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Unveiling the power of high-dimensional
cytometry data with cyCONDOR

A list of authors and their affiliations appears at the end of the paper

High-dimensional cytometry (HDC) is a powerful technology for studying
single-cell phenotypes in complex biological systems. Although technological
developments and affordability have made HDC broadly available in recent
years, technological advances were not coupled with an adequate develop-
ment of analytical methods that can take full advantage of the complex data
generated. While several analytical platforms and bioinformatics tools have
become available for the analysis of HDC data, these are either web-hosted
with limited scalability or designed for expert computational biologists,
making their use unapproachable for wet lab scientists. Additionally, end-to-
end HDC data analysis is further hampered due to missing unified analytical
ecosystems, requiring researchers to navigatemultiple platforms and software
packages to complete the analysis. To bridge this data analysis gap in HDC we
develop cyCONDOR, an easy-to-use computational framework covering not
only all essential steps of cytometry data analysis but also including an array of
downstream functions and tools to expand the biological interpretation of the
data. The comprehensive suite of features of cyCONDOR, including guidedpre-
processing, clustering, dimensionality reduction, and machine learning algo-
rithms, facilitates the seamless integration of cyCONDOR into clinically rele-
vant settings, where scalability anddisease classification are paramount for the
widespread adoption of HDC in clinical practice. Additionally, the advanced
analytical features of cyCONDOR, such as pseudotime analysis and batch
integration, provide researchers with the tools to extract deeper insights from
their data. We use cyCONDOR on a variety of data from different tissues and
technologies demonstrating its versatility to assist the analysis of high-
dimensional data from preprocessing to biological interpretation.

The rapid development of high-dimensional cytometry (HDC)
methods has revolutionized how we can analyze millions of cells
from thousands of complex tissues. Mainly driven by immunological
research, where the heterogeneity of cell types and the growing
number of cell states particularly benefits from these high-
dimensionality techniques1, HDC is now extremely robust and rou-
tinely employed to measure simultaneously up to 50 markers at
single-cell resolution, making it instrumental not only in immunolo-
gical research, but increasingly in other disciplines such as

microbiology, virology, or neurobiology2. The main technologies
employed in this field are high-dimensional flow cytometry (HDFC)3,
total spectrum flow cytometry (SpectralFlow)4, cytometry by time of
flight or mass cytometry (CyTOF)5 and proteogenomics (CITE-seq/
Ab-seq)6. These antibody-based methods allow not only the detec-
tion of intra- and extra-cellular proteins but also the specific identi-
fication of post-translational modifications, adding an important
functional layer to nucleotide-based methods (e.g., single-cell RNA
sequencing). Particularly the cytometry-based methods are
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characterized by significant throughput allowing the measurement
of millions of cells per sample1.

While HDCs come with many advantages and opportunities, their
high dimensionality also comes with challenges, of which a major one
is the application of conventional analytical approaches that rely on
consecutive gating based on one or two parameters at a time. It has
been shown recently that conventional analytics are prone to miss the
intricate relationships and patterns that exist within high-dimensional
datasets, which can lead to incomplete and potentially misleading
interpretations1. Effectively harnessing the full potential of HDC data-
sets requires an unbiased perspective and the ability to operate with-
out the need for prior knowledge1. Along these lines specialized
bioinformatics tools were developed capable of navigating the com-
plexity of HDC datasets and extracting meaningful insights without
relying on pre-existing assumptions7–13.

Recent years have seen a surge in open-source and non-
commercial tools for high-dimensional cytometry (HDC) data analy-
sis. These tools empower researchers to leverage data-driven
approaches similar to those used in the single-cell transcriptomics
field. Pioneering projects like Cytofkit10 (not under active develop-
ment), SPECTRE9, Catalyst11, ImmunoCluster7 and TidyTOF8 have sig-
nificantly shaped current HDC analysis standards. However, these
options do not provide some advanced features commonly used in

high-dimensional analysis. To address this, commercially available
alternatives like Cytobank (Beckman Colter), Cytolution (Cytolytics)
and Omiq (Dotmatics) offer feature-rich tools with intuitive graphical
user interfaces (GUIs) that guide wet-lab scientists through data ana-
lysis. While these implementations are particularly helpful, their cost
often limits their broad adoption. We hypothesized that an integrated,
simple to use, end-to-end ecosystem for HDC data analysis would
overcome current shortcomings and enable HDC users to take full
advantage of the high dimensionality of the data. The solution is an
integrated ecosystem (1) unifying different algorithms for a diverse set
of analyzes under a united data structure; (2) being able to analyze a
high number of cells/samples optimized for consumer hardware but
deployable on high-performance computers (HPCs); and (3) designed
with a focus on data interpretation and visualization.

Here we present cyCONDOR (github.com/lorenzobonaguro/
cyCONDOR) for the analysis of HDC data. Our tool provides an inte-
grated ecosystem for the analysis of CyTOF, HDFC, SpectralFlow and
CITE-seq data in R in a unified format designed for its ease of use by
non-computational biologists (Fig. 1a). cyCONDOR offers a compre-
hensive data analysis toolkit encompassing data ingestion and trans-
formation, batch correction, dimensionality reduction, and clustering,
along with streamlined functions for data visualization, biological
comparison, and statistical testing. Its advanced features include deep
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Fig. 1 | Overview of the cyCONDOR ecosystem. a The cyCONDOR ecosystem
accepts HDC data from a variety of technologies combined with sample annota-
tion. b The ecosystem covers a broad variety of analytical tasks, from data import

and transformation to ML-based sample classifiers. Created in BioRender. Bona-
guro, L. (2024) https://biorender.com/h88w007.

Article https://doi.org/10.1038/s41467-024-55179-w

Nature Communications |        (2024) 15:10702 2

https://github.com/lorenzobonaguro/cyCONDOR
https://github.com/lorenzobonaguro/cyCONDOR
https://biorender.com/h88w007
www.nature.com/naturecommunications


learning algorithms for automated annotation of new datasets and
classification of new samples based on clinical characteristics (Fig. 1b).
Additionally, cyCONDOR can infer the pseudotime of continuous bio-
logical processes to investigate developmental states or disease
trajectories14 (Fig. 1b). Compared to other currently available toolkits,
cyCONDOR provides the most comprehensive collection of analysis
algorithms and an easily interpretable data format (Figure S1a). Fur-
thermore, the entire cyCONDOR ecosystem was designed to be scal-
able to millions of cells while being still usable on common hardware
(Figure S1b). We also tested cyCONDOR performance in direct com-
parison with Catalyst and SPECTRE (Figure S1c). We compared run
times of the core functions (data loading, subsampling, transforma-
tion, dimensionality reduction and clustering using Phenograph15 or
FlowSOM16) according to the availability in each package, while con-
sidering different sample sizes as shown in Figure S1b. As Catalyst does
not provide Phenograph as a clustering algorithm we compared the
runtime of FlowSOM in comparison with cyCONDOR. For the com-
parison with SPECTRE we used Phenograph as this is often one of the
most compute intensive step in data analysis. cyCONDOR shows
comparable performance with both state-of-the-art tools showing an
improved runtime especially when using Phenograph for clustering.
cyCONODR is the first tool to implement multi-core computing for
Phenograph clustering (Figure S1c). Additionally as a metric for the
easeof usewecounted thenumber of functions needed toperformthe
core steps of data analysis. cyCONDOR needs 4 functions to perform
data loading, transformation, dimensionality reduction and clustering
while for the same result Catalyst and SPECTRE require 5 and 9 func-
tions, respectively (Figure S1d). Furthermore, cyCONDOR, providing
the broadest set of implemented downstream options simplifies the
access also to an advanced analytical pipeline for the unexperienced
user (Figure S1a).

We used cyCONDOR on a variety of private and public datasets
showing seamless compatibility with all tested cytometry data for-
mats. Wemade cyCONDOR available in R as a standalone package or as
containerized environments easily deployed on local hardware or
HPCs. With cyCONDOR, we provide an ecosystem that allows the end
user to fully exploit the potential of HDC methods.

Results
cyCONDOR provides a versatile workflow for data pre-
processing
cyCONDOR offers a suite of microservices for data import and pre-
processing to make use of a versatile set of data input formats in HDC
(Fig. 1a) and to provide the necessary data pre-processing prior to an
integrated higher-level data analysis (Fig. 1b). As default input data
format for the cyCONDOR workflow, either Flow Cytometry Standard
files (FCS) or Comma-separated values files (CSV) are used, which can
be exported by current acquisition or flow cytometry data analysis
software such as FlowJo (www.flowjo.com, Supplementary Data 1). In
addition, metadata describing individual samples in the dataset are
also imported. Users may choose to include all recorded events in the
output files or apply upfront broad gating to reduce dataset size. We
recommend applying basic gating prior to cyCONDOR to exclude
debris and doublets, thereby minimizing the downstream computa-
tional demand. This simple pre-filtering step removes irrelevant events
and significantly reduces computational requirements, enabling the
analysis of even large datasets on consumer-grade hardware. In addi-
tion, cyCONDOR offers a workflow for importing FlowJo workspaces.
This functionality allowsusers to loadFCS files alongwith their defined
gating hierarchy, simplifying the comparison between cluster-based
and conventional gating-based cell annotation (for detailed informa-
tion see cyCONDOR documentation). Following data import, cyCON-
DOR provides a comprehensive end-to-end ecosystem of HDC data
pre-processing and analysis (Figs. 2a, S2a). In the following sections, we
will exemplify the use of cyCONDOR for the analysis of HDC data. All

output shown here is the result of built-in functions and can be gen-
erated for any other dataset withminimumbioinformatics knowledge.
In the following example, we explore a human PBMCs dataset17 to
exemplify the first steps of a cyCONDOR analysis. This dataset,
including 27 protein markers, provides a broad phenotyping of the
main circulating immune cells in humanperipheral bloodderived from
people living with HIV (PLHIV, Dis) and uninfected individuals (con-
trols, Ctrl). cyCONDOR exploratory data analysis starts with data
loading and transformation to ensure a distribution of values compa-
tible with downstream investigations (see “Methods” for details)
(Figs. 2a, S2a). To initially visualize the underlying data structure and to
explore whether the distribution of samples is linked to factors like
biological group, age, sex or time of sampling, principal component
analysis (PCA) is performed on pseudobulk samples calculated as the
meanof protein expression of all cells (details inMethods, Fig. 2b). The
average expression for eachmarker on a sample level can be inspected
to help identifying the main drivers of the observed biological differ-
ences for example between two defined groups within the dataset
(Fig. 2c). In our example, we see a general decrease in T cell markers
(e.g., CD3 and CD4) in PLHIV versus Ctrl and an overall increased
expression of monocytes markers (e.g., CD14 and HLA-DR), which can
be interpreted as either an increased expression of those markers in
PLHIV cells or, most likely as a shift in the relative frequency of cells in
HIV patients (Fig. 2c). When analyzed at the single-cell level (Fig-
ure S2b), the dataset reveals patterns that can be further elucidated by
visualizing the loadings of the most relevant principal components
(Figure S2c) which - in our example - revealed that PC1 separates
lymphocytes (markers with positive loading) and myeloid cells (mar-
kers with negative loading). Further, to reduce the dimensionality of
the dataset to a bi-dimensional space, cyCONDOR provides the
implementation of two non-linear dimensionality reduction algo-
rithms, Uniform Manifold Approximation and Projection (UMAP18,19)
and t-distributed Stochastic Neighbor Embedding (tSNE20) as they
both have different advantages (see “methods” for details). UMAP18

dimensionality reduction can be performed (Fig. 2d), and visualized as
a two-dimensional scatter plot, colored for any variable of interest
(e.g., experimental group or date, Fig. 2d) or visualized as a density
plot, to highlight the distribution of the cells in the latent space (Fig-
ure s2d). The two-dimensional UMAP embedding can also be used to
visualize the expression of the individual proteinmarkers (Figure S2e).
Additionally, for unsupervised non-linear dimensionality reduction
tSNE is implemented in cyCONDOR (Figure S3a).

To assign cell type labels cyCONDOR provides two different
clustering algorithms Phenograph15 and FlowSOM16 integrated here
into the cyCONDOR workflow (Figs. 2e, S3b–e). The combination of
FlowSOM for fast knowledge-based clustering (Figure S3c-e) and
Phenograph (Figs. 2e, S3b) enables data-driven identification of major
cell lineages and the potential discovery of novel cell states through
slower but fine-grained clustering12. The implementation of both
dimensionality reduction and clustering in cyCONDOR allows the user
to select or deselect specific markers from the calculation, this is
particularly useful when a specific marker was measured but was not
expressed in the population of interest or if high expression of a single
marker dominates all subsequent steps.

To ease the biological annotation of the clusters cyCONDOR
provides an automated heatmap visualization of the average marker
expression of each cluster (Figure S3b, S3e). As a next step, users can
manually label each cluster according to prior knowledge in the field
concerning identity (Fig. 2f). Annotated clusters and embeddings are
the starting point for further downstream analysis provided within
cyCONDOR. It is important to note that heatmaps, while being a
compact and convenient way to visualize marker expression, do not
provide informationon theoverall distribution of expression levels. To
allow the user to investigate the distribution of each marker in more
detail, cyCONDOR implements several visualizations including violin
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Fig. 2 | cyCONDOR workflow for data pre-processing and annotation.
a Schematic overview of the first steps of cyCONDOR analysis, from data ingestion
to cell labeling. b Pseudobulk Principal Component Analysis (PCA) colored by
experimental groups. c Heatmap showing mean marker expression for each sam-
ples, column order is defined by hierarchical clustering. d UMAP colored by
experimental group. e UMAP colored according to Phenograph clustering. f UMAP

colored according to cell type annotation and heatmap ofmeanmarker expression
for each cell type, color coding legend is shared for both. g UMAP visualization of
SpectralFlow data colored by Phenograph clustering. h UMAP visualization of
CyTOF data colored by Phenograph clustering. i UMAP visualization of CITE-seq
data colored by Phenograph clustering. Created in BioRender. Bonaguro, L. (2024)
https://biorender.com/o70s217.
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plots and ridgeline plots (Supplementary Data 2). As in conventional
HDFC data analysis it is of key importance to pre-assess the spectral
overlap between used reagents. As shown in Fig. 2f a moderate CD19
expression in CD16+ monocytes is observed in the test dataset. This is
caused by an overlap between the spectra of CD16-BUV496 and CD19-
BUV563 which were intended to be used as exclusive markers. This
approach is regularly used in conventional HDFC but as exemplified
here it requires further attention when performing high-dimensional
analysis to avoid an incorrect interpretation of the data.

To illustrate the applicability of the cyCONDOR ecosystem not
only to HDFC data (exemplified so far in Fig. 2) we performed data
transformation, dimensionality reduction and clustering also on pub-
lished CyTOF (Figs. 2g, S3f, S3g), Spectral Flow and (Figs. 2h, S3h, S3i)
CITE-seq datasets (Figs. 2i, S3j, S3k) showing general applicability of
cyCONDOR to all major cytometry data types.

cyCONDOR provides correction of technical variance across
projects, time, datasets, instruments, or sites
Similar to other high-dimensional techniques (e.g., RNA sequencing or
proteomics), HDC methods suffer from the presence of technical var-
iation making it challenging to integrate datasets generated from dif-
ferent projects, datasets, instruments, sites or at different timesdespite
the use of the same panel21. When compared to other high-dimensional
methodologies, HDC falls behind, since the parameter space is
increasingly inflatedwith new technical opportunities, literally allowing
any combination of antibody and detection reagents such as fluor-
ochromes in flow cytometry in addition to increasing opportunities for
diverse configurations of instruments and instrument performances21.
To cope with these developments, we implemented Harmony22 in
cyCONDOR for batch alignment over multiple sources of technical
variation.Harmonywas introduced as a tool for correction of technical
variation in single-cell RNA sequencing data23 but its applicability can
be easily generalized to other single-cellmethods such as HDCwith the
only requirement of a normal distribution of the parameters to be
harmonized (e.g., normalized fluorescence intensity or principal com-
ponents). We validated the usage of Harmony for batch correction of
HDFC data as its performance was previously evaluated for Spectral
Flow24, cyTOF24 andCITE-seq25 data.Neverthelessweprovide validation
for all data types in Supplementary Data 3. Furthermore, with a com-
bination of public/private and synthetic datasets we addressed pre-
viously reported conflicting reports on the performance of Harmony
for the correction of cyTOF data (Supplementary Data 4)24,26.

cyCONDOR offers the option to apply Harmony variance correc-
tion on protein expression or principal components saving the batch
corrected values in a separate data slot of the condor object to simplify
the comparison between corrected and original data (Figs. 3a, S4a).
Although the direct harmonization of fluorescence intensities can
provide important information on the source of variability, corrected
intensities should be used carefully, especially in the analysis of dif-
ferential expression across experimental groups27.

Here, we showcase the performance of technical variation cor-
rection provided by cyCONDOR on a 27-color flow cytometry dataset
where healthy controls were measured at five different time points
across three months with adjustments on the instrument settings due
to inconsistencies in instrument performance (unpublished data).
Such example showcases a rather common situation in clinical studies
where patient samples are processed over several weeks or months if
not years. Instruments performance quality control (QC) and auto-
matic adjustments28,29 can help to reduce those biases but in high-
dimensional data, those are difficult to be fully resolved. This can be
illustrated by representing the data in a UMAP, a non-linear dimen-
sionality reduction, which reveals a high degree of separation between
different experimental dates (Fig. 3b), exemplified also by a low Local
Inverse Simpson’s Index (LISI) score22 (Figure S4b). Harmony correc-
tion on all calculated principal components mitigates the technical

variance in the UMAP embedding showing a more homogeneous dis-
tribution of each batch in the clusters. (Fig. 3c). This improvement was
quantified by calculating the LISI score showing a remarkable increase
compared to pre-correction scores (Figure S4b).

To further investigate the batch effect across dates, Phenograph
clustering was performed on both non-corrected PCs (Fig. 3d) and
Harmony-corrected PCs (Fig. 3e) with identical resolution settings.
Clustering basedonnot-corrected principal components (PCs) leads to
the identification of 18 clusters, but further inspection revealed that
most of them are date-specific - most prominently cluster 6, 14, 15, 18
(Figure S4c). After Harmony batch correction, only cluster 6 and 9
appears to be still specific for batch three (Figure S4d). Investigating
this persisting difference between batches at the level of individual
samples revealed that the majority of the cells in cluster 6 derive from
one sample (belonging to batch 3, Figure S4e) similarly to cluster 9
(batch 1, Figure S4e), showingour approachwas successful in removing
unwanted technical variability while preserving the biological differ-
ence between samples. Additionally, the widely used CytoNorm30 batch
correction approach is implemented in cyCONDOR, including the
documentation on how to use it within the cyCONDOR ecosystem. As
the selection of the optimal batch correction approach is often
dependent on the individual dataset, in addition to two alternative
methods for batch correction, we provide in our documentation sim-
ple code for the calculation of the LISI score as shown in Figure S4b.
The LISI score provides an easy metrics for the integration of two or
more datasets. As such, the user is enabled to test the best performing
batch correction approach for their data. As best practice in data
analysis, we encourage validation of the batch correction with the
expression of hallmark markers.

Pseudotime projection-based trajectory inference allows the
dissection of developmental programs
A valuable insight enabled by single-cell level analysis over bulk analysis
is the capacity to investigate continuous developmental trajectories in
complex tissues14.WhileHDCprovides sufficient resolution for this type
of analysis, conventional analysis approaches based on classical gating
of the data can only capture discrete cell states but fail to capture the
whole scope of continuous processes31. The technical and conceptual
framework of cyCONDOR allows to integrate approaches which are
defining pseudotimes as a proxy for continuous developmental trajec-
tories based for example on cluster-based minimum spanning trees as
they have been realized by the slingshot algorithm32 to predict pseu-
dotime in single-cell data. This addition to cyCONDOR opens the
potential to investigate complex transitional states in HDC data.

To illustrate the potential of pseudotime analysis on HDC data we
analyzed a bone marrow CyTOF dataset from Bendall et al.33 with a
dimensionality of 32 protein markers to visualize the developmental
trajectories of hematopoietic stem cells (HSCs) to monocytes and
plasmacytoid dendritic cells (pDCs).

The first step of this analysis includes the annotation of the
dataset (as described in Fig. 2) and the subsetting for the myeloid
lineage (Figs. 4a, S5a). The subsetting function is especially useful for a
high-resolution analysis of highly heterogeneous tissues, such as the
bone marrow. Bone marrow data was pre-processed and each Phe-
nograph cluster was annotated according to the expression of hall-
mark proteins (Figs. 4b, S5b, S5c). Afterwards, we focused on the
myeloid cell compartment including monocytes and plasmacytoid
dendritic cells (pDCs) (Fig. 4c) to define their differentiation trajec-
tories. Dimensionality reduction and clustering were reiterated on the
selected cell compartment to increase the resolution of cell types and
states, resulting in 15 clusters (FigureS5d). Importantly, the subset data
was not re-scaled for clustering and dimensionality reduction (as it is
e.g., performed in standard single-cell transcriptomics workflow such
as Seurat34 or Scanpy35) to avoid any overrepresentation of proteins
not expressed. Finally, each cluster was labeled according to the
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expression of lineage proteins (Figs. 4c, S5e) revealing the presence of
a commonmyeloid progenitor (CMPs) cluster which was not resolved
before subsetting.

Within the cyCONDOR ecosystem, we can infer pseudotime and
trajectories on the filtered dataset with slingshot32 using the PCs or
UMAP coordinates as an input (Figs. 4d, S6a). In the slingshot func-
tion, it is possible to force the pseudotime to start and end at specific
clusters. However, we suggest allowing slingshot to infer the best
starting and ending point of the trajectory and corroborate the
results with domain knowledge for the analysis32. In our example,
slingshot unbiasedly predicted a developmental trajectory starting at
one of the pDCs clusters via the HSC cluster towards the monocyte
clusters, where it branched at the level of myeloblasts (Fig. 4e).
Incorporating prior biological knowledge, namely that HSCs are at
the starting point of cell differentiation within the myeloid com-
partment, the interpretation of the pseudotime analysis would sug-
gest that pDC development trajectory is distinct from monocyte
development and that the different monocyte subsets share a com-
mon differentiation path from HSCs to myeloblasts and subse-
quently into monocytes (Figs. 4f, S6b). In the first branch, leading

from HSCs to monocytes, we observed a gradual decline of HSCs
markers (e.g., CD34) and an increased expression of monocyte
markers such as CD11b and CD14 (Fig. 4f). In contrast, the develop-
mental trajectory from HSCs to pDCs was defined by a decline of
CD34 and HLA-DR expression and an increased expression of CD123,
a hallmark protein for pDCs (Figure S6b). This CyTOF dataset
exemplifies the value of pseudotime analysis of HDC data beyond
sequencing-based single cell technologies, allowing a more fine-
granular analysis of cellular differentiation states for example in the
hematopoietic system, the immune system, but potentially also in
cancer or other renewing tissues.

cyCONDOR simplifies visual and statistical comparison between
experimental groups
Many HDC analyzes aim to investigate the biological difference
between two ormore experimental groups or conditions. Despite the
availability of tools for pre-processing HDC data9,10,36,37, comprehen-
sive frameworks for in-depth visualization and statistical testing to
compare multiple biological groups remain limited. With cyCONDOR
we provide a set of easy-to-use functions to compare cell frequencies
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and protein expression across multiple experimental groups
(Figs. 5a, S7a). For the statistical testing of differential abundance
and differential expression cyCONDOR streamlines the usage of
diffcyt38, subsequentially to the cyCONDOR clustering workflow.
Additionally, to test differential frequency cyCONDOR provides built-
in function according to the number of groups in the analysis (e.-
g., two-sample t-test and Wilcoxon or Kruskal-Wallis with optional
post-hoc tests).

To exemplify these features of cyCONDORwe re-analyzed a subset
of our previously published dataset on chronicHIV17. Pre-processing of
the dataset, including data transformation, dimensionality reduction,

clustering and cell annotation (as described in Fig. 2) revealed the
presence of the expected cell populations in PBMCs (Fig. 5b). At a
glance, the contribution of each experimental group to each cell type
(Fig. 5c) or cluster (Figures S7b, S7c) can be visualized as confusion
matrix. cyCONDOR provides stacked bar plots as a second integrated
visualization approach to compare cell compositions per group
(Figs. 5d, S7d). Interestingly, already at this level a reduced frequency
of B cells and CD4 +T cells and an increased frequency of monocyte
and unconventional T cells was observed, as expected in individuals
with chronic HIV infection (Figs. 5c, 5d17,). Already these simple
visualization approaches provide fast and easily interpretable
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overviews. Yet, they do not address potential sample outliers or pro-
vide statistical testing.

Cell frequencies at the sample level separated by groups
are visualized with a built-in cyCONDOR function generating

boxplots for each cell type or cluster for each sample group
individually (Figs. 5e, S7e). The differential abundance was tes-
ted with both cyCONDOR built-in functions described above
(Supplementary Data 5, 6, two-sided t-test with bonferroni
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multiple test correction) and diffcyt (Supplementary Data 7, 8,
edgeR). We report in the figure the cyCONDOR t-test calculated
p values, showing significant results for unconventional
T cells (Fig. 5e).

Differential protein expression between conditions of interest
can also be visually investigatedwith a built-in function of cyCONDOR
by providing only the cell labels to be used for the categorization
(e.g., clustering or cell types) and the biological grouping. The result
is visualized as a heatmap of the average marker expression across
groups and cell types, showing for example a decreased expression
of the naive T cell markers CD127 and CD197and an increased
expression of the senescence markers CD57 and CD94 in
CD8 + T cells of PLHIV (Figs. 5f, S8a). Statistical testing can be per-
formed for differential expression using diffcyt (Supplementary
Data 9, cell types, LMM method). Although we did not identify any
expression difference with FDR-corrected p-values < 0.05, likely due
to the low sample size, we report cyCONDOR visualization formedian
expression per sample for the two top markers in CD8 T cells
showing a moderate increase in CD94 and CD57 expression in the
disease group (Figure S8b).

Overall cyCONDOR provides a diverse collection of easy-to-use
functions to investigate the biological differences between experi-
mental groups to cover a wide-range of statistical comparisons and
visualization needs.

Continuous learning and scalability in HDC leveraging data
projection with cyCONDOR
Considering the high scalability and the continuously increasing
affordability ofHDC, it is of utmost importance to establish an analytical
pipeline designed to be scalable to the analysis of thousands of samples
and millions of cells. Given the widespread adoption of HDC as the
primary readout for numerous longitudinal population-wide or clinical
studies, a real-time processing of the growing datasets upon each novel
data acquisition is impractical and inefficient. With cyCONDOR we
propose a two-step approach for continuous learning from new data
(Figs. 6a, S9a). As afirst step, a representative set of sampleswill be used
to generate the initial cell state and protein expressionmodel (Figs. 6b,
S9b). This initial model should be as representative as possible for the
variability of the samples and their cell populations to be analyzed and
the specific scientific question to be answered39. As a second stepwith a
transfer-learning approach, independent data generated with the same
experimental design will be projected onto the annotated reference for
an efficient cell annotation of new data.

Following the principles described above (Fig. 2), a representative
set of samples is processed by dimensionality reduction, clustering
and cluster annotation. Next, the UMAP model is retained (uwot
package) and a k-Nearest Neighbors (kNN) classifier is trained on the
combination of marker expression and cell identities (caret package,
see “methods” for details).
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To illustrate themethod, we used a dataset consisting of 10 PBMC
samples fromour previouswork17. A randomset of nine PBMC samples
was used to train the initial model and one independent sample was
projected on the reference UMAP and annotation (Fig. 6c). The pro-
jected data alignedwell with the referenceUMAP embedding as shown
by a LISI score close to two demonstrating the desired mix between
cells derived from the original embedding and the projected data
(Fig. 6d). Furthermore, the training of the kNN classifier resulted in an
overall accuracy higher than 99% when predicting cell types (Fig-
ure S9c) and 97% when predicting Phenograph clusters (Figure S9d).
The kNN classifier implementation in cyCONDOR also outputs the
importance score calculated by the kNNmodel for eachmarker in the
classification (Figures S9e, S10) providing information on the rele-
vance of each marker in the panel for the classification task. Label
predictionbasedon the train classifier leads to a goodoverlapbetween
the annotation of the training dataset and the new data (Figs. 6e, S11a).
When comparing the automated annotation provided by cyCONDOR
with the manual annotation performed by annotating Phenograph
clusters according tomarker expression for the projected samples, we
observe an almost perfect overlap (Fig. 6f). Furthermore, also at the
level of individual cell types and clusters a LISI score around two
showed a good projection of the UMAP even for small clusters or
minor cell types (Figures S11b, S11c). With this efficient approach, new
samples can be automatically analyzed using a reference dataset
without the need for manual annotation. As this process does not rely
on the parallel processing of multiple samples, this analysis can be
efficiently scaled providing a robust framework for the analysis of
thousands of samples and millions of cells. Considering the potential
challenges in evaluating the expected variance in biological data, we

envision our approach to be implemented incrementally. Initially, a
reference dataset comprising a limited number of samples, designated
as model V1, can be employed. While a small sample size may not fully
encompass the entire range of human variation, as the number of
samples increases, we anticipate developing an updated reference
model, V2, to accommodate this expanded diversity. This can be
achieved by simply retraining a new model with more data using the
same pipeline. This incremental approach enables the continuous
refinement of the model.

Harnessingmachine learning for clinically relevant classification
with cyCONDOR
Flow cytometry is commonly used as a clinical test for the diagnosis of
several hematological diseases such as leukemia40. Furthermore, in
recent years, thanks to the advent of high-dimensionalmethodologies,
HDChas been assigned great potential for the diagnosis ofmany other
diseases (e.g., HIV, COVID-19, neurological diseases41). Expanding from
the use of a general model to project new samples (Fig. 6), we imple-
mented in cyCONDOR a set of functions to train clinical classifiers for
the categorization of new samples without manual investigation (see
“methods” for details - Figs. 7a, S12a).

As a starting point for clinical classification tasks, we utilized the
CytoDx package42 which predicts clinical outcomes by individually
assessing each cell’s association and averaging these signals across
samples, and adapted it to the cyCONDOR ecosystem. To test the
functionality of this module in cyCONDOR, we made use of the Flow-
CapII dataset, which serves as one of the gold-standard datasets for
benchmarkingmachine learning (ML) classifiers on cytometry data43,44.
As a first step, we created amodel using a selection of 20 samples from
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the FlowCapII dataset (also included as test data in the CytoDx pack-
age), which included samples from patients with acute myeloid leu-
kemia (aml) and healthy control samples. We split the subset into a
training dataset (5 aml and 5 controls) and a test dataset (5 aml and 5
controls). We first explored the difference between control and aml
samples at the level of their UMAP embedding (Fig. 7b) showing that
cells from aml and control samples differentially populated the dif-
ferent subclusters. Independently from any cell type label, using a
classification tree42 we trained two classifiers, first at the level of indi-
vidual cells (i.e., cellular classifiers Figure S12b), and consequently at
the sample level (i.e., sample classifier Figure S12c). Already at the
single-cell level, the CytoDx classifier results showed a separation
between aml samples and controls with an overall higher aml classifi-
cation probability for aml-derived cells (Figure S12b). The aml model,
derived by the decision tree algorithm was visualized as a tree map
illustrating that the model can be visualized to allow further investi-
gation of the decision-making processes employed by the classifier to
assign a probability to each cell. As anticipated, the feature importance
analysis for the cellular model showedmarkers of themyeloid lineage,
such as CD13, as key determinants for classification (Figure S12d). For
the sample classifier, the trained model was able to correctly classify
the 10 samples used for training (Figure S12c). Next, the model was
evaluated on the test dataset, which has no overlap with the training
data, and we could see a similar increase in probability for aml-derived
cells (Fig. 7c) as well as a perfect classification of the 10 new samples at
the sample level (Fig. 7d). To extend the validation of the cyCONDOR
implementation of CytoDx for sample classification, we then included
in the analysis the entire FlowCapII dataset, comprised of 359 samples
(43 aml and 316 controls). We split this dataset into 80% training and
20% test data and randomized this selection 100 times to evaluate the
real-world performances of the classifier (Fig. 7e). Before training the
training dataset of 80% of the data was balanced to have an equal
number of aml and control cases while the test dataset was left
unbalanced (1 aml / 7.3 controls) to reflect a real-world scenario. For
each permutation, we calculated accuracy, specificity and sensitivity
on the 20% test dataset showing optimal performance also on real-
world data (Fig. 7e). Collectively, cyCONDOR facilitates the classifica-
tion of clinical HDC data on cellular and sample level, opening avenues
for the widespread application of ML to HDC data.

Discussion
Flowcytometry, developed in the early 1950s, has been a revolutionary
technique for the understanding of heterogeneous tissues3. It allows
the quantification of multiple protein markers at single-cell resolution
and canmeasure millions of cells in a single experiment3. While recent
advances in HDC have expanded the potential of cytometry to dissect
complex tissues at the single-cell level45, these advancements have also
introduced a multitude of analytical challenges.

Traditional cytometry data analysis relies on the sequential
selection of cells in two-dimensional plots (gating), which is adequate
for a limited number of protein markers. However, as novel meth-
odologies enable the simultaneous measurement of more than 50
proteins per cell, traditional analytical approaches become increas-
ingly cumbersome and less effective.

In the last few years, several approaches besides commercial
software have provided the cytometry community with tools to
investigateHDCdata using data-driven approaches commonlyusedby
the single-cell transcriptomics community. Cytofkit, a pioneering
project that ceased development in 2017, played a pivotal role in cat-
alyzing a paradigm shift in the analysis ofHDC10. This tool hasprovided
several data transformation and clustering approaches still used in the
field10. Other projects such as SPECTRE9 and Catalyst36 have increased
the feature set available to the community by introducing approaches
for signal overlap correction in CyTOF data11 or computational pipe-
lines for the analysis of CyTOF imaging datasets9.

Complementary, several non-academic projects, such as Cyto-
banks (Beckman Coulter), Cytolution (Cytolytics) and Omiq (Dot-
matics) provide feature-rich tools, often with an intuitive graphical
user interface (GUI) for the guided analysis of HDC data. Accessibility
to these pipelines is not free and in the case of purely cloud solutions
such as Cytobanks necessitates access to external web servers, raising
concerns about data privacy following national regulations46.

In this study, we introduce cyCONDOR as an easy-to-use, open-
source ecosystem for HDC data analysis. Building upon existing
tools like SPECTRE, Catalyst and Cytofkit, cyCONDOR prioritizes
not only user-friendliness but also the biological interpretation of
data with the scalability to millions of cells and the implementation
of state-of-the-art ML methods. We first demonstrate the applic-
ability of the cyCONDOR workflow to a broad range of data types
including HDFC, CyTOF, Spectral Flow and CITE-seq. Furthermore,
we showcase how cyCONDOR can efficiently mitigate the technical
batch between datasets and provide “publication-ready” compar-
isons between experimental groups. Most of these steps were
already individually available in other analytical pipelines, never-
theless cyCONDOR focuses on the simplicity of use for non-
computational biologist and offers better performance thanks to
the implementation ofmulti-core computing for themost intensive
steps (e.g., UMAP calculation or Phenograph clustering), drastically
reducing computing times.

Additionally, cyCONDOR provides new analytical workflows
aiming at the biological interpretation of the data and scalability to
population-wide studies. In this manuscript, we demonstrate the
application of cyCONDOR to investigate the continuous development
of HSCs into the major immune cell lineages by inferring pseudo-
time. Moreover, the integration of a kNN classifier enables the pro-
jection of new data onto existing embeddings, facilitating scalability
of the cyCONDOR workflow and enabling continuous analysis of
large-scale studies. Furthermore, the possibility to easily train a
clinical classifier within the cyCONDOR pipeline enables the applic-
ability of cyCONDOR to clinical settings where sufficient data are
available.

The focus of cyCONDOR on ease of use is still limited in some
aspects. Cell type identification is still a laborious process and cannot
be automated yet. When compared to single-cell transcriptomics
where all transcripts are measured, HDC relies on a pre-selected set of
markers. This pre-selection in the available parameter limits the use of
reference mapping techniques such as SingleR and will still require
manual annotation based on the marker expression. Future develop-
ments of cyCONDOR will provide the implementation of Astir47, an
interesting tool simplifying the process of cluster annotation. Fur-
thermore, cyCONDOR can be currently used for the analysis of a variety
of data types but cannot integrate datasets from different analysis
platforms, e.g., CITE-seq and CyTOF. Despite this limitation, the
cyCONDOR ecosystem eases the comparison of samples measured
simultaneously on different platforms (shown for HDFC and CITE-seq
in Supplementary Data 10).

Taken together, cyCONDOR provides an easy-to-use, end-to-end
ecosystem forHDCdata analysis extending on the available features of
other approaches. We provide cyCONDOR as an open-source R pack-
age making it compatible with any common operating system (Mac
OS, Windows and Linux). Furthermore, we provide cyCONDOR with a
companion Docker Image ensuring full reproducibility of the analysis
while costing only little computational overhead46, simplifying the
deployment of our tool, and limiting the risk of any incompatibility
with other R packages.

Methods
Analysis of samples from DELCODE study complied with all relevant
ethical regulations and was approved by the University of Bonn (Lfd,
Nr. 227/19).
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Datasets
Chronic HIV, human PBMCs, HDFC. The in-house HDFCphenotyping
data from control and chronic HIV donors17 was re-analyzed in this
manuscript. Before the analysis, debris were removed according to
FSC-A and SSC-A, singlets were selected (FSC-A vs. FSC-H) and dead
cells were removed. Compensated FCS files were then exported for
cyCONDOR analysis. This dataset was used to exemplify cyCONDOR
capabilities for pre-processing (Fig. 2), differential analysis (Fig. 5) and
data projection (Fig. 6).

Rheumatoid arthritis, human whole blood, CyTOF. For the evalua-
tion of the cyCONDOR ecosystem with CyTOF data (Fig. 2), we
downloaded the dataset reported by Leite Pereira et al.48. From this
dataset only healthy control 1 and 2 were used including both
unstimulated and IL7 stimulated cells (HEA1_NOSTIM.fcs, HEA1_ST-
IM.fcs, HEA2_NOSTIM.fcs, HEA2_STIM.fcs). The dataset was down-
loaded from FlowRepository (FR-FCM-Z293, http://flowrepository.
org/id/FR-FCM-Z293).

Healthy, Murine Spleen, SpectralFlow. For the evaluation of the
cyCONDOR ecosystemwith SpectralFlow data (Fig. 2), we downloaded
the dataset reported by Yang et al.49. From this dataset we only used
Spleen 1 and Spleen 2 (S1.fcs and S2.fcs). Before the analysis debris were
removed according to FSC-A and SSC-A, singlets were selected (FSC-A
vs. FSC-H) and dead cells were removed. Compensated FCS files were
then exported for cyCONDOR analysis. The dataset was downloaded
from FlowRepository (FR-FCM-Z4NB, http://flowrepository.org/id/FR-
FCM-Z4NB).

Healthy, human PBMCs, CITE-seq. Healthy controls were collected
as part of the DELCODE50 study. PBMCs were stained with BD
Rhapsody Ab-seq Immune Discovery Pannel kit (BD) according to
manufacturer instructions. Raw sequencing reads were processed
with the BD Rhapsody Pipeline (v.2.1) and UMI counts per cell were
used for cyCONDOR analysis. Ab-seq counts were transformed with a
Center log ratio transform (clr) before dimensionality reduction and
clustering. This dataset was used to exemplify the use of cyCONDOR
with CITE-seq data (Fig. 2). This dataset was generated as part of this
study. Raw data is provided on FigShare (https://doi.org/10.6084/
m9.figshare.25351981).

Healthy, human PBMCs, HDFC. Healthy controls were collected as
part of theDELCODE50 study andmeasured over several dayswith a BD
Symphony S6 cell sorter. Similarly to the SpectralFlow dataset repor-
ted above, debris was removed according to FSC-A and SSC-A, singlets
were selected (FSC-A vs. FSC-H) and dead cells were removed. Com-
pensated FCS files were then exported for cyCONDOR analysis. This
dataset was used to exemplify the batch correction workflow imple-
mented in cyCONDOR (Fig. 3). This dataset was generated as part of
this study. Raw data is provided on FigShare (https://doi.org/10.6084/
m9.figshare.25351981).

Healthy, bone marrow, CyTOF. The CyTOF dataset reported by
Bendall et al.33 was downloaded from CytoBank. Before cyCONDOR
analysis the data was cleaned as described in the CytoBank analysis.
Shortly singlets were selected according to cell length and 191-DNA
staining. The surface staining for bone marrow 1 was used for the
analysis (Marrow1_00_SurfaceOnly.fcs). With this dataset we exemplify
the trajectory inference and pseudotime capabilities of cyCON-
DOR (Fig. 4)

AML, FC - flowcap-II. The FlowCap-II AML dataset43,44 was down-
loaded from FlowRepository (FR-FCM-ZZYA, http://flowrepository.
org/id/FR-FCM-ZZYA). For the evaluation of the performances of
cyCONDOR clinical classifier all samples from panel 4 were used

without any further processing. We use this dataset to benchmark the
machine learning classifier implemented in cyCONDOR (Fig. 7).

Structure of the cyCONDOR object
We developed the cyCONDOR ecosystem as an R package. The current
version of the cyCONDOR package (v 0.1.6) was developed with R v
4.3.0 and Bioconductor v 3.17. The condor object, containing all the
data resulting from a cyCONDOR analysis is structured as an R list with
separate data slots for marker expression (expr), cell annotation
(anno), dimensionality reduction (pca, umap, tsne), and clustering
(clustering). Individual elements are structured as R data frames with
each row representing an individual cell and each column a parameter.
The structural integrity of the condor object can be evaluated at each
step with built-in functions to ensure the object was correctly
manipulated.

Data pre-processing and transformation
Individual FCS files are imported in R and merged with the sample
annotation using the prep_fcd function. This function imports each FCS
or CSV file, merges all expression tables into a single data frame and
performs an autologicle transformation (with the exception of CITE-
seq data where clr transformation was used)10,51,52 marker-wise. Before
merging, each cell is assigned a unique cell name composed of the
nameof the file of origin and sequential numbering. Additionally, a cell
annotation table is initialized from a provided sample metadata table.
The output condor object will contain both data frames, the trans-
formed expression data frame, and the annotation data frame, andwill
be used for all the downstreamprocesses. For the end user cyCONDOR
provides also an arcsinh transformation with cofactor 5 as standard in
the field of cyTOF analysis.

Dimensionality reduction
cyCONDOR provides several functions to perform different types of
dimensionality reductions, each function requires a condor object and
outputs a condor object including the coordinates of the reduced
dimension for each cell. Except for the PCA, all other dimensionality
reductions provided with cyCONDOR (UMAP, tSNE and DM) can use as
input the principal components (recommended option shown in this
manuscript) or the marker expression. The user can also decide the
number of PCs to use for the calculation to reduce the computational
requirements.

Pseudobulk principal component analysis (PCA). To calculate the
pseudobulk principal components the cyCONDOR func-
tion runPCA_pseudobulk calculates at first themeanmarker expression
across all cells. The resulting matrix is then used to perform a PCA. As
the dimensionality of the output matrix differs from the dimension-
ality of the condor object, the output of the function will not be the
modified condor object but a new list comprising only the PCA coor-
dinates and the input dataset.

Principal component analysis (PCA). The cyCONDOR runPCA func-
tion uses the prcomp base R function to compute the principal com-
ponents for each cell. The output of the function is the original condor
object extended by the PC coordinates.

Uniform Manifold Approximation and Projection (UMAP). The
cyCONDOR runUMAP function uses the uwot UMAP implementation
(CRAN). Compared to other R native implementations of the UMAP
algorithms this implementation allows parallelizing the UMAP calcu-
lation, enables high performances and allows to retain the neural
network model, which is used to project new data to existing UMAP
embeddings (see section “Data projection” below). The output of the
function is the original condor object extended by the UMAP
coordinates.
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t-distributed Stochastic Neighbor Embedding (tSNE). The cyCON-
DOR function runtSNE relies on the Rtsne implementation of the tSNE
algorithm to calculate this non-linear dimensionality reduction. Simi-
larly to the UMAP calculation, the output is the original condor object
added with the tSNE coordinates.

Diffusion map (DM). To calculate a diffusion map, the cyCONDOR
function runDM relies on the destiny package53. Similar to the other
dimensionality reduction approach this function will output the ori-
ginal condor object extended by the DM coordinates.

Clustering
Phenograph. Phenograph clustering is performed with the Rphe-
noannoy R package which compared to the original R implementation53

allows parallelization of Phenograph calculation. For applying the
cyCONDOR function runPhenograph the user will provide a condor
object and decide which data to use for Phenograph clustering (usually
PCA). The function will return a condor object including the result of the
clustering algorithm. The user can also optimize the k parameter to
generate a more broad or fine-grained clustering.

FlowSOM. FlowSOM clustering is performed with the FlowSOM R
package16. With the cyCONDOR function runFlowSOM the user will
provide a condor object and decide which data to use for FlowSOM
clustering (usually PCA). The function will return a condor object
including the results of the clustering algorithm.Theuser also needs to
provide the number of final clusters as input.

Batch correction
The cyCONDOR ecosystem implements Harmony22 to account for dif-
ferences between experimental batches. The implementation of Har-
mony provides the option to correct for experimental batches at both
the levels ofmarker expressionwith the function harmonize_intensities
and principal components with the function harmonize_PCA. The
output of both options can be used to calculate a non-linear dimen-
sionality reduction and clustering. The harmonized intensities matrix
and PC coordinates will be saved in a separate data slot of the condor
object (condor$expr$norm for the harmonized intensities and condor
$pca$norm for the PC coordinates). Preserving both, original and
harmonized data simplify the evaluationof the batch correction.While
it is technically possible it is not advisable to use the harmonized
marker expression for differential expression analysis as this might
lead to overestimation or underrepresentation of the differences. For
both functions, the output will consist of the original condor object
with the addition of the harmonized values.

Pseudotime analysis
cyCONDOR implements slingshot32 for pseudotime analysis and tra-
jectory inference. After data pre-processing including transformation,
dimensionality reduction, clustering and cell annotation, the function
runPseudotime takes the coordinates of a dimensionality reduction
(e.g., PCA or UMAP) to infer pseudotime and trajectories. The runP-
seudotime function also requires a vector with the cell labels. Within
the runPseudotime function the user can define fixed starting and
ending points for the trajectory. Additionally, cyCONDOR offers a user-
friendly validation option that recalculates the trajectory using each
cluster/metacluster as the starting point. This functionality aids in
identifying the best-fittingmodel for any given cell differentiation task.
Pseudotime and trajectories can be easily visualized with cyCONDOR
built in functions. In the exemplary data shown in Fig. 4, to visualize
both lineages overlaid in a UMAP plot, the mean values of pseudotime
for each cell was used. For ordering the cells according to pseudotime
in the lineage from HSCs to Monocytes the pseudotime of this lineage
was used.

Data projection
The workflow for the projection of new data to an existing reference
dataset consists of two main steps. First, the preparation of the refer-
ence dataset consists of the training of the UMAP neural network and
retaining the model within the condor object with the runUMAP func-
tion setting ret_model to TRUE. After annotation of the dataset, a kNN
classifier is also trained on the reference data using as input the
expression values and the cell labels of each cell. This step is per-
formed with the cyCONDOR function train_transfer_model which takes
advantage of the caret framework formachine learning in R54. The kNN
model will alsobe retainedwithin the condorobject. For the projection
of new data, the functions learnUMAP and predict_labels will take the
built models from the reference dataset to project the new cells into
the existing UMAP embedding and to predict the cell labels. Both
reference dataset and projected data need to be generated with the
same experimental design.

Clinical classifier
With the cyCONDOR implementation of the CytoDx42 model it is pos-
sible to easily train a machine-learning (ML) classifier. The cyCONDOR
function train_classifier_model takes as input a condor object (expres-
sion values) and a variable defining the different categories to train a
classifier of both individual cells and samples. The performance of the
classifier can be easily exploited with the pre-build function as well as
the decision tree used for the classification42. The output of this
function will be the original condor object with the addition of the
ML model.

For the classification a of new samples, the predict_classifier
function takes as input the condor object containing the samples to
classify and the pre-trained model (stored in the training condor
object). The output of this function will be the condor object added
with the probability of the classification for each cell and each
sample.

Statistics & reproducibility
Statistical significance was calculated in R (v. 4.3.0) with an unpaired
two-sided t-test if not stated differently. A bonferroni corrected p-
value < 0.05 was considered significant. Differential aboundance and
expression analysis with diffcyt38 was performed using the method
edgeR and LMM respectively, and p-values and FDR-corrected p-
values were reported. With the exemplary dataset the robustness of
results was tested with different transformation methods (auto-
logical and arcsinh with cofactor 150) showing comparable results.
cyCONDOR implements several statistical testing methods for com-
paring cell population frequencies between groups. Individual
functions can calculate a t-test or Wilcoxon test for two groups, or
ANOVA, Kruskal-Wallis or Friedman test with matching post-hoc test
for more than two groups. For t-tests and Wilcoxon tests, the user
can specify whether the samples are paired. Further, cyCONDOR
provides a function to convert the condor object into a diffcyt com-
patible format for further analysis. All data were visualized using R (v.
4.3.0) with the packages ggplot2, pheatmap or the built-in functions
of cyCONDOR (v. 0.2.0). All box plots were constructed in the style of
Tukey, showing median, 25th and 75th percentiles; whisker extends
from the hinge to the largest or lowest value no further than 1.5 ∗ IQR
from the hinge (where IQR is the interquartile range, or distance
between the first and third quartiles); outlier values are depicted
individually. Confusion matrices were used to show relative pro-
portion across groups as a fraction of samples from the respective
condition contributing to each cluster or cell type.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
All data used in this manuscript are publicly available as described in
the individualfigure, data fromDELCODEhealthdonorswasgenerated
for this study, raw data are provided on FigShare (https://doi.org/10.
6084/m9.figshare.25351981). R environment and data necessary to
reproduce the analysis shown in this manuscript are available on Fig-
Share (https://doi.org/10.6084/m9.figshare.25351981).We also include
supplementary files (Supplementary Data 11 to 20) from the compiled
script for each figure to provide the user with easy reference to the
code used to produce the figure. Source data are provided with
this paper.

Code availability
cyCONDOR source code is available on GitHub (https://github.com/
lorenzobonaguro/cyCONDOR), cyCONDOR is distributed under GPL-
3.0 license. All code to reproduce the analysis shown in this manu-
script is available on GitHub (https://github.com/lorenzobonaguro/
cyCONDOR_reproducibility). The data reported in this manuscript
were analyzed with cyCONDOR v0.2.055 and Bioconductor 3.17.

References
1. Liechti, T. et al. An updated guide for the perplexed: cytometry in

the high-dimensional era. Nat. Immunol. 22, 1190–1197 (2021).
2. Robinson, J. P., Ostafe, R., Iyengar, S. N., Rajwa, B. & Fischer, R. Flow

cytometry: the next revolution. Cells 12, 1875 (2023).
3. McKinnon, K. M. Flow cytometry: an overview. Curr. Protoc.

Immunol. 120, 5.1.1–5.1.11 (2018).
4. Nolan, J. P. The evolution of spectral flow cytometry. Cytom. A 101,

812–817 (2022).
5. Iyer, A., Hamers, A. A. J. & Pillai, A. B. Cytof® for the masses. Front.

Immunol. 13, 815828 (2022).
6. Stoeckius, M. et al. Simultaneous epitope and transcriptome mea-

surement in single cells. Nat. Methods 14, 865–868 (2017).
7. Opzoomer, J. W. et al. ImmunoCluster provides a computational

framework for the nonspecialist to profile high-dimensional cyto-
metry data. Elife 10, e62915 (2021).

8. Keyes, T. J., Koladiya, A., Lo, Y.-C., Nolan,G. P. &Davis, K. L. tidytof: a
user-friendly framework for scalable and reproducible high-
dimensional cytometry data analysis. Bioinforma. Adv. 3,
vbad071 (2023).

9. Ashhurst, T. M. et al. Integration, exploration, and analysis of high-
dimensional single-cell cytometry data using Spectre. Cytom. A
101, 237–253 (2022).

10. Chen, H. et al. Cytofkit: a bioconductor package for an integrated
mass cytometry data analysis pipeline. PLoS Comput. Biol. 12,
e1005112 (2016).

11. Chevrier, S. et al. Compensation of signal spillover in suspension
and imaging mass cytometry. Cell Syst. 6, 612–620.e5 (2018).

12. Liu, X. et al. A comparison framework and guideline of clustering
methods for mass cytometry data. Genome Biol. 20, 297 (2019).

13. Dai, Y. et al. CytoTree: an R/Bioconductor package for analysis and
visualization of flow andmass cytometry data. BMC Bioinforma. 22,
138 (2021).

14. Tritschler, S. et al. Concepts and limitations for learning develop-
mental trajectories from single cell genomics. Development 146,
dev170506 (2019).

15. Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals
progenitor-like cells that correlate with prognosis. Cell 162,
184–197 (2015).

16. Van Gassen, S. et al. FlowSOM: using self-organizing maps for
visualization and interpretation of cytometry data. Cytom. A 87,
636–645 (2015).

17. Knoll, R. et al. Identification of drug candidates targetingmonocyte
reprogramming in people living with HIV. Front. Immunol. 14,
1275136 (2023).

18. McInnes, L. & Healy, J. UMAP: uniformmanifold approximation and
projection for dimension reduction. Preprint at https://doi.org/10.
48550/arXiv.1802.03426 (2018).

19. Becht, E. et al. Dimensionality reduction for visualizing single-cell
data using UMAP. Nat. Biotechnol. 37, 38–44 (2018).

20. van der Maaten, L. & Geoffrey, E. H. Visualizing data using t-SNE. J.
Mach. Learn. Res. 164, 10 (2008).

21. Rybakowska, P., Alarcón-Riquelme, M. E. & Marañón, C. Key steps
andmethods in the experimental design and data analysis of highly
multi-parametric flow and mass cytometry. Comput Struct. Bio-
technol. J. 18, 874–886 (2020).

22. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-
cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

23. Tran, H. T. N. et al. A benchmark of batch-effect correctionmethods
for single-cell RNA sequencing data. Genome Biol. 21, 12 (2020).

24. Ogishi, M. et al. Multibatch cytometry data integration for optimal
immunophenotyping. J. Immunol. 206, 206–213 (2021).

25. Zheng, Y., Jun, S.-H., Tian, Y., Florian, M. & Gottardo, R. Robust
normalization and integration of single-cell protein expression
across CITE-seq datasets. Preprint at BioRxiv. https://doi.org/10.
1101/2022.04.29.489989 (2022).

26. Yang,Y.,Wang, K., Lu, Z.,Wang, T. &Wang, X.Cytomulate: accurate
and efficient simulation of CyTOF data. Genome Biol. 24, 262
(2023).

27. Multi-Sample Single-Cell Analyses with Bioconductor. at https://
bioconductor.org/books/3.18/OSCA.multisample/index.
html (2024).

28. Le Lann, L. et al. Standardization procedure for flow cytometry data
harmonization in prospective multicenter studies. Sci. Rep. 10,
11567 (2020).

29. Sun, L.,Wu,H., Pan, B.,Wang, B. &Guo,W. Evaluation andvalidation
of a novel 10-color flow cytometer. J. Clin. Lab Anal. 35,
e23834 (2021).

30. Van Gassen, S., Gaudilliere, B., Angst, M. S., Saeys, Y. & Aghaee-
pour, N. Cytonorm: a normalization algorithm for cytometry data.
Cytom. A 97, 268–278 (2020).

31. Melsen, J. E., van Ostaijen-Ten Dam, M. M., Lankester, A. C., Schil-
ham, M. W. & van den Akker, E. B. A Comprehensive Workflow for
Applying Single-Cell Clustering and Pseudotime Analysis to Flow
Cytometry Data. J. Immunol. 205, 864–871 (2020).

32. Street, K. et al. Slingshot: cell lineage and pseudotime inference for
single-cell transcriptomics. BMC Genomics 19, 477 (2018).

33. Bendall, S. C. et al. Single-cell mass cytometry of differential
immune and drug responses across a human hematopoietic con-
tinuum. Science 332, 687–696 (2011).

34. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Inte-
grating single-cell transcriptomic data across different conditions,
technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

35. Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell
gene expression data analysis. Genome Biol. 19, 15 (2018).

36. Nowicka, M. et al. CyTOF workflow: differential discovery in high-
throughput high-dimensional cytometry datasets. F1000Res 6,
748 (2019).

37. Puccio, S. et al. CRUSTY: a versatile web platform for the rapid
analysis and visualization of high-dimensional flow cytometry data.
Nat. Commun. 14, 5102 (2023).

38. Weber, L. M., Nowicka, M., Soneson, C. & Robinson, M. D. diffcyt:
Differential discovery in high-dimensional cytometry via high-
resolution clustering. Commun. Biol. 2, 183 (2019).

39. Clemmensen, L. H. & Kjærsgaard, R. D. Data Representativity for
Machine Learning and AI Systems. arXiv. https://doi.org/10.48550/
arxiv.2203.04706 (2022).

40. Jennings, C. D. & Foon, K. A. Recent advances in flow cytometry:
application to the diagnosis of hematologic malignancy. Blood 90,
2863–2892 (1997).

Article https://doi.org/10.1038/s41467-024-55179-w

Nature Communications |        (2024) 15:10702 14

https://doi.org/10.6084/m9.figshare.25351981
https://doi.org/10.6084/m9.figshare.25351981
https://doi.org/10.6084/m9.figshare.25351981
https://github.com/lorenzobonaguro/cyCONDOR
https://github.com/lorenzobonaguro/cyCONDOR
https://github.com/lorenzobonaguro/cyCONDOR_reproducibility
https://github.com/lorenzobonaguro/cyCONDOR_reproducibility
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.48550/arXiv.1802.03426
https://doi.org/10.1101/2022.04.29.489989
https://doi.org/10.1101/2022.04.29.489989
https://bioconductor.org/books/3.18/OSCA.multisample/index.html
https://bioconductor.org/books/3.18/OSCA.multisample/index.html
https://bioconductor.org/books/3.18/OSCA.multisample/index.html
https://doi.org/10.48550/arxiv.2203.04706
https://doi.org/10.48550/arxiv.2203.04706
www.nature.com/naturecommunications


41. Schultze, J. L., Büttner, M. & Becker, M. Swarm immunology: har-
nessing blockchain technology and artificial intelligence in human
immunology. Nat. Rev. Immunol. 22, 401–403 (2022).

42. Hu, Z., Glicksberg, B. S. & Butte, A. J. Robust prediction of clinical
outcomes using cytometry data. Bioinformatics35, 1197–1203 (2019).

43. Aghaeepour, N. et al. Critical assessment of automated flow cyto-
metry data analysis techniques. Nat. Methods 10, 228–238 (2013).

44. O’Neill, K., Jalali, A., Aghaeepour, N., Hoos, H. & Brinkman, R. R.
Enhanced flowType/RchyOptimyx: a BioConductor pipeline for
discovery in high-dimensional cytometry data. Bioinformatics 30,
1329–1330 (2014).

45. Saeys, Y., Van Gassen, S. & Lambrecht, B. N. Computational flow
cytometry: helping tomakesense of high-dimensional immunology
data. Nat. Rev. Immunol. 16, 449–462 (2016).

46. Staunton, C., Slokenberga, S., Parziale, A. & Mascalzoni, D. Appro-
priate safeguards and article 89 of the GDPR: considerations for bio-
bank, databank and genetic research. Front. Genet. 13, 719317 (2022).

47. Geuenich, M. J. et al. Automated assignment of cell identity from
single-cell multiplexed imaging and proteomic data. Cell Syst. 12,
1173–1186.e5 (2021).

48. Leite Pereira, A. et al. Characterization of phenotypes and functional
activities of leukocytes from rheumatoid arthritis patients by mass
cytometry. Front. Immunol. 10, 2384 (2019).

49. Yang, S.-Y. et al. A 33-color panel of phenotypic analysis of murine
organ specific immune cells. J. Immunol. Methods 507, 113294 (2022).

50. Jessen, F. et al. Design and first baseline data of the DZNE multi-
center observational study on predementia Alzheimer’s disease
(DELCODE). Alzheimers Res. Ther. 10, 15 (2018).

51. Parks, D. R., Roederer, M. & Moore, W. A. A new “Logicle” display
method avoids deceptive effects of logarithmic scaling for low
signals and compensated data. Cytom. A 69, 541–551 (2006).

52. Monaco, G. et al. flowAI: automatic and interactive anomaly dis-
cerning tools for flow cytometry data. Bioinformatics 32,
2473–2480 (2016).

53. Angerer, P. et al. destiny: diffusion maps for large-scale single-cell
data in R. Bioinformatics 32, 1241–1243 (2016).

54. Kuhn, M. Building PredictiveModels in RUsing the caret Package. J.
Stat. Softw. 28, 1–26 (2008).

55. lorenzobonaguro/cyCONDOR: v020. Zenodo. https://doi.org/10.
5281/zenodo.13897560 (2024)

Acknowledgements
Anna C. Aschenbrenner is a member of the excellence cluster Immu-
noSensation2 (EXC 2151) funded by the German Research Foundation
(DFG) under grant agreement #390873048) and is supportedby theDFG
via the SFB 1454 – project number #432325352; grant #458854699;
grant #466168337; grant #466168626; the BMBF-funded project IMMME
(01EJ2204D); and the EU-funded project ImmunoSep (#847422) and
NEUROCOV receiving funding from the RIA HORIZON Research and
InnovationunderGANo. 101057775. JoachimL. Schultze is supportedby
the excellence cluster ImmunoSensation2 (EXC 2151); the EU-funded
projects discovAIR (#874656) and SYSCID (#733100) and NEUROCOV
receiving funding from the RIA HORIZON Research and Innovation
under GA No. 101057775; the BMBF-founded project Diet-Body-Brain
(DietBB, 01EA1809A); theDFGvia theSFB 1454 (#432325352) and iTREAT
(01ZX1902B). Marc Beyer is supported by the excellence cluster Immu-
noSensation2 (EXC 2151, #390873048); the DFG via the IRTG2168

(#272482170), SFB1454 (#432325352); the EU-funded project NEURO-
COV receiving funding from the RIA HORIZON Research and Innovation
under GA No. 101057775; the Else-Kröner-Fresenius Foundation
(2018_A158) Lorenzo Bonaguro is supported by the excellence cluster
ImmunoSensation2 (EXC 2151) and the DFG-funded project ImmuDiet
(#513977171). Illustrations were created with BioRender.com.

Author contributions
Conceptualizationwasby L.B, T.P., M.B and J.L.S. Donor recruitment and
processingof biomaterialwas byDELCODEStudyGroup and supervised
by FJ. Themethodologywas devised by L.B, S.M, C.K, J.L., T.K., C.C., S.P.
and L.B. S.M., C.K., J.L., T.K., S. W., T.Z., A.N., A.F., J.B.S. performed
formal analysis. J.L., T.K., and T.Z. carried out the investigations. The
draft manuscript was written by L.B, M.B., J.L.S and A.C.A. All authors
reviewed and edited the manuscript. Visualization was by L.B. S.M. and
C.K. The project was supervised by L.B. and T.P. Funding acquisitionwas
by L.B, T.P., M.B, A.C.A and J.L.S.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare that they have no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-55179-w.

Correspondence and requests for materials should be addressed to
Lorenzo Bonaguro.

Peer review information Nature Communications thanks Helen
McGuire, Vladan Milosevic and Jayden O’Brien for their contribution to
the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-55179-w

Nature Communications |        (2024) 15:10702 15

https://doi.org/10.5281/zenodo.13897560
https://doi.org/10.5281/zenodo.13897560
https://doi.org/10.1038/s41467-024-55179-w
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications


Charlotte Kröger 1,2,27, Sophie Müller 1,2,3,27, Jacqueline Leidner 1,2,27, Theresa Kröber 1, Stefanie Warnat-
Herresthal1,2, Jannis Bastian Spintge1,4, Timo Zajac1, Anna Neubauer1, Aleksej Frolov1,3,5, Caterina Carraro 1,2, DELCODE
Study Group*, Frank Jessen6,7,8, Simone Puccio 9,10, Anna C. Aschenbrenner 1, Joachim L. Schultze 1,2,4,
Tal Pecht 1,2, Marc D. Beyer 1,4,5 & Lorenzo Bonaguro 1,2

1Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany. 2Genomics & Immunoregulation, LIMES Institute, University of
Bonn, Bonn, Germany. 3Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity,
Melbourne, Victoria, Australia. 4PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE and University of Bonn and West German Genome
Center, Bonn, Germany. 5Immunogenomics &Neurodegeneration, GermanCenter for Neurodegenerative Diseases (DZNE), Bonn, Germany. 6GermanCenter
for Neurodegenerative Diseases (DZNE), Bonn, Venusberg-Campus 1, Bonn, Germany. 7Department of Psychiatry, University of Cologne, Medical Faculty,
Kerpener Strasse 62, Cologne, Germany. 8Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne,
Joseph-Stelzmann-Strasse 26, Köln, Germany. 9Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, via Manzoni 56,
Rozzano Milan, Italy. 10Institute of Genetic and Biomedical Research, UoS Milan, National Research Council, via Manzoni 56, Rozzano Milan, Italy. 27These
authors contributed equally: Charlotte Kröger, Sophie Müller, Jacqueline Leidner. *A list of authors and their affiliations appears at the end of the paper.

e-mail: lorenzobonaguro@uni-bonn.de

DELCODE Study Group

Silka Dawn Freiesleben11,12, Slawek Altenstein11,13, Boris Rauchmann14,15,16, Ingo Kilimann17,18, Marie Coenjaerts6,
Annika Spottke6,19, Oliver Peters11,12, Josef Priller11,13,20,21, Robert Perneczky14,22,23,24, Stefan Teipel17,18,
Emrah Düzel25,26 & Frank Jessen6,7,8

11GermanCenter forNeurodegenerativeDiseases (DZNE), Berlin,Germany. 12Charité –UniversitätsmedizinBerlin, corporatememberof FreieUniversität Berlin
and Humboldt-Universität zu Berlin-Institute of Psychiatry and Psychotherapy, Berlin, Germany. 13Department of Psychiatry and Psychotherapy, Charité,
Charitéplatz 1, Berlin, Germany. 14Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany. 15Sheffield Institute for
Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK. 16Department of Neuroradiology, University Hospital LMU, Munich, Germany.
17German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany. 18Department of Psychosomatic Medicine, Rostock University Medical Center,
Gehlsheimer Str. 20, Rostock, Germany. 19Department of Neurology, University of Bonn, Venusberg-Campus 1, Bonn, Germany. 20School of Medicine,
Technical University of Munich; Department of Psychiatry and Psychotherapy, Munich, Germany. 21University of Edinburgh and UK DRI, Edinburgh, UK.
22German Center for Neurodegenerative Diseases (DZNE, Munich), Feodor-Lynen-Strasse 17, Munich, Germany. 23Munich Cluster for Systems Neurology
(SyNergy) Munich, Munich, Germany. 24Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK. 25German
Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany. 26Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke
University, Magdeburg, Germany.

Article https://doi.org/10.1038/s41467-024-55179-w

Nature Communications |        (2024) 15:10702 16

http://orcid.org/0000-0002-6627-3728
http://orcid.org/0000-0002-6627-3728
http://orcid.org/0000-0002-6627-3728
http://orcid.org/0000-0002-6627-3728
http://orcid.org/0000-0002-6627-3728
http://orcid.org/0000-0002-9885-4850
http://orcid.org/0000-0002-9885-4850
http://orcid.org/0000-0002-9885-4850
http://orcid.org/0000-0002-9885-4850
http://orcid.org/0000-0002-9885-4850
http://orcid.org/0009-0004-7159-4667
http://orcid.org/0009-0004-7159-4667
http://orcid.org/0009-0004-7159-4667
http://orcid.org/0009-0004-7159-4667
http://orcid.org/0009-0004-7159-4667
http://orcid.org/0009-0003-0034-9712
http://orcid.org/0009-0003-0034-9712
http://orcid.org/0009-0003-0034-9712
http://orcid.org/0009-0003-0034-9712
http://orcid.org/0009-0003-0034-9712
http://orcid.org/0000-0002-3039-4675
http://orcid.org/0000-0002-3039-4675
http://orcid.org/0000-0002-3039-4675
http://orcid.org/0000-0002-3039-4675
http://orcid.org/0000-0002-3039-4675
http://orcid.org/0000-0003-4007-4365
http://orcid.org/0000-0003-4007-4365
http://orcid.org/0000-0003-4007-4365
http://orcid.org/0000-0003-4007-4365
http://orcid.org/0000-0003-4007-4365
http://orcid.org/0000-0002-9429-5457
http://orcid.org/0000-0002-9429-5457
http://orcid.org/0000-0002-9429-5457
http://orcid.org/0000-0002-9429-5457
http://orcid.org/0000-0002-9429-5457
http://orcid.org/0000-0003-2812-9853
http://orcid.org/0000-0003-2812-9853
http://orcid.org/0000-0003-2812-9853
http://orcid.org/0000-0003-2812-9853
http://orcid.org/0000-0003-2812-9853
http://orcid.org/0000-0002-6442-0560
http://orcid.org/0000-0002-6442-0560
http://orcid.org/0000-0002-6442-0560
http://orcid.org/0000-0002-6442-0560
http://orcid.org/0000-0002-6442-0560
http://orcid.org/0000-0001-9704-148X
http://orcid.org/0000-0001-9704-148X
http://orcid.org/0000-0001-9704-148X
http://orcid.org/0000-0001-9704-148X
http://orcid.org/0000-0001-9704-148X
http://orcid.org/0000-0001-9675-7208
http://orcid.org/0000-0001-9675-7208
http://orcid.org/0000-0001-9675-7208
http://orcid.org/0000-0001-9675-7208
http://orcid.org/0000-0001-9675-7208
mailto:lorenzobonaguro@uni-bonn.de
www.nature.com/naturecommunications

	Unveiling the power of high-dimensional cytometry data with cyCONDOR
	Results
	cyCONDOR provides a versatile workflow for data pre-processing
	cyCONDOR provides correction of technical variance across projects, time, datasets, instruments, or sites
	Pseudotime projection-based trajectory inference allows the dissection of developmental programs
	cyCONDOR simplifies visual and statistical comparison between experimental groups
	Continuous learning and scalability in HDC leveraging data projection with cyCONDOR
	Harnessing machine learning for clinically relevant classification with cyCONDOR

	Discussion
	Methods
	Datasets
	Chronic HIV, human PBMCs, HDFC
	Rheumatoid arthritis, human whole blood, CyTOF
	Healthy, Murine Spleen, SpectralFlow
	Healthy, human PBMCs, CITE-seq
	Healthy, human PBMCs, HDFC
	Healthy, bone marrow, CyTOF
	AML, FC - flowcap-II

	Structure of the cyCONDOR object
	Data pre-processing and transformation
	Dimensionality reduction
	Pseudobulk principal component analysis (PCA)
	Principal component analysis (PCA)
	Uniform Manifold Approximation and Projection (UMAP)
	t-distributed Stochastic Neighbor Embedding (tSNE)
	Diffusion map (DM)

	Clustering
	Phenograph
	FlowSOM

	Batch correction
	Pseudotime analysis
	Data projection
	Clinical classifier
	Statistics & reproducibility
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	Additional information




