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Recent global decrease in the inner-core rain rate
of tropical cyclones

Shifei Tu® !, Jianjun Xu® "2* Johnny C. L. Chan® 3, Kian Huang® ', Feng Xu' & Long S. Chiu#

Heavy rainfall is one of the major aspects of tropical cyclones (TC) and can cause substantial
damages. Here, we show, based on satellite observational rainfall data and numerical model
results, that between 1999 and 2018, the rain rate in the outer region of TCs has been
increasing, but it has decreased significantly in the inner-core. Globally, the TC rain rate has
increased by 8 + 4% during this period, which is mainly contributed by an increase in rain rate
in the TC outer region due to increasing water vapor availability in the atmosphere with rising
surface temperature. On the other hand, the rain rate in the inner-core of TCs has decreased
by 24 + 3% during the same period. The decreasing trend in the inner-core rain rate likely
results mainly from an increase in atmospheric stability.
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eavy rainfall from tropical cyclones (TCs) has always been

an important research topic!~# because of its impacts such

as floods, mudflows and landslides, especially over the
coastal areas. TC rain rates have been shown to be a function of
TC intensity, with greater rates linked to stronger TCs?. Some
previous studies®’ have suggested that TC intensity could
increase in a warming climate, which implies a possible increase
in TC rain rate. The loss of life and property along coastal areas
due to TC activity may therefore increase8.

Traditional studies on TC rainfall are usually based on
rainfall data from rain gauges of land stations>10. With the
rapid development of satellite remote sensing technology, the
data gaps over the ocean and other difficult-to-observe areas on
the earth are largely filled, which has helped to increase our
understanding of possible changes in TC rainfall. For example,
using the Tropical Rainfall Measuring Mission (TRMM) satel-
lite data and global atmospheric model simulations, Lin et al.?
suggested that the rainfall area of a TC is controlled by the
relative sea surface temperature (SST), and the precipitation
rate increases with absolute SST. The trend variations of TC
rainfall in different basins are basically consistent with the
large-scale SST and vertical wind shear!'!. In addition, TC-
related rainfall shows an increasing trend in many regions*,
such as North America, East Africa, Southeast Asia and
Australia.

Some climate model studies!?!3 pointed out that the rain rate
of TCs may increase by about 3% to 37% by the end of the
twenty-first century under global warming. The simulation
results'>14 further showed different increasing trends within
different radii of a TC. For example, Knutson et al.!13 found that
the projected magnitude of rainfall rate is +20% within 100 km
region from the TC center. Some studies pointed out that TC rain
rate increases tend to be the largest near the TC center, but
smaller further from the TC center®81>16,

In this work, we use satellite observational rainfall data and a
numerical model to investigate the changes of TC rain rate during
the period 1999-2018. The results show that while the rain
rate in the outer region of TCs is clearly increasing, it decreases
significantly in the inner-core during these two decades.

Results

Decrease in TC inner-core rain rate. Most of these previous
studies were based on model simulations. However, TC-related
rainfall has not been systematically examined using multiple
observation platforms or on a global basis. In this study, we
therefore investigate the rain rate associated with TCs in all ocean
basins using the TMPA (TRMM Multi-satellite Precipitation
Analysis) dataset (see “Methods” and Supplementary Table 1 for
details). The linear trends of the global TC rain rate (rainy pixels
only; results using all pixels are shown in Supplementary Fig. 1a)
from TMPA data clearly show a negative trend near the TC
center for all TC intensities (Fig. 1a). Furthermore, the decreasing
trend is larger for the more intense TCs. Breaking up the dataset
into the first and last 5 years also shows that the TC rain rate
during the last 5 years (2014-2018) is smaller in the inner-core
but greater in the outer region than that during the first 5 years
(1999-2018) (Supplementary Fig. 3a). To ascertain that these
results are not data dependent, the GPM (Global Precipitation
Measurement) data with a shorter period (Supplementary
Table 1) are also examined. Although the radial gradient of the
linear trends of these two satellite datasets are somewhat different,
the GPM dataset also gives a negative trend near the TC center
(Fig. 1b and Supplementary Fig. 1b). Thus, it can be concluded
that the rain rate in the inner-core of a TC has decreased sig-
nificantly in recent years.
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Fig. 1 Radial distribution of linear trends (mm h—1y~1) of tropical cyclone
(TC) rain rate based on different datasets. a The Tropical Rainfall

Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA),
b Global Precipitation Measurement (GPM), and ¢ ERAS dataset. Shaded
areas indicate the standard error of linear trends of the TC rain rate. Blue:
tropical storms (TSs), orange: categories 1-2 (CAT12), and red: categories
3-5 (CAT35). The vertical dotted line in each panel indicates the estimated
boundary (~450 km for a global scale) of TC rainfall. All the linear trends
here consider the rainy pixels only. The area-average results (considering
all pixels including rainy and non-rain) are shown in Supplementary Fig. 1.

Note, however, that the results from the global reanalysis
(ERA5) data show a positive trend in the rain rate of TC in the
inner-core (Fig. lc, Supplementary Fig. 1c and 3e-f). Possible
reasons for this discrepancy between observation and reanalysis
will be discussed later in this paper.
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Fig. 2 Linear trends (mm h-1y™) of tropical cyclone (TC) rain rate based on the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite
Precipitation Analysis (TMPA) dataset in various ocean basins. a All TC rainfall, b Inner-core of TC, ¢ Outer region of TC. Globe: Globally-averaged, NH:
North Hemisphere, SH: South Hemisphere, WP: Western North Pacific, EP: Eastern North Pacific, NA: North Atlantic, SI: South Indian Ocean, SP: South
Pacific, NI: North Indian Ocean. The colors are for different TC intensity categories; tropical storms (blue), category 1-2 (orange), category 3-5 (red), and
all three types of TCs (purple). The vertical lines indicate the standard error of the linear trends (solid significant at 95%, and dashed insignificant).

Quantitative analysis of TC rain rate. To quantify the trends in
different regions of the TC, and for each of the TC intensity
categories, we use the TMPA data to separate the inner-core and
outer region of the TC by identifying the location of the max-
imum gradient (see “Methods” and Supplementary Table 2) on
the radial curves of rainfall rate. The inner-core of the TC is then
defined as the area from the TC center to this location and the
outer region from this location to the boundary (Supplementary
Table 2) of the TC rainfall (see “Methods” for details).

Overall, the “all TC” rain rate (integrating the inner-core and
outer region of TC) has increased by 8 +4% in the last two
decades (Fig. 2a and Supplementary Table 3), with an increasing
rate of 0.11 + 0.05 mm h~! per decade. These increasing trends are

consistent with most of the climate model results. Note, however,
that this increasing trend is only significant in some ocean basins
and mostly for weak TCs. More importantly, the results (Fig. 2b)
support that, globally, the rain rate over the TC inner-core
decreases at a rate of -0.67+0.10mmh-! per decade. This
downward trend is statistically significant for all TC intensity
categories and in almost all ocean basins. The magnitude of the
changes in the rain rates during 1999~2018 are quite significant
(Supplementary Table 3). The decreases are —24 + 3%, -23 +4%
and -26+5% globally, and in the Northern and Southern
Hemispheres, respectively. These trends of the TC rain rate also
vary in different ocean basins. Southern Indian Ocean has shown
the largest reduction of —29 + 4% rate, while the decreases in the
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western North Pacific and North Atlantic TC rain rates are -21 +
6% and -22 + 9%, respectively. Among the three categories of TC,
the largest decreasing trend is found in category 3-5 TCs
(CAT35), with a decreasing rate of 29% in both Hemispheres.

However, in the outer region of the TC, the rain rate tends to
increase over most of the ocean basins, although not all
the increases are statistically significant (Fig. 2c). The trend in
the Southern Hemisphere is generally greater than that in the
Northern Hemisphere (Supplementary Table 3). Percentage-wise,
western North Pacific and South Indian Oceans have the largest
increase, being 23 + 5% and 24 + 7%, respectively. Contrary to the
inner-core, changes in the rain rate in the outer region are not
statistically significant for CAT35 in most basins, but those for
tropical storms (TSs) are.

Possible contributing factors. To understand why the rain rate
around the inner-core decreases but increases in the outer region
of a TC, two parameters, water vapor and atmospheric stability,
that are closely related to rainfall, are examined. As both para-
meters are related to the heat energy from the ocean, the TC heat
potential (TCHP) (see “Methods” for the definition) is analyzed
first. The TCHP series (Fig. 3a) shows an increase of 1.07 £0.18
x 107 ] m~2 per decade, which is consistent with the result that the
heat content in the upper ocean has an increasing trend in recent
years!”. Under this climate background, the atmospheric stability
between 300 and 900hPa has also increased significantly
(Fig. 3b), consistent with the conclusion of Sharmila and Walsh!8.
In addition, there is an increase in the atmospheric moisture
content represented by the total column water vapor (Fig. 3c),
which has been used as an explanation for more extreme pre-
cipitation events in many regions!'%20.

Previous studies have pointed out that the causes of rainfall in
the inner-core and outer regions of a TC differ because of
different processes. Strong rising motion in the inner-core leads
to more convective rain, while stratiform rain mainly forms in the
outer region due to weaker vertical motion?l. An increase in
atmospheric stability (Fig. 3b) would tend to suppress the rising
motion, and hence a decreasing rain rate (Fig. 3d). The
correlation coefficient between these two-time series is -0.49,
which is statistically significant at 95%. On the other hand, water
vapor content in the atmosphere increases with rising surface
temperature (Fig. 3c). This increase provides additional water
vapor to enhance the intensity of rain rate in the TC outer region
(Fig. 3e), with the correlation coefficient between the two-time
series being 0.73, significant at the 99% confidence level. This
feature is basically consistent with the increasing global
precipitation intensity!®20. As this increase is in the outer region
and mainly associated with stratiform rain, it is not related to the
TC intensity and hence such an increase is insignificant for more
intense TCs (Fig. 2c and Supplementary Table 3).

An increase in water vapor should lead to higher rain rate?>23.
However, the correlation between inner-core rain rate and water
vapor (i.e., between Fig. 3¢, d) is negative (r =-0.73, P < 0.01) and
therefore likely not causal. This is supported by the fact that when
we remove the correlation with atmospheric stability, the
correlation between inner-core rain rate and water vapor is only
-0.39, which is insignificant. In other words, the decrease of the
rain rate of the TC inner-core is mainly affected by atmospheric
stability. Similarly, no significant relationship exists between the
increased atmospheric stability and the rain rate of the outer
region of TC (i.e. between Fig. 3b, e) when the correlation with
water vapor is removed (r changing from 0.57 to —-0.03).

Clearly, convective rain can occur in both the inner-core and
the outer region of TC (such as secondary circulation, and outer
spiral rainbands, etc.); and stratiform rain may also be present in

the TC inner-core. To understand further the correlation between
the two parameters (atmospheric stability and total column water
vapor) and rain rate, we follow the results of Liu et al.24 and
divide the TC rain rates into stratiform (<4mmh-!) and
convective (=5mmh~!) rain in both the inner-core and outer
region of TC (Note: stratiform and convective are mixed in the
range of 4-5 mm h~1, sample size <5%, so it is not included.). The
results show that convective rain occupies a larger proportion
(~78%) in the inner-core of TC, while stratiform rain covers more
than 84% of the rainy area in the outer region of TC.

Further, in both the inner-core and outer region of TC, the
average convective rain rates show a significant weakening trend,
being -0.95 mm h~! per decade (P < 0.01, Fig. 4d), and -0.61 mm h~!
per decade (P <0.01, Fig. 4e), respectively. On the other hand, the
increase in the stratiform rain rate is statistically significant only in
the outer region (P < 0.01, Fig. 4b), but insignificant in the inner-core
(P=0.19, Fig. 4a) of the TC. For the entire TC (including inner-core
and outer region), the changes of convective and stratiform rain rates
are -0.82 mm h~! per decade (P < 0.01, Fig. 4f) and 0.18 mm h~! per
decade (P<0.01, Fig. 4c), respectively. We also examine the
relationship between the atmospheric stability and water vapor with
the rain rate of TC (Supplementary Table 4). The results show that
atmospheric stability is affecting the convective rain rate in both the
inner-core (r=-0.50, P=0.02) and outer region (r=-0.56, P=
0.01) of the TC. However, when the correlation of atmospheric
stability is removed, the impact of the rising atmospheric water vapor
conditions on convective rain is almost negligible (r changing from
-0.45 to -0.05 in the inner-core and -0.48 to -0.05 in the outer
region, respectively). The impact of atmospheric water vapor
conditions is mainly reflected in the changes of the stratiform rain
in the outer region of TC (r=0.83, P<0.01). These results
substantiate our earlier discussion that the change in convective
rain mainly contributes to the change of rain rate in the inner-core,
while the stratiform rain mainly contributes that in the outer region,
and hence the relationships of the TC rain rate with atmospheric
stability and water vapor content, as shown in Fig. 3.

Numerical simulations. To investigate whether these proposed
mechanisms are indeed plausible, the Weather Research and Fore-
casting (WRF) model is run using an ideal TC. The control (CTRL)
experiment uses the default Jordan’s sounding®> and 28 °C SST (the
model configuration and physical parameterization schemes descri-
bed in Methods and Supplementary Table 5). As the atmospheric
stability has increased by ~2% during the recent 20 years (Fig. 3b),
and the global surface temperature has also increased during this
period, the atmospheric stability is increased by 2% and the SST
increased to 28.5°C in exp_l, to make the simulation closer to the
observed change. Details of the model experiments are provided in
Methods. For both simulations, the maximum wind speed have
reached TS intensity after 72 h (Fig. 5a), We, therefore, have calculate
the average rain rate and vertical velocity during the 72-360h
integration period. The radial distributions of TC rain rates of these
two experiments show that the rain rate of exp_1 decreases in the
inner-core but increases in the outer region compared with that in
CTRL (Fig. 5b), which are consistent with the statistical results from
satellite datasets shown in Supplementary Fig. 3a, c. The spatial
pattern of the rain rate difference between CTRL and exp_1 shows a
similar result (Fig. 5¢). The increase in atmospheric stability leads to
a significant weakening of the vertical velocity in the TC eyewall area
(60-100 km from the TC center, Fig. 5d), and hence decrease in rain
rate in the inner-core (Fig. 5b, c). On the other hand, the increase in
SST causes an increase in water vapor content and vertical velocity
resulting in an increase in the rain rate of the outer region.

We further calculate the changes in stratiform and convective
rain based on the method described earlier. The average
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rates in d & e are constructed using the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) dataset. All of the

linear trends are significant at 95% confidence level.

stratiform and convective rain of CTRL are 0.76 mmh~! and
12.26 mm h~1, while those in exp_1 are 0.78 mmh~! and 11.69
mm h-1, respectively, which implies a weakening in convective
rain but a strengthening in stratiform rain. These numerical
simulation results, therefore, substantiate our earlier hypothesis
on the synergistic effect of atmospheric stability and atmospheric
water vapor content that leads to a decrease in rainfall rate in the
TC inner-core but an increase of rain rate in the outer
region of TC.

Discussion
Despite the consistency between the observational and modeling
results, there is still a question of the veracity of the TMPA data,

because Chen et al.2® pointed out that TMPA 3B42 products
generally overestimates TC rain for low rain rate but under-
estimates TC rain at high rain rate. To reduce the impact of data
uncertainty, we have therefore in this study divided TC rainfall
into the inner-core with heavier rainfall and the outer region with
weaker rainfall, and we use GPM data to verify the results. Fur-
thermore, even if there is an overestimate, it will likely be sys-
tematic so that the trends we have identified will still exist.
Note, however, that the trend of TC rain rate from ERA5 (Fig. 1c
and Supplementary Fig. 3e-f) is basically contrary to that from
satellite observations. One possibility for such a discrepancy is that
observational data to be ingested into the reanalyses have to go
through quality checks. Rainfall data near the TC center might be
considered to be “outliers” and therefore rejected so that the
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reanalyses are based mostly on the short-term model predictions.
However, these predictions have been known to under-represent
the TC circulation near the center, and generally under-predict TC
intensity?”. One possible reason for such an under-prediction is
that the structure of a TC is not well represented in the model. If
the model had a good TC structure, it could have simulated the
differences in the rain rate between the inner-core and the outer
regions.

The high rain rate in the inner-core of a TC is often accom-
panied by destructive winds, which poses a huge threat to life and
property?8. While our results suggest a decrease in TC rain rate in
the inner-core, other studies have shown a possibility of an
increase in the TC intensity!3. Note, however, that because the
rain rate in the outer region is increasing, as well as the total TC
rain rate, disaster preparedness efforts must take all these into
consideration. For example, a reduction in the inner-core rain
rate does not necessarily imply a decrease in the threat from TC
rainfall. Indeed, because of the increase in outer region rain rate,
coastal areas should be prepared earlier even before a TC is likely
to come close to shore.

This study has shown that the rain rate in the inner-core of a
TC in almost all ocean basins has a significant decreasing trend
due to an increase in atmospheric stability. However, this does
not mean that the reduced rain rate is only affected by this factor.
In fact, only about 24% of the variance of the inner-core rain rate
is explained by the variation in atmospheric stability (Fig. 3).
Further analyses and numerical experiments are, therefore,
necessary to identify other contributing factors.

The moist adiabatic lapse rate is an important factor affecting
the static stability of tropical regions, especially the tropical
oceans2*30, As a TC contains sufficient water vapor, the changes
of water vapor content during the process of rainfall formation in
a TC could impact the moist adiabatic lapse rate. Therefore, it is
important to understand the relationship between the stability,
water vapor, and the moist adiabatic lapse rate, which may
require high-resolution observations and model data.

Another important finding from this study is that current
reanalysis data tend to overestimate the positive response of TC
rain rate to the rising temperature, especially in the inner-core of
TC. The possible reasons for the discrepancy in reanalysis data-
sets have been discussed earlier. As of limited data availability,
this study has only investigated the changes in the TC rain rate
during the last two decades. It is unclear whether the decrease of
the inner-core rain rate (or the convective rain rate) will continue
in the future. There is no definite evidence as to how atmospheric
stability might change in the future. As the global surface tem-
perature increases, if atmospheric stability is weakened or
remains basically unchanged, the TC rain rate may increase with
the rising absolute moisture content in the future. However, if
atmospheric stability increases with global warming, the inner-
core rain rate (or convective rain rate) of the TC may continue to
decrease in the future. Therefore, more efforts should be made to
improve the ability of the models in simulating or projecting the
TC rain rate. In particular, more studies are needed to investigate
the relationship between TC rain rate variability and atmospheric
stability under global warming.

Methods

Data. The historical best-track data of TC are taken from the International Best
Track Archive for Climate Stewardship-The World Meteorological Organization
(IBTrACS-WMO) v4 dataset®!, which includes the position, minimum sea-level
pressure, and the maximum sustained wind speed of TCs from 1999-2018. The
TC-related precipitation data are obtained from TRMM Multi-satellite Precipita-
tion Analysis (TMPA) 3B42 v732, Global Precipitation Measurement (GPM)
IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V0633. To make
a comparison with TC rain rate from the satellite rainfall products, the ERA5%
data are also used.

The annual averaged TC heat potential (TCHP) is obtained from IAP Gridded
temperature dataset> (v3, 1 degree, monthly, 0-2000 m). The total column water
vapor and the atmospheric stability are extracted from the monthly ERA-Interim
reanalysis dataset®.

The details of all the data using in this work are shown in Supplementary
Table 1.

The TC-related rain rate. The IBTrACS-WMO v4 data has various wind aver-
aging periods in TC conditions from different agencies. Accordingly, we convert
the 1-min and 3-min mean wind speeds into 10-min mean wind speeds, based on
Harper et al.37. This work focuses on the rain rate variability of TC over the globe
during 1999-2018. First, we have removed these records that not at 00:00, 03:00,
06:00, 09:00, 12:00, 15:00, 18:00, 21:00 UTC. Then, the non-TC systems (such
extratropical, wave, disturbance or others) are also removed. Considering the
effects of satellite orbital changes, we select TC activity within 40°S-40°N. All TCs
with wind speeds in best-track dataset =35 knots, on both land and ocean, are
considered in this study. Implementing that selection criterion gives a total of 1499
TCs, with 49887 effective instantaneous observations (Supplementary Table 1) of
TC rainfall over the world during the 20 years. This is likely the largest TC rainfall
dataset ever assembled.

The rainfall of TC is mainly concentrated in the eyewall. To better reflect the
changing characteristics of TC precipitation, we define the average rain rate in each
instantaneous TC as:

where R,, in Eq. (1) is the mean rain rate of the TC rainfall in each time, and p; is
the rain rate of each spatial grid (pixel), and N is the count of pixels in each 25km-
ring (i.e. 0-25km, 25-50 km, 50-75 km, ..., 975-1000 km).

As there are differences in the TC classification definitions in different ocean
basins, the Saffir-Simpson Hurricane Wind Scale is used to categorize the TCs: TCs
with maximum surface wind speed near the center at 35-64 knots as tropical
storms (TSs), 264 knots as hurricanes (or typhoon). The latter TCs are further
classified: wind speeds at 64-96 knots as category 1&2 (CAT12), and the wind
speed 296 knots as category 3-5 (CAT35).

We obtain the radial curves of the rain rate of 49,887 instantaneous TC
observations for all ocean basins according to rainy pixels only. Then, we calculate the
linear trends within each radial band for the three TC intensities using each of the
rainfall datasets, and the results are shown in Fig. 1. The linear trends of the area-
average rain rate of TC are shown in Supplementary Fig. 1. In order to quantify the
changes of rain rate in the inner-core and outer regions, we further calculate, using the
TMPA data, the average radial rain rate distribution curves (all pixels) for the three
TC intensity categories over six ocean basins. Then, we define rain rate >0.5 mm h!
as TC rainfall, to obtain the TC mean rainfall radii of the three categories of TC in all
the ocean basins (Supplementary Table 2). To separate the inner-core and outer
region of the TC, we identify the position of the maximum gradient (Supplementary
Table 2) of the average radial rain rate curve. An example of the positions of the
maximum gradient of different rain rate radial curves is shown in Supplementary
Fig. 2. Using these positions, we calculate the annually average rain rate (raining pixels
only), and then the linear trends shown in Fig. 2.

TC heat potential. The TCHP represents the heat contained in the upper layer of
the 26 °C isotherm of the upper ocean. Based on previous studies>$-49, it is defined
as:

0
TCHP = cpp/ [T(z) — 26]dz 2)
Dy

where ¢, in Eq. (2) is the specific heat capacity at constant pressure, usually taken as
4178 Tkg=1°C~1; p the density of sea water, taken as 1026 kgm~3 in the upper
ocean; D,4 the depth of the 26 °C isotherm, and T(z) the in-situ temperature from
the ocean analysis data. The annual TCHP series is obtained from the average of six
ocean basins during the TC peak seasons (WP: 120°E-180°,5-30°N, May-December;
EP: 120-90°W,5-30°N, June-October; NA: 90-20°W,5-30°N, June-October; SI:
50-115°E,5-30°S, November-April; SP: 155°E-180°,5-30°S, December-April; NI:
55-90°E,5-30°N, April-May and September-November; same as below).

Atmospheric stability. According to Sharmila and Walsh (2018)!8, the atmo-
spheric stability (AS) is defined as:
AS = 039 — bggg (3)

where 630 and o9 in Eq. (3) indicate the potential temperature at 300 and 900
hPa, respectively. The potential temperature 0 is defined as:

o= T<%>7 )

where, T in Eq. (4) is the absolute temperature (K), R the gas constant of air, and ¢,
the specific heat capacity at a constant pressure, P, the reference pressure, usually
taken as 1000 hPa, and P the atmospheric pressure. In general, R/c, = 0.286 for air.
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The absolute temperature is obtained from the monthly ERA-Interim reanalysis
dataset. Same as TCHP, the atmospheric stability is obtained from the average of
six ocean basins during the TC peak seasons.

Total column water vapor. This annual time series is obtained from the average
value of six ocean basins during the TC peak seasons (same as TCHP).

Statistical information. The linear trends in Figs. 1-5 and Supplementary Fig. 1 are
estimated using simple linear regression of rain rates of TC. The shaded areas in Fig. 1
and Supplementary Fig. 1 and the vertical lines in Fig. 2 are the standard error (n =
20) of linear trends of the TC rain rate. Shaded areas in Figs. 3-4 are the two-sided
95% confidence bounds. The percentages in Supplementary Table 3 are calculated by
the difference between the last point and first point of the fitted linear regression line
and then divided the first point. In this work, the significance of linear trends and the
correlation coefficients are using the two-tailed t-test (degree of freedom is 18).

Model configuration and experiments.

a. Model configuration

The Advanced Research WRF (ARW) modeling system (version 4.1.3)4! is
used to simulate the ideal TC. The ideal model has 300 x 300 grid points
with a 12 km horizontal resolution. The model top is 25 km with 25 vertical
layers. Jordan’s sounding?” is used in the simulation, which is the average
state of the tropical atmosphere in summer, and it is very nearly neutral to
real convection?2.

The initial SST is constant (28°C). An f-plane is assumed. The lateral
boundary conditions are periodic. The initial state is motionless (1 =v = 0)
and horizontally homogeneous. The model begins the simulation by
specifying the vortex tangential velocity*? showing in Eq. (5).

2 3 3 1/2
Zsponge — £ 22 (L) ( 21y, ) _ ( 21y, ) + fzi _fr
Zgponge "\ r+r, Ty + 1, 4 2
(5)

where 7, is the outer radius of the vortex beyond which v = 0. The quantities
vy, and r,, are approximately the maximum wind speed and radius of
maximum wind, respectively. Let the intensity decay linearly with height, so
that v = 0 for z > Zgyonge. The vortex is a broad, weak, axisymmetric vortex?2,
which is placed in the middle of the domain. It is in hydrostatic and
gradient-wind balance, with the maximum winds at the lowest model level.
The relevant parameters of this specified vortex are listed in Eq. (6):

1y = 412,500 m

v(r,z,0) =

r,, = 82,500 m p
v, =15ms! ©
Zeponge = 20,000 m

Several relevant model parameters and parameterization schemes are shown
in Supplementary Table 5, details of which can be found in the User Guide
of the WRF model*3.
Jordan’s sounding is automatically meshed by the model at the beginning of
the simulation. Since a vortex is added to the middle of the domain, as the
model continues to integrate, the meshed sounding will control the
evolution of the vortex. At the same time, under the influence of vortex
changes, the sounding will also change over time.

b. Experimental design
Based on the description above, the default Jordan’s sounding and 28 °C SST
in the WRF model is the CTRL experiment. According to the statistical
results of ERA-Interim (Fig. 4b), we found that atmospheric stability has
increased by about 2% in the last two decades. As the global surface
temperature rises, the water vapor content in the atmosphere increases by
about 5% (Fig. 4c), but the change of atmospheric water vapor is affected by
SST in the model. Therefore, in order to simulate the effect of climate
background changes on TC rainfall more closely, we increase the
atmospheric stability by 2% in the exp_1 experiment based on Jordan’s
sounding. Moreover, SST in exp_1 is increased by 0.5 °C to ensure that the
moisture content in the atmosphere increases during the simulation.
In order to increase atmospheric stability more realistically, the new
potential temperature is defined as:

Bexp_1 = 6 + (14 0.02) x (Ocrrr, — ) (7)

where Oy, 1 and Ocrry in Eq. (7) are the potential temperatures on pressure
level of exp_1 and CTRL experiments, and 6 is the potential temperature of
the bottom (sea surface level) in Jordan’s sounding.

Data availability
Best-track data of TCs are taken from IBTrACS-WMO v4 dataset (https://www.ncdc.
noaa.gov/ibtracs/index.php?name=ib-v4-access). TC-related precipitation data are

obtained from TMPA 3B42 v7 (https://disc.gsfc.nasa.gov/datasets/ TRMM_3B42_V7/
summary?keywords=TRMM_3B42), GPM IMERG Final Precipitation L3 Half Hourly
0.1 degree x 0.1 degree V06 (https://earthdata.nasa.gov/), ERA5 (https://cds.climate.
copernicus.eu/cdsapp#!/home). The annual averaged TCHP is obtained from IAP
Gridded temperature dataset (v3, 1 degree, monthly, 0-2000 m, http://159.226.119.60/
cheng/). Total column water vapor and atmospheric stability are extracted from the
monthly ERA-Interim dataset (https://apps.ecmwf.int/datasets/data/interim-full-moda/
levtype=pl/). Source data has been uploaded with this paper. The processed data of this
manuscript is available at https://doi.org/10.5281/zenodo.4533421. Source data are
provided with this paper.

Code availability
All of the codes used to read, calculate, and analyze the data are available at https://doi.
org/10.5281/zenodo.4533421.
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