MATH 651 HOMEWORK V SPRING 2013

Problem 1. Show that an injective covering map must be a homeomorphism.

Problem 2. Show that the map $q: (0,2) \longrightarrow S^1$ defined by $q(x) = e^{2\pi i x}$ is **not** a covering map.

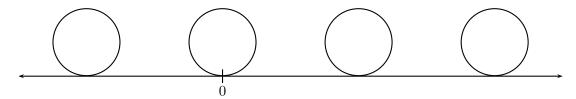
Problem 3. Suppose that $q: E \longrightarrow B$ is a covering and $b_1, b_2 \in B$. (As usual, assume that E is connected and locally path-connected.) Show that there is a bijection $q^{-1}(b_1) \cong q^{-1}(b_2)$.

Problem 4. A subspace $A \subseteq X$ is said to be a **deformation retract** of X if there is a retraction $r: X \longrightarrow A$ and a homotopy $h: i \circ r \simeq id_X$ such that h(a, t) = a for all $a \in A$.

- (1) Show the torus with a point removed deformation retracts onto ∞ (= $S^1 \vee S^1$). (Hint: Think of the torus as a quotient of I^2 .)
- (2) Show that \mathbb{R}^2 with two points removed deformation retracts onto ∞ .
- (3) What do parts (1) and (2) tell you about the fundamental groups of the punctured torus and the twice punctured plane?

Problem 5.

(1) Describe a covering of $S^1 \vee S^1$ by the space E given in the picture below:



- (2) Take the point labelled as 0 as the basepoint for E. What is the image under your covering map p of the loop around the circle at 0? What about the loop (at 0) around the circle at 1?
- (3) Show that the two loops in E described in part (2) are not homotopic. Use this to show that $\pi_1(S^1 \vee S^1)$ is not abelian.

Date: February 9, 2013.