANS and LES Flow Fields. Appl. Sci. 2025, 15, 460. https://doi.org/10.3390/app15010460
Jin J, Ye Y, Li X, Li L, Shan M, Sun J. A Deep Learning-Based Mapping Model for Three-Dimensional Propeller RANS and LES Flow Fields. Applied Sciences. 2025; 15(1):460. https://doi.org/10.3390/app15010460
Chicago/Turabian StyleJin, Jianhai, Yuhuang Ye, Xiaohe Li, Liang Li, Min Shan, and Jun Sun. 2025. "A Deep Learning-Based Mapping Model for Three-Dimensional Propeller RANS and LES Flow Fields" Applied Sciences 15, no. 1: 460. https://doi.org/10.3390/app15010460
APA StyleJin, J., Ye, Y., Li, X., Li, L., Shan, M., & Sun, J. (2025). A Deep Learning-Based Mapping Model for Three-Dimensional Propeller RANS and LES Flow Fields. Applied Sciences, 15(1), 460. https://doi.org/10.3390/app15010460