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Droplet-based high-throughput 3D genome structure mapping
of single cells with simultaneous transcriptomics
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Single-cell three-dimensional (3D) genome techniques have advanced our understanding of cell-type-specific chromatin structures
in complex tissues, yet current methodologies are limited in cell throughput. Here we introduce a high-throughput single-cell Hi-C
(dscHi-C) approach and its transcriptome co-assay (dscHi-C-multiome) using droplet microfluidics. Using dscHi-C, we investigate
chromatin structural changes during mouse brain aging by profiling 32,777 single cells across three developmental stages
(3 months, 12 months, and 23 months), yielding a median of 78,220 unique contacts. Our results show that genes with significant
structural changes are enriched in pathways related to metabolic process and morphology change in neurons, and innate immune
response in glial cells, highlighting the role of 3D genome organization in physiological brain aging. Furthermore, our multi-omics
joint assay, dscHi-C-multiome, enables precise cell type identification in the adult mouse brain and uncovers the intricate
relationship between genome architecture and gene expression. Collectively, we developed the sensitive, high-throughput dscHi-C
and its multi-omics derivative, dscHi-C-multiome, demonstrating their potential for large-scale cell atlas studies in development and
disease.

Cell Discovery; https://doi.org/10.1038/s41421-025-00770-8

INTRODUCTION
Chromatin structure is fundamental to the DNA-templated
process, serving as a critical layer for gene regulation. Throughout
development and disease progression, chromatin structure under-
goes significant reorganization1,2 and exhibits cell type-specific
configurations. Techniques such as chromosome conformation
capture and its derivatives have advanced our understanding of
chromatin folding3–5. Over the past decade, several single-cell
three-dimensional (3D) genome mapping techniques have
emerged6–10, enabling the identification of cell type-specific
chromatin structural changes within tissues during both develop-
mental and disease processes1,11–13. However, current scHi-C
methodologies are constrained by limited cell throughput.
Although high-throughput scHi-C methods using combinatorial
indexing have been introduced14,15, these approaches are often
labor-intensive, require custom reagents, and yield sparse data
characterized by a low number of contacts.
Aging is a universal process marked by a progressive decline in

physiological function that have broad impacts at cellular and
systemic level16,17. Despite its broad effects, the underlying
mechanisms driving aging remain poorly understood. Notably,
aging contributes to the deterioration of brain function, leading to
cognitive decline and an increased susceptibility to neurodegen-
erative diseases such as Alzheimer’s and Parkinson’s disease18,19.
While single-cell genomics has revolutionized aging research by
providing unprecedented insights into cellular and molecular
changes20–23—such as the widespread activation of glial and
immune cells and aging-induced inflammation—the alterations in

chromatin architecture during aging have been less thoroughly
characterized11,24. Recent scHi-C studies have highlighted lifelong
chromatin structural reorganizations in granule cells of the
cerebellum11; however, the dynamics of chromatin structure
changes in the cerebrum during aging remain largely unexamined.
Here we repurpose a commercially available droplet micro-

fluidics platform to devise a high-throughput scHi-C assay (Fig. 1a,
see the section “Materials and methods”). Notably, this approach
obviates the need for customized devices, reagents, or oligonu-
cleotides, and can profile tens of thousands of single cells in a
single batch, and significantly shortens the sample preparation
time. Recently, a similar droplet-based Hi-C assay was reported25,
which represents an important advancement in the field.
However, it faces challenges in detection efficiency, which may
limit its ability to reliably identify cell types directly from
chromatin architecture features (see detailed discussion below).

RESULTS
Development of a high-throughput droplet-based scHi-C
technique
Unlike plate-based scHi-C, which decrosslinks crosslinked nuclei
that were processed through chromosome conformation capture
(3C) before Tn5 tagmentation, droplet-based single-cell library
preparation requires nuclei to remain intact prior to droplet
emulsification. Consequently, in situ, tagmentation of Hi-C-
proceeded nuclei is necessary to ensure compatibility with the
droplet-based system. Additionally, amplification of the

Received: 20 November 2024 Accepted: 30 December 2024

1Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China. 2Changping Laboratory, Beijing, China. 3Present address: Broad
Institute of MIT and Harvard, Cambridge, MA, USA. 4These authors contributed equally: Honggui Wu, Maoxu Wang. ✉email: sunneyxie@biopic.pku.edu.cn

www.nature.com/celldiscCell Discovery

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41421-025-00770-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41421-025-00770-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41421-025-00770-8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41421-025-00770-8&domain=pdf
http://orcid.org/0000-0001-7880-0591
http://orcid.org/0000-0001-7880-0591
http://orcid.org/0000-0001-7880-0591
http://orcid.org/0000-0001-7880-0591
http://orcid.org/0000-0001-7880-0591
http://orcid.org/0009-0009-3139-8043
http://orcid.org/0009-0009-3139-8043
http://orcid.org/0009-0009-3139-8043
http://orcid.org/0009-0009-3139-8043
http://orcid.org/0009-0009-3139-8043
http://orcid.org/0000-0001-9281-5239
http://orcid.org/0000-0001-9281-5239
http://orcid.org/0000-0001-9281-5239
http://orcid.org/0000-0001-9281-5239
http://orcid.org/0000-0001-9281-5239
https://doi.org/10.1038/s41421-025-00770-8
mailto:sunneyxie@biopic.pku.edu.cn
www.nature.com/celldisc


tagmented chromatin without decrosslinking is required. Initially,
we assessed Tn5 tagmentation on nuclei processed using the
conventional Hi-C procedure26, employing a single restriction
enzyme (RE) that resulted in long ligation products (5.1 kb).
However, we found that the bulk tagmented DNA fragments were
too lengthy for effective amplification (Supplementary Fig. S1a, b).
To address this issue, we adopted the Hi-C 3.0 procedure27, which
utilizes two distinct REs simultaneously and observed a successful

in situ fragmentation of chromatin into amplifiable DNA fragments
(Supplementary Fig. S1c, d). Furthermore, we demonstrated the
feasibility of amplifying these DNA fragments without the need for
decrosslinking the tagmented nuclei (Supplementary Fig. S1e).
These experiments collectively demonstrate that droplet-based
scHi-C library preparation is achievable.
We first validated the droplet single-cell Hi-C (dscHi-C) approach

on a mixture of human B lymphoblastoid cells (GM12878) and
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Fig. 1 Droplet-based scHi-C assay. a Schematics of dscHi-C workflow. b Unique DNA reads mapping to the human and mouse genome.
Species mixing experiment was performed using a mixture of human (GM12878) and mouse (mESC) cells to assess the collision rate. c Contact
maps of ensemble dscHi-C and bulk Hi-C data for mESC at 500, 50, and 10-kb resolution, respectively. d Density plot showing the correlation
of A/B compartment between ensemble dscHi-C and bulk Hi-C. e Scatter plot of downsample analysis showing the relationship between raw
reads and unique contacts per cell of dscHi-C. The central line indicates the median value (n= 900). f Violin plots comparing the number of
unique contacts per cell among dscHi-C datasets and published scHi-C datasets. g Schematics comparing the cell throughput and
experimental duration among four high-throughput scHi-C techniques. For non-droplet techniques, the throughput was estimated between 1
and 10 plates per batch. h dscHi-C delineates cell types. Left: Uniform manifold approximation (UMAP) showing the embedding of four
human cell lines of dscHi-C data. Right: Heatmap showing the scA/B values (calculated by Higashi) of cell-type-specific marker genes.
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mouse embryonic stem cells (mESCs). Briefly, freshly harvested
cells were crosslinked with paraformaldehyde (PFA) and disucci-
nimidyl glutarate (DSG), then proceeded using the Hi-C 3.0
procedure, followed by further sodium dodecyl sulfate (SDS)
treatment designed to remove open chromatin bias and increase
Tn5 tagmentation efficiency. Then nuclei were bulk transposed
with Tn5 transposase then loaded on 10x chromium droplet
platform for cell barcoding (Fig. 1a, see the “Materials and
methods” section). We termed this assay droplet dscHi-C.
To process dscHi-C data, we developed a dscHi-C tool package

(see the “Materials and methods” section), designed to execute
cell calling, mapping, contact identification and file generation for
downstream scHi-C analysis packages like Higashi28. The data
successfully separated human and mouse cells with low collision
and cross-contamination rates (Fig. 1b), demonstrating the
feasibility of dscHi-C.
Subsequent verification on mESC cells yielded 223 million

contacts, encompassing both intra-chromosomal (> 1 kb) and
inter-chromosomal interactions, from ~17,000 single cells across
two reactions. The median number of contacts per cell was ~20k
and 10k, with duplication rates of 43% and 30%, respectively
(Supplementary Table S1). Upon examination of genome cover-
age, we found that no significant open chromatin bias was
introduced during bulk Tn5 transposition (Supplementary Fig.
S2a–c). Ensemble dscHi-C profiles accurately recapitulated multi-
scale chromatin structures from compartments to topologically
associated domains (TADs) and loops, consistent with the
observations from bulk Hi-C data (Fig. 1c, d; Supplementary Fig.
S2d–f).
We then conducted deep sequencing on subsampled droplets

to estimate the library complexity of dscHi-C, revealing that it
achieves > 100k unique contacts per cell at a sequencing depth of
1 million reads (Fig. 1e). Comparison with published scHi-C
datasets demonstrated impressive throughput and sensitivity of
dscHi-C, with comparable intra-chromosomal contacts (Fig. 1f;
Supplementary Fig. S2g, h and Table S2). Compared to plate-
based scHi-C methods1, combinatorial indexing-based sciHi-C, and
s3-GCC, dscHi-C achieved the highest throughput with signifi-
cantly reduced labor and time requirements (Fig. 1g).

dscHi-C resolves cell identity, copy number, and structural
variations
Subsequent application of dscHi-C to a mixture of human cell lines
(K562, eHAP, HCT-116, and BJ) facilitated robust delineation of cell
identity, highly consistent with the identity based on single
nucleotide polymorphisms (SNPs) (Fig. 1h). Moreover, dscHi-C
profiles precisely depicted cell-type-specific chromatin structural
features (Fig. 1h).
In addition to providing chromatin structure information, dscHi-

C serves as a low-depth whole-genome sequencing tool, which is
particularly valuable for copy number variation (CNV) studies.
Given our cell line mixture contains both euploidy and aneuploidy
cells, our findings underscored dscHi-C’s effectiveness in detecting
CNV at single-cell resolution (Supplementary Fig. S3a, b).
Furthermore, leveraging Hi-C profiles as an effective method to
identify structural variations (SVs)29, we successfully demonstrated
that dscHi-C profiles reliably captured known SVs within these cell
lines (Supplementary Fig. S3c). Such analytical capabilities hold
significant promise for clinical tumor samples characterized by
complex CNVs and SVs.
Chromatin structure undergoes extensive reorganization

throughout the cell cycle30, a process elucidated using scHi-C
maps for computational cell cycle phasing8. Here, we illustrated
that dscHi-C single-cell profiles effectively captured the contin-
uous transition of chromatin structure during the cell cycle and
the characteristic chromatin reorganization (Supplementary Fig.
S4). Collectively, we successfully developed a robust and user-
friendly high-throughput scHi-C technique, dscHi-C, which not

only offers 3D genome structure information but also detects
CNVs and SVs.

dscHi-C reveals cell type-specific chromatin structures in
mouse brain
To demonstrate the feasibility of dscHi-C in elucidating cell type-
specific chromatin structures within complex tissues, we applied
dscHi-C to the adult mouse brain, which has been comprehen-
sively profiled previously1. We profiled 10,118 cells from the cortex
of 3-month-old mice, yielding a median of 89,883 unique contacts,
which is approximately three times the number of contacts
reported in recent droplet Hi-C datasets of the mouse brain (Fig.
1f). Based on their chromatin structure profiles, we found that
dscHi-C effectively distinguished seven major cell types: excitatory
neurons (ExN), inhibitory neurons (InN), oligodendrocyte precursor
cells (OPC), oligodendrocytes (Oligo), astrocytes (Astro), vascular
leptomeningeal cells (VLMC) and microglia (Micro) (Fig. 2a).
Importantly, the cell type classifications obtained from dscHi-C
were consistent between FastHigashi and scA/B values defined by
Dip-C package (Supplementary Fig. S5a, b), indicating the
robustness of cell type identification. For comparison, we
reanalyzed droplet Hi-C data from the mouse brain25 with the
same pipeline and found that the major cell types were not
effectively resolved with either FastHigashi or scA/B value in the
absence of data imputation (Supplementary Fig. S5c–f), likely due
to the sparsity of the data.
To further validate the capability of dscHi-C in accurately

capturing cell type-specific chromatin structures, we compared
our findings with existing datasets derived from high-resolution
Dip-C profiling of the mouse brain. Our results indicated a strong
concordance between cell types resolved by dscHi-C and those
identified by Dip-C (Fig. 2b). Additionally, the analysis of marker
gene expression corroborated that dscHi-C effectively captured
distinct chromatin structures associated with specific cell types
(Fig. 2c). Consistent with prior reports1, we observed that glial cells
exhibited more prominent long-range chromatin interactions
compared to neurons (Fig. 2d). Detailed examination of the
contact maps further revealed a high degree of agreement
between dscHi-C and Dip-C data (Fig. 2e).
Moreover, our results demonstrated that dscHi-C accurately

reflects the known correlations between chromatin structure and
gene expression, including compartmentalization and insulation
scores (Fig. 2f, g; Supplementary Fig. S5g, h). At a finer scale, we
identified that highly expressed long genes form “promoter stripe”
structures within their corresponding cell types (Fig. 2h), which is
reminiscent of our observation in GM1287831. Additionally, we
identified cell type-specific chromatin loops associated with
enhancers and promoters (Fig. 2i). Collectively, these results
illustrate that dscHi-C can effectively resolve cell types within
complex tissues and elucidate the relationship between chromatin
architecture and gene expression.

Dynamic chromatin structure changes during mouse
brain aging
Chromatin structures undergo extensive reorganization through-
out brain development and aging11,32. However, the remodeling
of chromatin architecture during the aging of the mouse
cerebrum remains unexplored. To investigate this, we further
conducted high-throughput dscHi-C on samples from the mouse
brain cortex at two distinct stages: 12 months (middle-aged) and
23 months (aged). Alongside data from 3-month-old mice, we
profiled a total of 32,777 single cells, yielding a median of 78,220
unique contacts (Fig. 3a).
We subsequently integrated these three datasets to analyze

alterations in chromatin structure associated with aging. Our initial
examination of large-scale chromatin organization revealed a
global weakening of compartmentalization across all cell types,
indicating a mixing of A/B compartments (Fig. 3b; Supplementary
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Fig. S6a, b). Notably, we observed significant alterations in contact
frequency relative to genomic distance in aged mice, character-
ized by a marked decrease in short-range interactions and an
increase in long-range interactions (Supplementary Fig. S6c). This

pattern exhibited two distinct behaviors between neurons and
OPC vs. glial cells. Cells exhibited a similar pattern in middle-aged
and young mice across all cell types, indicating no significant
change in chromatin architecture between these two stages.
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To alleviate the scHi-C data sparsity, we aggregated single cells
into metacells for further analysis (Supplementary Fig. S7a, b),
achieving a median of ~2 million contacts per metacell. The
metacells exhibited clear distinctions between various cell types,
along with more pronounced cell type-specific features (Supple-
mentary Fig. S7c–e).
We defined genomic regions exhibiting significant compart-

ment changes based on metacell classifications (Fig. 3c, d). Our
analysis indicated that non-neuronal cell types displayed a greater
number of age-related genomic regions (Fig. 3c), consistent with
the observations that glial cells exhibit more differentially
expressed genes compared to neurons20. Principal component
analysis (PCA) of differential scA/B values distinctly separated
metacells of aged mice from those of young and middle-aged
mice (Fig. 3e). This finding, combined with the distribution of
contact distance, suggests that the remodeling of 3D genome
architecture does not occur gradually during mouse brain aging.
Furthermore, when we examined single-cell expression data from
aging mice20, we found that the observed compartment changes
aligned with trends in gene expression alterations (Fig. 3f).
Subsequently, we analyzed the functions of genes within

genomic regions that exhibited altered scA/B values. We found
that genes with increasing scA/B values were enriched in
pathways associated with sensory perception, pheromone
response, and oxidative demethylation in neurons. In contrast,
non-neuronal cell types consistently demonstrated enrichment in
pathways related to the innate immune response, such as
inflammatory response, cytokine production (e.g., IL-4 and IL-13),
antigen presentation, and chemokine binding (Fig. 3g; Supple-
mentary Fig. S8c, d). Conversely, genes located in bins with
decreasing scA/B values were enriched in pathways related to
extracellular matrix organization and metabolic processes, includ-
ing NAD(P)+ nucleosidase activity across all cell types. Notably,
the cytokine-mediated signaling pathway (e.g., JAK-STAT pathway)
was exclusively enriched in ExN, highlighting a distinct impact on
these cells during aging. Given that chronic inflammation is a
common hallmark of aging17,33, we examined how compartments
change for genes involved in inflammation and found a significant
increase in scA/B values (Fig. 3h; Supplementary Fig. S8e),
indicating their activation20.
Domain analysis of ExN pseudobulk revealed that ~78% of TAD

borders (10 kb) were shared across three ages (Fig. 3i). GREAT
analysis of old-specific TAD borders in ExN showed enrichment in
pathways related to morphological changes (cell projection
organization and axon guidance), neurogenesis and neuron
development (Fig. 3i, j). To determine whether the gene body
(gene length > 300 kb) underwent TAD establishment or melting
during aging, we employed the “MELTRON” pipeline34. Similarly, we
found that the number of changed genes was higher in non-
neuronal cell types than in neurons (Supplementary Fig. S9a). Genes
that underwent domain melting such as Esrrg, were up-regulated
during aging, while genes that established domains, such as Plce1,
were down-regulated accordingly (Supplementary Fig. S9b). This
suggests that reformed domains can mediate genomic regulatory
elements that activate or promote transcriptional processes.
To test whether cells from aged mice can be distinguished

solely by chromatin architecture, we extracted the annotated ExN
cells and re-embedded into a low-dimensional representation
space (see Materials and methods). Briefly, we focused on ExNs
that have sufficient cell numbers and found that ExN cells from
aged mice clearly formed a distinct cluster. This clustering was
primarily dominated by increased inter-chromosomal intermin-
gling and enhanced TAD structures (Fig. 3k; Supplementary Fig.
S10). Collectively, these findings highlight the chromatin reorga-
nization that occurs during aging in the mouse brain, character-
ized by enhanced mixing of the A/B compartment, increased
inter-chromosomal and long-range interactions, and a reinforce-
ment of TAD structures.

Droplet-based single-cell joint chromatin structure and gene
expression assay
Understanding the intricate relationship between genome struc-
ture and gene regulation necessitates concurrent genome
structure and gene expression assays. While several related co-
assays have been developed recently24,35,36, they are labor-
intensive and require custom reagents and oligos. Here, we
incorporated gene expression detection into the dscHi-C assay,
creating a droplet-based single-cell multi-omics assay, termed
dscHi-C multiome (Fig. 4a, see the “Materials and methods”
section).
For the Hi-C part of dscHi-C multiome, we employed biotin

enrichment to increase the percentage of reads containing
contacts (referred to as contact ratio) (Fig. 4b). As expected, the
use of biotin enrichment substantially elevated the contact ratio
compared to the procedure without enrichment, resulting in a
contact ratio of 30.9% vs. 16.7% (Fig. 4c). Moreover, biotin
enrichment enabled the detection of a comparable number of
contacts (27k vs. 33k) using fewer sequencing reads (218k vs.
514k) (Fig. 1f). Notably, the resulting contact profiles showed no
significant difference between data with and without biotin
enrichment (Fig. 4d, e), and they exhibited a high degree of
correlation with dscHi-C only and bulk Hi-C datasets (Supplemen-
tary Fig. S11a–d).
Regarding the RNA part of dscHi-C multiome, we explored a

second reverse transcription (RT) treatment after droplet pooling
and decrosslinking. This exploration is motivated by the fact that
many RNA molecules are crosslinked with proteins, which
impedes reverse transcriptase from synthesizing full-length
transcripts (Fig. 4f). Indeed, the additional RT treatment signifi-
cantly enhanced RNA capture efficiency (genes: 4640 vs. 3294;
unique molecular identifiers (UMIs): 11,860 vs. 7369) (Fig. 4g)
without compromising data quality (Fig. 4h, j). The resulting
scRNA-seq gene expression profiles demonstrate high consistency
among themselves and with bulk RNA-seq data (Fig. 4j;
Supplementary Fig. S11e, f). When compared with published
single-cell multi-omics datasets, dscHi-C multiome RNA detection
efficiency outperforms most published datasets (Fig. 4k).
The simultaneous measurement of chromatin structure and

gene expression is crucial for studying the chromatin architecture
underlying cell-type-specific gene regulation in complex tissues.
We showed that dscHi-C multiome effectively captures both
expression status and chromatin structure with high precision
(Fig. 4l).

Chromatin structures behind cell type-specific gene
expression in mouse brain by dscHiC-multiome
To illustrate the capabilities of dscHiC-multiome, we sequenced
10,087 single cells from the brain cortex of young mice, resulting
in a median of 5191 contacts, 1250 detected genes, and 1968
UMIs. The clustering analysis of RNA data identified 20 sub-clusters
(Fig. 5a), indicating that the integration of RNA profiling captures
cell types with greater resolution compared to dscHiC data alone.
Layer-specific ExN subtypes were also identified by marker genes
such as Tafa2, Il1rapl2, and so on (Fig. 5b). InN were classified by
uniquely expressed markers like Lamp5, Meis2, Vip, Pvalb, Sst, and
Tshz2. Additionally, non-neuronal cell types, including Astro, Oligo,
OPC, and Micro were also identified. However, VLMC was not
detected, likely due to the limited number of the cells profiled.
Recent studies have made significant efforts to explore how 3D

genome organization influences transcriptional regulation35,37. To
quantitively assess the relationship between multiscale 3D
genome organization and gene expression, we re-calculated
scA/B value, insulation score, and TAD boundary at the metacell
level defined by RNA clusters (Supplementary Fig. S12a, b), aiming
to minimize potential noise in scHiC data. Before downstream
analysis, we removed potential doublets based on RNA expression
profiles (Supplementary Fig. S12c–e). We observed a strong
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Fig. 5 Droplet-based single-cell joint chromatin structure and gene expression co-assay of mouse brain. a UMAP visualization of
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correlation between the expression of ExN-specific genes
(n= 1925) and scA/B values when comparing ExN to non-
neuronal cell types (Fig. 5c). Several ExN marker genes, such as
Ptprd and Dpp10, exhibited significant correlations. Visualization of
the compartmentalization of the Ptprd gene body within metacells
confirmed that Ptprd resides in the A compartment, maintaining
high expression in ExN, while it is located in the B compartment in
non-neuronal cell types (Fig. 5g).
We further investigated the relationship between insulation

scores at gene bodies and gene expression, revealing an expected
negative correlation (Fig. 5d). Highly expressed marker genes in
ExN, compared to InN, displayed low insulation scores, exemplified
by the Ptprd gene (Fig. 5h). Changes in TAD boundaries may create
distinct domains that facilitate interactions between gene regula-
tory elements. Additionally, we explored whether TAD boundary
usage, defined by the frequency of boundary overlap with
transcription start sites (TSS) across cell populations, correlates
with gene expression profiles. A weak negative correlation was
observed for genes expressed in microglia compared to neuronal
cell types (Fig. 5i). However, some highly expressed marker genes
exhibited significantly low boundary usage. For instance, stronger
interaction strength was observed in microglia metacells surround-
ing the TSS and gene body of Dock2, whereas ExN metacells
displayed a clear boundary at the TSS, interrupting interactions
between the upstream region of the TSS and the gene body. To
validate that these correlations are not cell type-specific, we
repeated the analysis across multiple comparisons (n= 10) among
various main sub-cell types. The results indicated consistent
correlations across all cell types, although the correlation of
insulation scores exhibited greater variability (Fig. 5f). This evidence
suggests that different gene sets may exhibit unique patterns in
response to changes in TAD domains, with ExN marker genes
showing the strongest correlation with TAD boundary usage
(R= –0.379), while Oligo marker genes compared to neuronal cells
demonstrated the weakest correlation (R= –0.164).

DISCUSSION
The development of scHi-C technique has lagged behind other
single-cell genomics technologies, such as scRNA-seq, scATAC-seq,
and scCUT&Tag, primarily due to throughput and cost hurdles.
These aforementioned techniques have been successfully imple-
mented on droplet-based platforms and have emerged as powerful
tools for deciphering gene regulatory programs in both develop-
mental processes and disease contexts38–43. The implementation of
dscHi-C technique fills this gap in high-throughput 3D genome
analysis within droplet-based platform. Its application to cell atlas
study adds critical 3D interaction regulatory information beyond
identifying cis-regulatory elements. Additionally, dscHi-C offers
simultaneous CNV and SV analysis capabilities, making it a valuable
tool for various applications, particularly in investigating the
heterogeneity of tumor subclones and elucidating mechanisms
underlying tumorigenesis in clinical tumor samples.
Our methods strive to balance throughput and detectability,

both of which are essential for establishing a widely applicable
technology. The high-throughput advantages of droplet micro-
fluidics allow researchers to conduct large-scale cell atlas studies
in development and disease more cost-effectively. More impor-
tantly, the enhanced sensitivity of dscHi-C enables the detection
of genuine biological variation at single-cell resolution, signifi-
cantly decreasing sparsity compared to previous high-throughput
single-cell Hi-C methods14. Despite the rapid advancement of
scHi-C imputation software, our approach’s superior detectability
minimizes the artificial biases that may arise during imputation,
enhancing the reliability of downstream analyses.
Significant epigenetic changes occur during the aging process,

including reductions in global heterochromatin, nucleosome
reorganization, and alterations in histone modifications and DNA

methylation44. Notably, a DNA methylation-based epigenetic clock
has been proposed as a measure of biological age45. However, the
exploration of chromatin architecture in this context remains
limited. The application of dscHi-C to aged mouse brains has
revealed extensive rewiring of large-scale chromatin interactions
during brain aging and its correlation with gene expression
changes. Our data indicate a decrease in compartment strength
and an enhancement of TAD structures during mouse brain aging,
suggesting both global and local chromatin remodeling in
response to intrinsic or extrinsic stimuli. Genes associated with
genomic bins exhibiting compartment shifts or age-specific TAD
borders were significantly enriched in pathways related to
immune response, metabolic processes, and morphological
changes, corroborating findings from other studies on transcrip-
tional profiles46–48. This evidence suggests a coordinated pattern
between chromatin remodeling and transcriptional changes,
integrating data from other snRNA-seq datasets. However, due
to the limited datasets generated in this study, we could not
explore changes in fine-scale chromatin structures, such as
chromatin loops. Future research should focus on generating
larger datasets alongside high-resolution single-cell 3D genome
data from techniques like Dip-C or scMicro-C.

MATERIALS AND METHODS
Mice
The study was approved by the Peking University Laboratory Animal
Research Center Institutional Animal Care and Use Committee (IACUC), and
all animal experiments were conducted following the ethical guidelines.
Mouse brain samples were taken from the F1 hybrids of CAST/EiJ (JAX
000928)×C57BL/6J (JAX 000664). For each stage (3 months, 12 months, and
23 months), one female and one male mouse were used.

Cell culture
K562 cells (ATCC, CCL-243) were cultured in Iscove’s modified
Dulbecco’s medium. BJ cells (ATCC, CRL-2522) were grown in ATCC-
formulated Eagle’s minimum essential medium. eHAP cells (Cellosaurus)
and engineered haploid chronic myeloid leukemia cells were grown in
Iscove’s modified Dulbecco’s medium. GM12878 cells (Coriell Institute)
and B lymphoblastoid cells were grown in Roswell Park Memorial
Institute 1640 Medium. These media were supplemented with 10% FBS
and 1% Penicillin/Streptomycin, except for GM12878 supplemented
with 15% FBS.
mESC were grown in knockout DMEM medium containing 15% FBS, 1%

Penicillin/Streptomycin, 2 mM L-glutamine, 1 mM non-essential amino
acids, 1× nucleosides, 3 μM CHIR99021, 1 μM PD0325901, 0.1 mM
2-mercaptoethanol and 1000 U/mL LIF. The plate was pretreated with
1% gelatin. All cells were maintained at 37 °C with 5% CO2 at
recommended density.

Mouse brain nucleus isolation and crosslinking
The mice were euthanized using CO2, after which their brains were
extracted. The brain cortices were dissected on a dish containing ice-cold
PBS and then homogenized using a Dounce homogenizer as previously
described1. Briefly, the brain cortices were minced, then transferred to a
precooled 2-mL Dounce homogenizer containing 2-mL nuclei isolation
buffer (0.25 M sucrose, 25 mM KCl, 5 mM MgCl2, 10 mM HEPES pH 8.0, 1 μM
DTT, 0.1% Triton X-100), first by 15 strokes with the loose pestle A, followed
by 15 strokes with the tight pestle B. Then the samples were transferred to
a precooled 5-mL tube, centrifuged at 100× g for 8 min using a centrifuge
precooled to 4 °C with a swing bucket, washed twice with 4mL of nuclei
wash buffer (0.25 M sucrose, 25mM KCl, 5 mM MgCl2, 10 mM HEPES pH 8.0,
1 μM DTT) and filtered through a 30-μm cell strainer. Then the nuclei were
crosslinked with 1% PFA, followed by 3mM DSG, aliquoted, and stored at
–80 °C.

Hi-C 3.0 procedure
The Hi-C 3.0 experiments were performed as previously described49.
Briefly, cells were firstly double crosslinked with PFA followed by DSG, then
treated with 0.5% SDS and Triton X-100. Then the chromatin was digested
by resuspending the nuclei in a digestion mix containing DdeI and DpnII
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without detergent, and incubated at 37 °C for 2 h, followed by inactivating
the REs. The DNA ends were filled by biotin-labeled dATP, followed by
proximity ligation using T4 ligase by incubating at room temperature for
2 h. For samples prepared for the dscHi-C multiome experiment, all
reaction mixtures were supplemented with 0.5 U/μL Protector RNase
inhibitor.

dscHi-C procedure
The dscHi-C samples were proceeded with 10x ATAC kit v2. The Hi-C 3.0-
proceeded nuclei were further treated with 0.1% SDS by incubating at
55 °C for 1 h, then quenched by 1% Triton. This treatment was estimated to
cause ~20% of nucleus loss. Then nuclei were filtered with a 10-μm
strainer, then 20,000 nuclei were aliquoted as input and resuspended in
5 μL of 1× Nuclei Buffer (10x ATAC kit v2). Then the nuclei were proceeded
with “CG000496_Chromium_NextGEM_SingleCell_ATAC_ReagentKits_v2_
UserGuide_RevB.pdf” with slight modifications. Briefly, the bulk transposi-
tion was incubated at 37 °C for 1 h followed by 55 °C for 30min. Then the
reaction was stopped by adding 24 μL of 20mM EDTA containing 0.1%
SDS to stop the reaction by incubating at 37 °C for 10min, then quenched
by 1% Triton. Transposed nuclei were further filtered with a 10-μm strainer
to remove multiplets. Then the nuclei were resuspended in 8 μL 1× Nuclei
Buffer and 7 μL ATAC buffer B, then loaded on the 10x chip H. The GEM
was collected, and the linear amplification was modified to prolong the
extension time from 1 to 2 min. After GEM incubation, the nuclei were
decrosslinked by adding 5 μL QIAGEN proteaseK and incubating at 65 °C
for 1 h. Then the purified linear amplified DNA product was subjected to
library preparation, the amplification was performed as follows: 72 °C,
5 min; 98 °C, 30 s; 5–8 cycles of [98 °C, 10 s; 67 °C, 30 s; 72 °C; 2 min]; 72 °C,
2 min. Then the library was purified with 1.6× SPRI bead followed by 0.8×
SPRI bead selection to remove short DNA fragments. Then the dscHi-C
library was sequenced on Illumina Nova6000 S4 or NovaSeq X Plus
platform. 7 dscHi-C reactions were generated in this study: GM12878-mESC
mixture, mESC reaction 1, mESC reaction 2, mESC subsample was taken
from a subset of a droplet of mESC reaction 1, and human cell line mixture,
mouse brain cortex samples collected from 3-month-old, 12-mon-old, and
23-month-old mice. The information on these libraries was recorded in
Supplementary Table S1.

Difference between dscHi-C and droplet Hi-C
The dscHi-C assay differs from the recently published droplet Hi-C assay25

in several key aspects. First, dscHi-C utilizes dual crosslinking with PFA and
DSG, whereas droplet Hi-C relies solely on PFA. Notably, previous studies
have reported that dual crosslinking can reduce background noise in
chromatin interaction data27. Second, dscHi-C employs two restriction
enzymes followed by an end-repair step to generate blunt ends, while
droplet Hi-C uses three restriction enzymes (DpnII and MboI, which
recognize the same sites) without an end-repair step. Finally, dscHi-C
incorporates an additional SDS treatment step to minimize bias toward
open chromatin regions, a step that was not included in the droplet Hi-C
protocol.

dscHi-C multiome procedure
The dscHi-C multiome sample proceeded with 10x multiome ATAC+ gene
expression kit. The Hi-C 3.0 procedure was slightly modified. Specifically,
we adjusted the SDS concentration to 0.3% to retain more RNAs and
supplemented with RNase inhibitor at 1 U/μL in all reaction buffers. And no
further SDS treatment was performed. The Hi-C 3.0-processed nuclei were
filtered with a 10-μm strainer, counted, and aliquoted to provide 20,000
nuclei as input, then resuspended in 5 μL of 1× Nuclei Buffer (10x
multiome). Then the nuclei were proceeded with “CG000338_Chromium-
NextGEM_Multiome_ATAC_GEX_User_Guide_RevF.pdf” with some modifi-
cations. Briefly, the nuclei were transposed at 55 °C for 20min. The
transposed nuclei were loaded on 10x chip J. Post GEM incubation, the
samples were decrosslinked by adding 5 μL QIAGEN proteaseK and
incubating at 65 °C for 1 h.

Biotin enrichment procedure. The purified sample was subjected to
Streptavidin bead pull down (Hi-C DNA) and the supernatant (RNA) was
collected and transferred to a new tube and purified with 1.6× SPRI beads.
The DNA was directly subjected to library preparation on Streptavidin
beads by incubating as follows: 72 °C, 5 min; 98 °C, 30 s; 12–14 cycles of
[98 °C, 10 s; 67 °C, 30 s; 72 °C; 2 min]; 72 °C, 2 min]. The paired RNA was
subjected to a second RT treatment (see below).

Without biotin enrichment procedure. The purified sample was subjected
to preamplification, then split into two parts, and the DNA parts was
amplified as follows: 98 °C, 45 s; 5–7 cycles of [98 °C, 10 s; 67 °C, 30 s; 72 °C;
2 min]; 72 °C, 2 min. The paired RNA was proceeded to further amplification
and library preparation according to the manual without second RT.

Second RT procedure. The purified sample was subjected to a second RT
reaction performed in 100-μL RT mix (1× RT Buffer, 0.5 mM dNTP, 8 mM
DTT, 5% PEG8000, 2.5 mM MgCl2, 0.5 U/μL RNase inhibitor, 25 U/μL Maxima
H-minus RTase, 2 μL 10× Template Switch Oligo), incubated as follows:
42 °C, 30 min; 10 cycles of [50 °C, 2 min; 42 °C, 2 min], 85 °C, 5 min. Then, the
product was purified with 1.6× SPRI beads and then subjected to
preamplification and library preparation according to the manual.

Sequencing. The dscHi-C multiome DNA library and RNA library was
sequenced on Illumina Nova6000 S4 or NovaSeq X Plus platform. The RNA
was sequenced at 50k reads per cell, the DNA library was sequenced at
300k reads per cell.

DNA fragment length distribution quantification
The DNA fragment length distribution was quantified through capillary
electrophoresis by a Fragment Analyzer with DNF 474 NGS kit. The data were
exported by Prosize software (v3.0) and visualized by Python matplotlib.

dscHiC data preprocessing
To make dscHiC data compatible with downstream analysis, we developed
an ensembled tool called “dscHiCtools” (https://github.com/MaoxuWang/
dscHiCtools). dscHiCtools firstly identified the true cell barcodes from index
reads against whitelist (cellranger-atac-2.1.0/lib/python/atac/barcodes/
737K-cratac-v1.txt.gz) barcodes that allow one mismatch. Barcodes with
no or multiple hits will be discarded. Called cell barcodes were added to
read the name. Reads then were mapped to reference genome by bwa-
mem50(v 0.7.17) in 5SP mode. Hickit was used to extract and dedup
contacts. Notably, we did minor modifications to Hickit (https://
github.com/MaoxuWang/hickit) to adapt the single-cell features. Briefly,
we extracted the cell barcode to each contact information, and the cell
barcode was also considered in contact duplication rather than distance
(set parameters --dup-dist = 100”) alone. Many of the detected barcodes
harbor only a few contacts due to technique noise brought by microfluidic.
True cell barcodes were called by threshold. We applied kneedle (R
package, v1.0.0) to detect this threshold (turning point) defined by the
contact number and its rank of each barcode. To overcome under-
estimated contact number, we set the parameter “sensitivity” of kneedle
function from 1 to 10 and finally selected the one that can more closely
retain over 85% of the total contact number.

Multiplet detection
To remove potential doublet contamination, we used AMULET51 (v1.1) to
detect multiplets for dscHiC datasets. AMULET is a count-based statistical
method that can estimate the probability that a barcode is derived from
multiplets. Parameters are set as follows: (“maxinsertsize= 1000”, “start_-
base”= 0, “end_base”= 0), q-value threshold= 0.01). For scRNA datasets,
DoubletFinder52(v2.0.4) was used with parameters (“pc.num= 1:10”,
“pN= 0.25”). The expected multiplet rate was set to 7.5% according to
the reference of 10x genomics given the expected cell numbers.

Cell line cell typing by SNP
To demonstrate the power of cell typing by dscHiC data, we used an
independent source-derived cell type label as the golden standard to verify
its accuracy. In brief, this external label was achieved by leveraging prior
knowledge of heterogenous SNP sites within different cell lines. Souporcell53

(v2.5) was performed by setting parameters as follows: “-k= 4, skip_remap=
true, no_umi= true” to define the true cell type label for each single cell.

Bulk RNA-seq data processing
After obtaining bulk RNA-seq data of K562, eHAP, HCT-116, BJ cell line, gene
expression quantification was performed by Salmon54 (v1.7.0). Count matrix
was further imported by tximiport (v1.30.0) to summarize gene-level
quantification. The output can be directly loaded into DESeq255 (v1.42) by
DESeqDataSetFromTximport function. Cell type specific marker genes were
calculated by comparing every one cell type vs the other. Significant
differential genes were kept only if its p.adj < 0.001 and |log2FoldChange| > 2.
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Cell-cycle phasing
Prior knowledge was utilized to phase different cell cycles. Metrics for the
assignment were defined as Nagano8 described.

dscHi-C multiome HiC data processing
Main pipeline was the same as dscHiC data preprocessing procedure except
for the cell barcode calling. Index reads were firstly mapped against a whitelist
(cellranger-arc-2.0.2/lib/python/atac/barcodes/737K-arc-v1.txt.gz) and then
were converted to RNA barcodes (cellranger-arc-2.0.2/lib/python/cellranger/
barcodes/737K-arc-v1.txt.gz). The downstream analysis was also similar to
dscHiC data processing.

dscHi-C multiome RNA data processing
Cell Ranger toolkit (v7.0.1) was applied to align RNA reads and generate a
cell-by-gene count matrix using reference genome (“refdata-gex-mm10-
2020-A”). Downstream analysis was performed by Seurat56(v4.4).

CNV analysis
HMMcopy57 (v1.18.0) was used to profile copy number. To demonstrate
the potential power of dscHiC for CNV analysis, we performed this analysis
both in single-cell and bulk manner at 1-Mb resolution, with GC and
mappability corrected. Segmentation was called by hidden Markov model
in HMMcopy.

Species mixing experiment
Reads from species mixing experiment were mapped to reference genome
(refdata-cellranger-atac-GRCh38-and-mm10-2020-A-2.0.0/fasta/geno-
me.fa). Bam file was then split according to chromosome name (“hg38” or
mm10) into two bam files to call contacts accordingly. Species ratio was
calculated for each cell barcode. Barcodes with a mixing rate (proportion of
smaller number of reads that aligned to either hg38 or mm10) > 20% were
considered as doublets. Reads with a mapping quality < 20 were
discarded.

Imputation of contact maps with Higashi
To resolve the sparsity of our data, we utilized Higashi28 (a hypergraph
representation learning-based approach, https://github.com/ma-compbio/
Higashi/wiki) to impute dscHiC data. We followed the tutorial to train this
model on gpu and saved its output. Parameters were set to default
(resolution= 1,000,000 for cell-line and 500,000 for mouse brain libraries).

Calculation of scA/B compartment score
For higashi-imputed contact maps, we executed “scCompartment.py” in
the Higashi tooklit to calculate scA/B compartment score for each cell
without neighbor information used. The CpG density generated by
“CpG_density.py” was used to calibrate the result. The z-score-normalized
scA/B values were used in the downstream analysis. For raw single-cell
contact maps, we calculated scA/B values as described in Tan et al. using
“dscHiCtools scAB” sub-command. Raw scA/B values were used in gene
module calculation and imputed scA/B values were used in visualization
and inter-sample comparison.

Calculation of single-cell insulation scores
To accommodate the resolution required for insulation score calculation,
we re-trained the higashi model at 250-kb resolution for mouse brain
datasets. The single-cell insulation scores were calculated for higashi-
imputed contact maps by “scTAD.py” (with parameters “window_ins=
2000000”, “window_tad= 500000”) without neighbor information.

Joint cell calling in dscHi-C multiome
Single-cell analysis was performed by Seurat (v4.4). We only kept cells with
the minimal detection of “> 500 UMIs; > 400 genes; > 1000 contacts pairs;
percentage of mitochondrial content < 10%; inter-chromosomal contacts
rate < 45%” to the downstream analysis.

Dimension reduction
For dscHiC datasets, we used Fast-Higashi58 to infer a low-dimensional
representation of scHiC contact matrix (with parameters “resolution= 250 kb;
off_diag = 100; batch_norm= False; do_rwr= True; filter= True; do_conv=
False; do_col= False; no_col= False”). Size of the meta-embedding size was

set to 256. Finally, we used “embed_l2_norm_correct_coverage_fh” as single-
cell low-dimensional representation. The embedding matrix was loaded to
create a Seurat object by CreateSeuratObject function of Seurat.
For scRNA datasets in dscHi-C multiome, we firstly normalize count

matrix by “NormalizeData” with default parameters. Genes for downstream
analysis was selected by FindVariableFeatures (with parameters “selec-
tion.method= vst”, “nfeatures= 2000”). Gene expression matrix was
further scaled by “ScaleData” (with parameters “vars.to.regress= con-
tactsN”). We further performed PCA by “RunPCA” function in Seurat and
retained the first 25 components for downstream analysis.

Unsupervised clustering
UMAP visualization was performed by “RunUMAP” with default para-
meters. Unsupervised clustering was performed by “FindNeighbors” (with
parameters “dims= 1:25”) and “FindClusters” (with parameters “resolu-
tion= seq(0.2, 1,0.2)”).

Data integration of multiple datasets
To remove the potential batch effect, Harmony59 (v0.1) was used on the
PCA matrix with default parameters. To note that, UMAP visualization and
unsupervised clustering used the corresponding harmony layer instead of
original PCA layer.

Cell type identification
For dscHiC datasets, scA/B value matrix calculated by Higashi was
loaded into seurat object by CreateSeuratObject function of Seurat. Top
100 of each cell-type-specific marker genes were selected as gene sets
to calculated average scA/B value as Tan (2021) described. In cell-line
datasets, cell-type specific marker genes were defined by bulk RNA-seq
(see above). In mouse brain datasets, cell-type-specific marker genes
were collected in published mouse brain scRNA-seq datasets. Per-
single-cell calculation was performed by AddMetaData function. This
averaged gene-sets-level scA/B value can be easily visualized or
compared and thus determine the cell type information in a cluster-
specific manner.
For scRNA datasets of the mouse brain, marker genes were computed by

“FindAllMarkers” (with parameters “only.pos = TRUE”, “min.pct= 0.35”,
“logfc.threshold= 0.4”). Main clusters were determined at the resolution of
0.2, including ExN, InN, Astro, Oligo, OPC, Micro. To obtain a finer
annotation of cell types in mouse brain datasets, we also subtracted the
main clusters to do another round of clustering with higher resolution.

Ensembled contact maps of pseudobulk and metacell
To overcome the intrinsic noise in single-cell HiC data, we aggregated the
pseudobulk samples based on main or sub-cell types of unsupervised
clustering. Metacells were defined as single cells with similar Hi-C profiles.
After annotating each cluster by marker gene list of mean scA/B values, we
were able to iteratively cluster single cells within each cell type at a higher
resolution (“FindClusters” of Seurat, set the parameters “resolution= 15”),
thereby establishing the correspondence of metacells. Single cells
belonging to the same cluster were further merged into metacells and
processed in the same embedding procedure by FastHigashi. For dscHi-C
multiome datasets, metacells were defined as single cells with similar RNA
profiles, while the subsequent data processing procedures were consistent
with those applied to dscHi-C datasets. Then we merged the contact pair
file according to the correspondence. Juicer60 (v1.22) “pre” was used to
generate.hic file (with parameters “-n; -r 100000,250000,500000,1000000,
2500000” for metacells and “-r 10000,25000,50000,100000,250000,500000,
1000000, 2500000” for pseudobulk). Then hic2cool (v0.8.3) was used to
convert.hic file to.mcool file. Cooler61 (v0.10.2) was used to balance the
matrix by iterative correction method. Pseudobulk contact maps were
analyzed as standard bulk HiC data processing, while the metacell contact
maps were analyzed in a single-cell-like procedure as previously described.
Furthermore, we merged the imputed contact maps of metacell by
“Merge2Cool.py” of higahsi toolkits for visualization.

Identification of aging-related compartment change
To define aging-related compartment change, we calculated the median
scA/B compartment scores for each cell type of different time points in
metacells (old:23 months; middle-aged: 12 months; young: 3 months).
Differential analysis was performed by “FindMarkers” specifying the scA/B
matrix layer (with parameters “logfc.threshold = 0”, “min.pct = 0”) by
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Wilcoxon rank sum test. Genomic regions with adjusted p-value < 0.01
were retained in the downstream analysis.
To compute averaged scA/B values of the gene module, we extracted

gene list from Gene Ontology (GO) database: microglia activation (GO:
1903978), innate immune response (GO: 0045087), astrocytes activation
(GO: 0048143), astrocytes migration (GO: 0043615). Averaged scA/B values
of the selected gene list of metacels were compared in different time
points. A two-sample Wilcoxon rank sum test was then conducted
between samples of different time points (old vs young, middle-aged vs.
young). Benjamini–Hochberg method was used to adjust p-values and
adjusted p-value < 0.01 was considered as significant.
Domain melting score was calculated on genes longer than 300 kb at

50-kb resolution in pseudobulk samples in a way that was described by
Warren Winick-Ng34 et al. We performed this procedure by comparing old
to young and young to old samples for every cell type. Notably, we define
a domain is melted during aging if insulation square values are decreased
and established if insulation square values are increased.

GO Pathway enrichment analysis
To gain a deeper understanding of compartment change during aging, we
firstly extracted genes that overlap with the genomic region of aging-
related compartment. Then enrichment analysis were performed by
“enrichGO” function of ClusterProfiler62 (v4.10.0) package (with parameters
“ont= all”). Enriched terms with adjusted p-value < 0.01 were retained.
For TAD borders of interest, we performed GREAT63 analysis using

rGREAT(v2.5.7) package (with default parameters). Enriched terms with
HyperFDR < 0.01 were retained.

Ensembl dscHi-C Hi-C data analysis
P(s) curve. The contact frequency vs. genomic distance decay curve was
calculated by cooltools64 (https://github.com/open2c/cooltools, v0.5.4)
‘expected-cis’ function at 1-kb resolution.

A/B compartment. The A/B compartment (first eigenvalue of eigenvector
decomposition on observed-over-expected contact matrix) values were
calculated by cooltools ‘eigs-cis’ function at 100-kb resolution. Resolution
was set to be 500 kb for metacells. Saddle plot was generated by saddle
function at 500-kb resolution with parameters “qrange” setting to 0.02 to
0.98. Thus, each bin can be classified and compute saddle strength
between each type of bin.

Insulation. The insulation scores were calculated by cooltools ‘insulation’
at either 10-kb or 25-kb resolution, the 10× window size insulation score
was used to calculate pairwise correlation.

Chromatin loop identification and pile-up. The chromatin loops were
detected using the cooltools ‘dots’ function with parameters ‘--fdr 0.01,
diag_width= 10000000, tile_size= 5000000’ on bulk Hi-C data on mESC65.
The pile-up analysis was performed by coolpuppy package (https://
github.com/open2c/coolpuppy/tree/master, v0.9.7).

Contact map visualization. The contact maps were visualized by Juice-
box66 (v1.11.08) or cooltools on a balanced contact matrix.

Genomic track visualization
The ATAC-seq, H3K27ac ChIP-seq, aggregated dscHi-C multiome RNA-seq
profiles, and bulk RNA-seq profiles were visualized by WashU epigenome
browser (http://epigenomegateway.wustl.edu/browser/).

Published datasets
mESC bulk Hi-C data were downloaded from 4DN database (“4DNFIC21M-
G3U_mESC_Oct4p_G0G1.mcool”), the GM12878 bulk Hi-C data were
downloaded from 4DN database (“4DNFIXP4QG5B.mcool”). The mESC
ATAC-seq and H3K37ac ChIP-seq data were downloaded from GEO under
accession number GSE155089 (“GSM4694523_ATAC_ESC_rep1.bigWig”)
and GSE155062 (“GSM4694560_H3K27ac_ESC.bigWig”), respectively. The
mESC bulk RNA-seq data were downloaded from GEO under accession
number GSE176044 (“GSE176044_mesc_bulk_rnaseq_gene_counts.
csv.gz”).
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