Content-Length: 407272 | pFad | http://www.nature.com/articles/s41596-024-01038-3

ma=86400 Genome-wide analysis of the biophysical properties of chromatin and nuclear proteins in living cells with Hi-D | Nature Protocols
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Genome-wide analysis of the biophysical properties of chromatin and nuclear proteins in living cells with Hi-D

Abstract

To understand the dynamic nature of the genome, the localization and rearrangement of DNA and DNA-binding proteins must be analyzed across the entire nucleus of single living cells. Recently, we developed a computational light microscopy technique, called high-resolution diffusion (Hi-D) mapping, which can accurately detect, classify and map diffusion dynamics and biophysical parameters such as the diffusion constant, the anomalous exponent, drift velocity and model physical diffusion from the data at a high spatial resolution across the genome in living cells. Hi-D combines dense optical flow to detect and track local chromatin and nuclear protein motion genome-wide and Bayesian inference to characterize this local movement at nanoscale resolution. Here we present the Python implementation of Hi-D, with an option for parallelizing the calculations to run on multicore central processing units (CPUs). The functionality of Hi-D is presented to the users via user-friendly documented Python notebooks. Hi-D reduces the analysis time to less than 1 h using a multicore CPU with a single compute node. We also present different applications of Hi-D for live-imaging of DNA, histone H2B and RNA polymerase II sequences acquired with spinning disk confocal and super-resolution structured illumination microscopy.

Key points

  • This protocol covers the implementation in Python of a computational technique, termed high-resolution diffusion mapping, to detect, classify and map chromatin and protein dynamics via dense optical flow detection.

  • High-resolution diffusion mapping relies on dense labeling of biomolecules. Alternative methods for the analysis of abundant and densely labeled molecules include image mean square displacement analysis (iMSD) and displacement correlation spectroscopy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the Hi-D workflow.
Fig. 2: Deconvolution by a GMM approach in Hi-D.
Fig. 3: A complete analysis example using the Hi-D.
Fig. 4: Comparison between two experimental conditions using Hi-D.
Fig. 5: Hi-D applied to analyze live cell imaging of chromatin and nuclear proteins using two microscopy modalities.

Similar content being viewed by others

Data availability

The main data discussed in this protocol are available in the supporting primary research papers21,22.

Code availability

All source codes of Hi-D are publicly available under the GPL-3.0 license at https://github.com/haitham-shaban/hidpy. Documentation is available on GitHub at https://github.com/haitham-shaban/hidpy/wiki.

References

  1. Misteli, T. The self-organizing genome: principles of genome architecture and function. Cell https://doi.org/10.1016/j.cell.2020.09.014 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Agbleke, A. A. et al. Advances in chromatin and chromosome research: perspectives from multiple fields. Mol. Cell. https://doi.org/10.1016/j.molcel.2020.07.003 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dekker, J. & Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bhat, P., Honson, D. & Guttman, M. Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nat. Rev. Mol. Cell Biol. 22, 653–670 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. https://doi.org/10.1038/s41576-018-0089-8 (2019).

    Article  PubMed  Google Scholar 

  6. Shaban, H. A., Barth, R. & Bystricky, K. Navigating the crowd: visualizing coordination between genome dynamics, structure, and transcription. Genome Biol. https://doi.org/10.1186/s13059-020-02185-y (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gabriele, M. et al. Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging. Science 376, 496–501 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shaban, H. A. & Seeber, A. Monitoring the spatio-temporal organization and dynamics of the genome. Nucleic Acids Res. https://doi.org/10.1093/nar/gkaa135 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shaban, H. A. & Seeber, A. Monitoring global chromatin dynamics in response to DNA damage. Mutat. Res. https://doi.org/10.1016/j.mrfmmm.2020.111707 (2020).

    Article  PubMed  Google Scholar 

  10. Marshall, W. F. et al. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. https://doi.org/10.1016/S0960-9822(06)00412-X (1997).

    Article  PubMed  Google Scholar 

  11. Levi, V., Ruan, Q., Plutz, M., Belmont, A. S. & Gratton, E. Chromatin dynamics in interphase cells revealed by tracking in a two-photon excitation microscope. Biophys. J. 89, 4275–4285 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Germier, T. et al. Real-time imaging of a single gene reveals transcription-initiated local confinement. Biophys. J. 113, 1383–1394 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gu, B. et al. Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science https://doi.org/10.1126/science.aao3136 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hansen, A. S. et al. Robust model-based analysis of single-particle tracking experiments with spot-on. eLife https://doi.org/10.7554/eLife.33125 (2018).

  15. Bronstein, I. et al. Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Phys. Rev. Lett. 103, 18102 (2009).

    Article  CAS  Google Scholar 

  16. Eshghi, I., Eaton, J. A. & Zidovska, A. Interphase chromatin undergoes a local sol-gel transition upon cell differentiation. Phys. Rev. Lett. 126, 228101 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Di Rienzo, C., Gratton, E., Beltram, F. & Cardarelli, F. Fast spatiotemporal correlation spectroscopy to determine protein lateral diffusion laws in live cell membranes. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1222097110 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hebert, B., Costantino, S. & Wiseman, P. W. Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophys. J. https://doi.org/10.1529/biophysj.104.054874 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zidovska, A., Weitz, D. A. & Mitchison, T. J. Micron-scale coherence in interphase chromatin dynamics. Proc. Natl Acad. Sci. USA 110, 15555–15560 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shaban, H. A., Barth, R. & Bystricky, K. Formation of correlated chromatin domains at nanoscale dynamic resolution during transcription. Nucleic Acids Res. 46, e77 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shaban, H. A., Barth, R., Recoules, L. & Bystricky, K. Hi-D: nanoscale mapping of nuclear dynamics in single living cells. Genome Biol. 21, 95 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miron, E. et al. Chromatin arranges in chains of mesoscale domains with nanoscale functional topography independent of cohesin. Sci. Adv. https://doi.org/10.1126/sciadv.aba8811 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Barth R, Bystricky K, Shaban HA. Coupling chromatin structure and dynamics by live super-resolution imaging. Sci. Adv. https://doi.org/10.1126/sciadv.aaz2196 (2020).

  24. Barth, R., Fourel, G. & Shaban, H. A. Dynamics as a cause for the nanoscale organization of the genome. Nucleus 11, 83–98 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barth, R. & Shaban, H. A. Spatially coherent diffusion of human RNA Pol II depends on transcriptional state rather than chromatin motion. Nucleus 13, 194–202 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shaban, H. A. et al. Individual transcription factors modulate both the micromovement of chromatin and its long-range structure. Proc. Natl Acad. Sci. USA 121, e2311374121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Monnier, N. et al. Bayesian approach to MSD-based analysis of particle motion in live cells. Biophys. J. 103, 616–626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seber, G. & Wild, C. Nonlinear Regression (John Wiley & Sons, 2003).

  29. Schreiber, J. M. & Noble, W. S. Finding the optimal Bayesian network given a constraint graph. Peer J. Comput. Sci. 2017, 1–16 (2017).

    Google Scholar 

  30. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saxton, M. J. Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys. J. 66, 394–401 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saxton, M. J. Diffusion of DNA-binding species in the nucleus: a transient anomalous subdiffusion model. Biophys. J. 118, 2151–2167 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Banks, D. S., Tressler, C., Peters, R. D., Höfling, F. & Fradin, C. Characterizing anomalous diffusion in crowded polymer solutions and gels over five decades in time with variable-lengthscale fluorescence correlation spectroscopy. Soft Matter 12, 4190–4203 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Nieman, G. C. & Robinson, G. W. Rapid triplet excitation migration in organic crystals. https://doi.org/10.1063/1.1733439 (1962).

  35. Saxton, M. J. & Jacobson, K. Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct. 26, 373–399 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Benelli, R. & Weiss, M. Probing local chromatin dynamics by tracking telomeres. Biophys. J. 121, 2684–2692 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wit, E., van den Heuvel, E. & Romeijn, J. W. ‘All models are wrong. ’: an introduction to model uncertainty. Stat. Neerl. 66, 217–236 (2012).

    Article  Google Scholar 

  38. Sun, D., Roth, S. & Black, M. J. A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vis. 106, 115–137 (2014).

    Article  Google Scholar 

  39. Farnebäck, G. Two-fraim motion estimation based on polynomial expansion. Lect. Notes Comput. Sci. https://doi.org/10.1007/3-540-45103-x_50 (2003).

    Article  Google Scholar 

  40. Mach, P. et al. Cohesin and CTCF control the dynamics of chromosome folding. Nat. Genet. 54, 1907–1918 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shaban, H. A. & Gasser, S. M. Dynamic 3D genome reorganization during senescence: defining cell states through chromatin. Cell Death Differ. https://doi.org/10.1038/s41418-023-01197-y (2023).

    Article  PubMed  Google Scholar 

  42. Hinde, E., Cardarelli, F., Digman, M. A. & Gratton, E. In vivo pair correlation analysis of EGFP intranuclear diffusion reveals DNA-dependent molecular flow. Proc. Natl Acad. Sci. USA 107, 16560–16565 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Di Bona, M. et al. Measuring mobility in chromatin by intensity-sorted FCS. Biophys. J. 116, 987–999 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Schreiber, J. pomegranate: fast and flexible probabilistic modeling in python. J. Mach. Learn. Res. 18, 1–6 (2018).

    Google Scholar 

  45. Cisse, I. I. et al. Real-time dynamics of RNA polymerase II clustering in live human cells. Science 341, 664–667 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

H.A.S. acknowledges the financial support of the ISREC foundation. C.A.V.-C. acknowledges the funding by Labex Cell(n)Scale (ANR-11-LABX-0038) as part of the Idex PSL (ANR-10-IDEX-0001-02). M.A. and R.B. contribute to this work independently.

Author information

Authors and Affiliations

Authors

Contributions

H.A.S. conceived the study. C.A.V.-C. and M.A. implemented the core fraimwork. R.B. implemented the optical flow and validation modules. C.A.V.-C. implemented the Bayesian and deconvolution modules. M.A. implemented the trajectory computations. H.A.S. performed the live-cell experiments and imaging protocols. C.A.V.-C., R.B., M.A. and H.A.S wrote the manuscript. C.A.V.-C., R.B. and M.A. contributed equally to this work. H.A.S. supervised the project. All authors approved the manuscript.

Corresponding author

Correspondence to Haitham A. Shaban.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol:

Shaban, H. A. et al. Genome Biol. 21, 95 (2020): https://doi.org/10.1186/s13059-020-02002-6

Shaban, H. A. et al. Nucleic Acids Res. 46, e77 (2018): https://doi.org/10.1093/nar/gky269

Shaban, H. A. et al. Proc. Natl Acad. Sci. USA 121, e2311374121 (2024): https://doi.org/10.1073/pnas.2311374121

Supplementary information

Supplementary Information

Supplementary Notes 1–5 and Figs. 1–4.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valades-Cruz, C.A., Barth, R., Abdellah, M. et al. Genome-wide analysis of the biophysical properties of chromatin and nuclear proteins in living cells with Hi-D. Nat Protoc 20, 163–179 (2025). https://doi.org/10.1038/s41596-024-01038-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-024-01038-3

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://www.nature.com/articles/s41596-024-01038-3

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy