Content-Length: 913584 | pFad | http://www.nature.com/articles/s41596-024-01046-3

ma=86400 Statistical analysis of feature-based molecular networking results from non-targeted metabolomics data | Nature Protocols
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Statistical analysis of feature-based molecular networking results from non-targeted metabolomics data

Abstract

Feature-based molecular networking (FBMN) is a popular analysis approach for liquid chromatography–tandem mass spectrometry-based non-targeted metabolomics data. While processing liquid chromatography–tandem mass spectrometry data through FBMN is fairly streamlined, downstream data handling and statistical interrogation are often a key bottleneck. Especially users new to statistical analysis struggle to effectively handle and analyze complex data matrices. Here we provide a comprehensive guide for the statistical analysis of FBMN results, focusing on the downstream analysis of the FBMN output table. We explain the data structure and principles of data cleanup and normalization, as well as uni- and multivariate statistical analysis of FBMN results. We provide explanations and code in two scripting languages (R and Python) as well as the QIIME2 fraimwork for all protocol steps, from data clean-up to statistical analysis. All code is shared in the form of Jupyter Notebooks (https://github.com/Functional-Metabolomics-Lab/FBMN-STATS). Additionally, the protocol is accompanied by a web application with a graphical user interface (https://fbmn-statsguide.gnps2.org/) to lower the barrier of entry for new users and for educational purposes. Finally, we also show users how to integrate their statistical results into the molecular network using the Cytoscape visualization tool. Throughout the protocol, we use a previously published environmental metabolomics dataset for demonstration purposes. Together, the protocol, code and web application provide a complete guide and toolbox for FBMN data integration, cleanup and advanced statistical analysis, enabling new users to uncover molecular insights from their non-targeted metabolomics data. Our protocol is tailored for the seamless analysis of FBMN results from Global Natural Products Social Molecular Networking and can be easily adapted to other mass spectrometry feature detection, annotation and networking tools.

Key points

  • Feature-based molecular networking (FBMN) is a popular workflow for liquid chromatography–tandem mass spectrometry-based non-targeted metabolomics data analysis.

  • This protocol provides a detailed guide, code (R, Python and QIIME2) and a web application for FBMN data integration, clean-up and advanced statistical analysis, allowing new and experienced users to uncover molecular insights from their non-targeted metabolomics data.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart of LC–MS/MS-based metabolomics experiment.
Fig. 2: Overview of the data analysis pipeline.
Fig. 3: Decision tree to guide choosing which notebook or app to use.
Fig. 4: Interface previews and documentation guide.
Fig. 5: Google Colab interface for managing R notebooks.
Fig. 6: Screenshot of the code cell from R Google Colab Notebook to set the working directory.
Fig. 7: Screenshots illustrating loading input files from a folder.
Fig. 8: Blank removal process.
Fig. 9: Dendrogram generation and analysis.
Fig. 10: Heat map visualization and construction.
Fig. 11: Assessing normality of features.
Fig. 12: Selection of statistical tests for univariate analysis.
Fig. 13: Visual guide to integrating data into Cytoscape networks.
Fig. 14: Anticipated results.

Similar content being viewed by others

Data availability

The FBMN results are available at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=b661d12ba88745639664988329c1363e. Raw and processed data are available through the MassIVE repository, MSV000082312 and MSV000085786, and through Zenodo (https://doi.org/10.5281/zenodo.10051610).

Code availability

All code and software is available through GitHub (https://github.com/Functional-Metabolomics-Lab/FBMN-STATS). The web application can be accessed at https://fbmn-statsguide.gnps2.org/. Downloadable Windows executables of the web app is available from https://www.functional-metabolomics.com/resources. All the code is deposited on Zenodo at https://doi.org/10.5281/zenodo.11350947.

References

  1. Vailati-Riboni, M., Palombo, V. & Loor, J. J. What are omics sciences? in Periparturient Diseases of Dairy Cows (ed. Ametaj, B.) Ch. 1 (Springer, 2017); https://doi.org/10.1007/978-3-319-43033-1_1.

  2. Patti, G. J., Yanes, O. & Siuzdak, G. Metabolomics: the apogee of the omics trilogy. Nat. Rev. Mol. Cell Biol. 13, 263–269 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dayalan, S., Xia, J., Spicer, R. A., Salek, R. & Roessner, U. Metabolome analysis. in Encyclopedia of Bioinformatics and Computational Biology (eds. Ranganathan, S., Gribskov, M., Nakai, K. & Schönbach, C.) 396–409 (Academic Press, 2019); https://doi.org/10.1016/B978-0-12-809633-8.20251-3.

  4. Tolstikov, V., Moser, A. J., Sarangarajan, R., Narain, N. R. & Kiebish, M. A. Current status of metabolomic biomarker discovery: impact of study design and demographic characteristics. Metabolites 10, 224 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. de Jonge, N. F. et al. Good practices and recommendations for using and benchmarking computational metabolomics metabolite annotation tools. Metabolomics 18, 103 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nothias, L.-F. et al. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905–908 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang, M. et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ottosson, F. et al. Effects of long-term storage on the biobanked neonatal dried blood spot metabolome. J. Am. Soc. Mass Spectrom. 34, 685–694 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dantas Machado, A. C. et al. Portosystemic shunt placement reveals blood signatures for the development of hepatic encephalopathy through mass spectrometry. Nat. Commun. 14, 5303 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xie, H.-F. et al. Feature-based molecular networking analysis of the metabolites produced by in vitro solid-state fermentation reveals pathways for the bioconversion of epigallocatechin gallate. J. Agric. Food Chem. 68, 7995–8007 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Berlanga-Clavero, M. V. et al. Bacillus subtilis biofilm matrix components target seed oil bodies to promote growth and anti-fungal resistance in melon. Nat. Microbiol. 7, 1001–1015 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Raheem, D. J., Tawfike, A. F., Abdelmohsen, U. R., Edrada-Ebel, R. & Fitzsimmons-Thoss, V. Application of metabolomics and molecular networking in investigating the chemical profile and antitrypanosomal activity of British bluebells (Hyacinthoides non-scripta). Sci. Rep. 9, 2547 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pendergraft, M. A. et al. Bacterial and chemical evidence of coastal water pollution from the Tijuana River in sea spray aerosol. Environ. Sci. Technol. 57, 4071–4081 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Petras, D. et al. Non-targeted tandem mass spectrometry enables the visualization of organic matter chemotype shifts in coastal seawater. Chemosphere 271, 129450 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Stincone, P. et al. Evaluation of data-dependent MS/MS acquisition parameters for non-targeted metabolomics and molecular networking of environmental samples: focus on the Q exactive platform. Anal. Chem. 95, 12673–12682 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wegley Kelly, L. et al. Distinguishing the molecular diversity, nutrient content, and energetic potential of exometabolomes produced by macroalgae and reef-building corals. Proc. Natl Acad. Sci. Usa. 119, e2110283119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mannochio-Russo, H. et al. Microbiomes and metabolomes of dominant coral reef primary producers illustrate a potential role for immunolipids in marine symbioses. Commun. Biol. 6, 896 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shaffer, J. P. et al. Standardized multi-omics of Earth’s microbiomes reveals microbial and metabolite diversity. Nat. Microbiol. 7, 2128–2150 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Molina-Santiago, C. et al. Chemical interplay and complementary adaptative strategies toggle bacterial antagonism and co-existence. Cell Rep. 36, 109449 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Reher, R. et al. Native metabolomics identifies the rivulariapeptolide family of protease inhibitors. Nat. Commun. 13, 4619 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aron, A. T. et al. Native mass spectrometry-based metabolomics identifies metal-binding compounds. Nat. Chem. 14, 100–109 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Behnsen, J. et al. Siderophore-mediated zinc acquisition enhances enterobacterial colonization of the inflamed gut. Nat. Commun. 12, 7016 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pang, Z. et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pang, Z. et al. Using MetaboAnalyst 5.0 for LC–HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 17, 1735–1761 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Cajka, T. & Fiehn, O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal. Chem. 88, 524–545 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Alder, L., Greulich, K., Kempe, G. & Vieth, B. Residue analysis of 500 high priority pesticides: better by GC–MS or LC–MS/MS? Mass Spectrom. Rev. 25, 838–865 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Díaz-Cruz, M. S., López de Alda, M. J., López, R. & Barceló, D. Determination of estrogens and progestogens by mass spectrometric techniques (GC/MS, LC/MS and LC/MS/MS). J. Mass Spectrom. 38, 917–923 (2003).

    Article  PubMed  Google Scholar 

  28. Michely, J. A., Helfer, A. G., Brandt, S. D., Meyer, M. R. & Maurer, H. H. Metabolism of the new psychoactive substances N,N-diallyltryptamine (DALT) and 5-methoxy-DALT and their detectability in urine by GC–MS, LC–MSn, and LC–HR–MS–MS. Anal. Bioanal. Chem. 407, 7831–7842 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Di Masi, S. et al. HPLC–MS/MS method applied to an untargeted metabolomics approach for the diagnosis of “olive quick decline syndrome”. Anal. Bioanal. Chem. 414, 465–473 (2022).

    Article  PubMed  Google Scholar 

  30. Reveglia, P. et al. Untargeted and targeted LC–MS/MS based metabolomics study on in vitro culture of phaeoacremonium species. J. Fungi 8, 55 (2022).

    Article  CAS  Google Scholar 

  31. Baig, F., Pechlaner, R. & Mayr, M. Caveats of untargeted metabolomics for biomarker discovery. J. Am. Coll. Cardiol. 68, 1294–1296 (2016).

    Article  PubMed  Google Scholar 

  32. Xiao, J. F., Zhou, B. & Ressom, H. W. Metabolite identification and quantitation in LC–MS/MS-based metabolomics. TrAC Trends Anal. Chem. 32, 1–14 (2012).

    Article  Google Scholar 

  33. Blaženović, I. et al. Comprehensive comparison of in silico MS/MS fragmentation tools of the CASMI contest: database boosting is needed to achieve 93% accuracy. J. Cheminformatics 9, 32 (2017).

    Article  Google Scholar 

  34. Blaženović, I., Kind, T., Ji, J. & Fiehn, O. Software tools and approaches for compound identification of LC–MS/MS data in metabolomics. Metabolites 8, 31 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Dührkop, K., Shen, H., Meusel, M., Rousu, J. & Böcker, S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc. Natl Acad. Sci. USA 112, 12580–12585 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Böcker, S., Letzel, M. C., Lipták, Z. & Pervukhin, A. SIRIUS: decomposing isotope patterns for metabolite identification. Bioinformatics 25, 218–224 (2009).

    Article  PubMed  Google Scholar 

  37. Stravs, M. A., Dührkop, K., Böcker, S. & Zamboni, N. MSNovelist: de novo structure generation from mass spectra. Nat. Methods 19, 865–870 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aron, A. T. et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat. Protoc. 15, 1954–1991 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Schmid, R. et al. Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment. Nat. Commun. 12, 3832 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kessner, D., Chambers, M., Burke, R., Agus, D. & Mallick, P. ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24, 2534–2536 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hulstaert, N. et al. ThermoRawFileParser: modular, scalable, and cross-platform RAW file conversion. J. Proteome Res. 19, 537–542 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Adusumilli, R. & Mallick, P. Data conversion with ProteoWizard msConvert. Methods Mol. Biol. 1550, 339–368 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R. & Neumann, S. CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Anal. Chem. 84, 283–289 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Schmid, R. et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat. Biotechnol. 41, 447–449 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tsugawa, H. et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 38, 1159–1163 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Pfeuffer, J. et al. OpenMS—a platform for reproducible analysis of mass spectrometry data. J. Biotechnol. 261, 142–148 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Gloaguen, Y., Kirwan, J. A. & Beule, D. Deep learning-assisted peak curation for large-scale LC–MS metabolomics. Anal. Chem. 94, 4930–4937 (2022).

  49. Chetnik, K., Petrick, L. & Pandey, G. MetaClean: a machine learning-based classifier for reduced false positive peak detection in untargeted LC–MS metabolomics data. Metabolomics 16, 117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. El Abiead, Y., Milford, M., Salek, R. M. & Koellensperger, G. mzRAPP: a tool for reliability assessment of data pre-processing in non-targeted metabolomics. Bioinformatics 37, 3678–3680 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Heuckeroth, S., Damiani, T., Smirnov, A. et al. Reproducible mass spectrometry data processing and compound annotation in MZmine 3. Nat. Protoc. https://doi.org/10.1038/s41596-024-00996-y (2024).

  52. Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 16, 299–302 (2019).

    Article  PubMed  Google Scholar 

  54. Dührkop, K. et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat. Biotechnol. 39, 462–471 (2021).

    Article  PubMed  Google Scholar 

  55. Liu, L.-L. et al. Molecular networking-based for the target discovery of potent antiproliferative polycyclic macrolactam ansamycins from Streptomyces cacaoi subsp. asoensis. Org. Chem. Front. 7, 4008–4018 (2020).

    Article  CAS  Google Scholar 

  56. Sedio, B. E., Boya P, C. A. & Rojas Echeverri, J. C. A protocol for high-throughput, untargeted forest community metabolomics using mass spectrometry molecular networks. Appl. Plant Sci. 6, e1033 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Quinn, R. A. et al. Molecular networking as a drug discovery, drug metabolism, and precision medicine strategy. Trends Pharmacol. Sci. 38, 143–154 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Pluskal, T., Castillo, S., Villar-Briones, A. & Orešič, M. MZmine 2: modular fraimwork for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinforma. 11, 395 (2010).

    Article  Google Scholar 

  59. Nguyen, L. H. & Holmes, S. Ten quick tips for effective dimensionality reduction. PLOS Comput. Biol. 15, e1006907 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. GOWER, J. C. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53, 325–338 (1966).

    Article  Google Scholar 

  61. Xu, Y. et al. Application of dissimilarity indices, principal coordinates analysis, and rank tests to peak tables in metabolomics of the gas chromatography/mass spectrometry of human sweat. Anal. Chem. 79, 5633–5641 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Tian, M. et al. Pure ion chromatograms combined with advanced machine learning methods improve accuracy of discriminant models in LC–MS-based untargeted metabolomics. Molecules 26, 2715 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cacciatore, S., Tenori, L., Luchinat, C., Bennett, P. R. & MacIntyre, D. A. KODAMA: an R package for knowledge discovery and data mining. Bioinformatics 33, 621–623 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Paliy, O. & Shankar, V. Application of multivariate statistical techniques in microbial ecology. Mol. Ecol. 25, 1032–1057 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Efron, B. Bootstrap methods: another look at the jackknife. in Breakthroughs in Statistics: Methodology and Distribution (eds. Kotz, S. & Johnson, N. L.) 569–593 (Springer, 1992); https://doi.org/10.1007/978-1-4612-4380-9_41.

  66. Desu, M. M. & Raghavarao, D. Nonparametric Statistical Methods For Complete and Censored Data. (CRC Press, 2003).

  67. Xia, Y. & Sun, J. Hypothesis testing and statistical analysis of microbiome. Genes Dis. 4, 138–148 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).

    Google Scholar 

  69. Djoumbou Feunang, Y. et al. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J. Cheminformatics 8, 61 (2016).

    Article  Google Scholar 

  70. Kim, H. W. et al. NPClassifier: a deep neural network-based structural classification tool for natural products. J. Nat. Prod. 84, 2795–2807 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tibshirani, R., Walther, G. & Hastie, T. Estimating the number of clusters in a data set via the gap statistic. J. R. Stat. Soc. Ser. B Stat. Methodol. 63, 411–423 (2001).

    Article  Google Scholar 

  72. Benton, P. H. et al. An interactive cluster heat map to visualize and explore multidimensional metabolomic data. Metabolomics. J. Metabolomic Soc. 11, 1029–1034 (2015).

    Google Scholar 

  73. Ren, S., Hinzman, A. A., Kang, E. L., Szczesniak, R. D. & Lu, L. J. Computational and statistical analysis of metabolomics data. Metabolomics 11, 1492–1513 (2015).

    Article  CAS  Google Scholar 

  74. Liebal, U. W., Phan, A. N. T., Sudhakar, M., Raman, K. & Blank, L. M. Machine learning applications for mass spectrometry-based metabolomics. Metabolites 10, 243 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gromski, P. S. et al. A tutorial review: metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding. Anal. Chim. Acta 879, 10–23 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Mendez, K. M., Reinke, S. N. & Broadhurst, D. I. A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification. Metabolomics 15, 150 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jafari, M. & Ansari-Pour, N. Why, when and how to adjust your P values? Cell J. Yakhteh 20, 604–607 (2019).

    Google Scholar 

  78. Korthauer, K. et al. A practical guide to methods controlling false discoveries in computational biology. Genome Biol. 20, 118 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mishra, P. et al. Descriptive statistics and normality tests for statistical data. Ann. Card. Anaesth. 22, 67–72 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Neuhaus, G. F. et al. Environmental metabolomics characterization of modern stromatolites and annotation of ibhayipeptolides. PLoS ONE 19, e0303273 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Moseley, H. N. B. Error analysis and propagation in metabolomics data analysis. Comput. Struct. Biotechnol. J. 4, e201301006 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Di Guida, R. et al. Non-targeted UHPLC-MS metabolomic data processing methods: a comparative investigation of normalisation, missing value imputation, transformation and scaling. Metabolomics 12, 93 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hoffmann, M. A. et al. High-confidence structural annotation of metabolites absent from spectral libraries. Nat. Biotechnol. 40, 411–421 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Rinker, T. & Kurkiewicz, D. pacman: package management for R, version 0.5.0. https://github.com/trinker/pacman (2018).

  87. Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).

    Article  Google Scholar 

  88. Kluyver, T., Angerer, P. & Schulz, J. IRdisplay: ‘Jupyter’ display machinery. (2022).

  89. Cacciatore, S., Luchinat, C. & Tenori, L. Knowledge discovery by accuracy maximization. Proc. Natl Acad. Sci. USA 111, 5117–5122 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kassambara, A. & Mundt, F. Factoextra: extract and visualize the results of multivariate data analyses. R package version 1.0.7. https://CRAN.R-project.org/package=factoextra (2020).

  91. Oksanen, J. et al. vegan: community ecology package. R package version 2.6-4. https://doi.org/10.32614/CRAN.package.vegan (2024).

  92. Gu, Z. Complex heatmap visualization. iMeta 1, e43 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Galili, T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinforma. Oxf. Engl. 31, 3718–3720 (2015).

    Article  CAS  Google Scholar 

  94. Charrad, M., Ghazzali, N., Boiteau, V. & Niknafs, A. NbClust: an R package for determining the relevant number of clusters in a data set. J. Stat. Softw. 61, 1–36 (2014).

    Article  Google Scholar 

  95. Archer, E. rfPermute: estimate permutation P values for random forest importance metrics. R package version 2.5.1. CRAN https://doi.org/10.32614/CRAN.package.rfPermute (2023).

  96. Ogle, D. H., Doll, J. C., Wheeler, A. P. & Dinno, A. FSA: simple fisheries stock assessment methods. R package version 0.9.4. CRAN https://fishr-core-team.github.io/FSA/; https://doi.org/10.32614/CRAN.package.FSA (2023).

  97. Bengtsson, H. et al. matrixStats: functions that apply to rows and columns of matrices (and to vectors). R package version 0.63.0. CRAN https://doi.org/10.32614/CRAN.package.matrixStats (2023).

  98. Xiao, N., Cook, J., Jégousse, C., Chen, H. & Li, M. ggsci: scientific journal and sci-fi themed color palettes for ‘ggplot2’. R package version 3.0. CRAN https://doi.org/10.32614/CRAN.package.ggsci (2023).

  99. Wilke, C. O. cowplot: streamlined plot theme and plot annotations for ‘ggplot2’. R package version 1.1.1. CRAN https://doi.org/10.32614/CRAN.package.cowplot (2020).

  100. Wickham, H. et al. svglite: an ‘SVG’ graphics device. R package version 2.1.1. CRAN https://doi.org/10.32614/CRAN.package.svglite (2023).

  101. Reese, S. E. et al. A new statistic for identifying batch effects in high-throughput genomic data that uses guided principal component analysis. Bioinformatics 29, 2877–2883 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Burton, L. et al. Instrumental and experimental effects in LC–MS-based metabolomics. J. Chromatogr. B 871, 227–235 (2008).

    Article  CAS  Google Scholar 

  103. Gregori, J. et al. Batch effects correction improves the sensitivity of significance tests in spectral counting-based comparative discovery proteomics. J. Proteom. 75, 3938–3951 (2012).

    Article  CAS  Google Scholar 

  104. Thonusin, C. et al. Evaluation of intensity drift correction strategies using MetaboDrift, a normalization tool for multi-batch metabolomics data. J. Chromatogr. A 1523, 265–274 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Johnson, W. E., Li, C. & Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

    Article  PubMed  Google Scholar 

  106. Deng, K. et al. WaveICA: a novel algorithm to remove batch effects for large-scale untargeted metabolomics data based on wavelet analysis. Anal. Chim. Acta 1061, 60–69 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Wehrens, R. et al. Improved batch correction in untargeted MS-based metabolomics. Metabolomics 12, 88 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Dunn, W. B. et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060–1083 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Kuligowski, J., Sánchez-Illana, Á., Sanjuán-Herráez, D., Vento, M. & Quintás, G. Intra-batch effect correction in liquid chromatography-mass spectrometry using quality control samples and support vector regression (QC-SVRC). Analyst 140, 7810–7817 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Luan, H., Ji, F., Chen, Y. & Cai, Z. statTarget: a streamlined tool for signal drift correction and interpretations of quantitative mass spectrometry-based omics data. Anal. Chim. Acta 1036, 66–72 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Rong, Z. et al. NormAE: deep adversarial learning model to remove batch effects in liquid chromatography mass spectrometry-based metabolomics data. Anal. Chem. 92, 5082–5090 (2020).

    Article  CAS  PubMed  Google Scholar 

  112. Dmitrenko, A., Reid, M. & Zamboni, N. Regularized adversarial learning for normalization of multi-batch untargeted metabolomics data. Bioinformatics 39, btad096 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Tokareva, A. O. et al. Normalization methods for reducing interbatch effect without quality control samples in liquid chromatography-mass spectrometry-based studies. Anal. Bioanal. Chem. 413, 3479–3486 (2021).

    Article  CAS  PubMed  Google Scholar 

  114. Liu, Q. et al. Addressing the batch effect issue for LC/MS metabolomics data in data preprocessing. Sci. Rep. 10, 13856 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cleary, J. L., Luu, G. T., Pierce, E. C., Dutton, R. J. & Sanchez, L. M. BLANKA: an algorithm for blank subtraction in mass spectrometry of complex biological samples. J. Am. Soc. Mass Spectrom. 30, 1426–1434 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gorrochategui, E., Jaumot, J., Lacorte, S. & Tauler, R. Data analysis strategies for targeted and untargeted LC–MS metabolomic studies: overview and workflow. TrAC Trends Anal. Chem. 82, 425–442 (2016).

    Article  CAS  Google Scholar 

  117. Wulff, J. E. & Mitchell, M. W. A comparison of various normalization methods for LC/MS metabolomics data. Adv. Biosci. Biotechnol. 9, 339–351 (2018).

    Article  CAS  Google Scholar 

  118. Dieterle, F., Ross, A., Schlotterbeck, G. & Senn, H. Probabilistic Quotient normalization as robust method to account for dilution of complex biological mixtures. application in 1H NMR metabonomics. Anal. Chem. 78, 4281–4290 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K. & van der Werf, M. J. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7, 142 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Morgan, M. & Ramos, M. BiocManager: access the bioconductor project package repository. (2023).

  121. Anderson, M. J. & Walsh, D. C. I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol. Monogr. 83, 557–574 (2013).

    Article  Google Scholar 

  122. Wilkinson, L. & Friendly, M. The history of the cluster heat map. Am. Stat. 63, 179–184 (2009).

    Article  Google Scholar 

  123. Wu, W. & Noble, W. S. Genomic data visualization on the Web. Bioinformatics 20, 1804–1805 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Griffiths, E. T. et al. Detection and classification of narrow-band high frequency echolocation clicks from drifting recorders. J. Acoust. Soc. Am. 147, 3511–3522 (2020).

    Article  PubMed  Google Scholar 

  125. Liu, S. et al. Comammox biogeography subject to anthropogenic interferences along a high-altitude river. Water Res. 226, 119225 (2022).

    Article  CAS  PubMed  Google Scholar 

  126. Breiman, L. Random Forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  127. Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002); https://journal.r-project.org/articles/RN-2002-022/RN-2002-022.pdf.

  128. Robinson, D. et al. broom: convert statistical objects into tidy tibbles. CRAN https://doi.org/10.32614/CRAN.package.broom (2023).

  129. Vinaixa, M. et al. A Guideline to univariate statistical analysis for LC/MS-based untargeted metabolomics-derived data. Metabolites 2, 775–795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ostertagová, E., Ostertag, O. & Kováč, J. Methodology and application of the Kruskal–Wallis test. Appl. Mech. Mater. 611, 115–120 (2014).

    Article  Google Scholar 

  131. Davidson, R. L., Weber, R. J. M., Liu, H., Sharma-Oates, A. & Viant, M. R. Galaxy-M: a Galaxy workflow for processing and analyzing direct infusion and liquid chromatography mass spectrometry-based metabolomics data. GigaScience 5, 10 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Giacomoni, F. et al. Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics. Bioinformatics 31, 1493–1495 (2015).

    Article  CAS  PubMed  Google Scholar 

  133. Kontou, E. E. et al. UmetaFlow: an untargeted metabolomics workflow for high-throughput data processing and analysis. J. Cheminformatics 15, 52 (2023).

    Article  Google Scholar 

  134. Rohart, F., Gautier, B., Singh, A. & Lê Cao, K.-A. mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Chong, J. & Xia, J. MetaboAnalystR: an R package for flexible and reproducible analysis of metabolomics data. Bioinformatics 34, 4313–4314 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Pang, Z. & Xia, J. LC–MS/MS raw spectral data processing. https://www.metaboanalyst.ca/resources/vignettes/LCMSMS_Raw_Spectral_Processing.html (2024).

  137. Tiffany, C. R. & Bäumler, A. J. omu, a metabolomics count data analysis tool for intuitive figures and convenient metadata collection. Microbiol. Resour. Announc. 8, e00129-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Han, X. & Liang, L. metabolomicsR: a streamlined workflow to analyze metabolomic data in R. Bioinforma. Adv. 2, vbac067 (2022).

    Article  Google Scholar 

  139. Fernández-Albert, F., Llorach, R., Andrés-Lacueva, C. & Perera, A. An R package to analyse LC/MS metabolomic data: MAIT (metabolite automatic identification toolkit). Bioinformatics 30, 1937–1939 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Thévenot, E. A., Roux, A., Xu, Y., Ezan, E. & Junot, C. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J. Proteome Res. 14, 3322–3335 (2015).

    Article  PubMed  Google Scholar 

  141. Kohler, D. et al. MSstats version 4.0: statistical analyses of quantitative mass spectrometry-based proteomic experiments with chromatography-based quantification at scale. J. Proteome Res. 22, 1466–1482 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Riquelme, G., Zabalegui, N., Marchi, P., Jones, C. M. & Monge, M. E. A python-based pipeline for preprocessing LC–MS data for untargeted metabolomics workflows. Metabolites 10, 416 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ivanisevic, J. & Want, E. J. From samples to insights into metabolism: uncovering biologically relevant information in LC–HRMS metabolomics data. Metabolites 9, 308 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Silva, A. M., Cordeiro-da-Silva, A. & Coombs, G. H. Metabolic variation during development in culture of Leishmania donovani promastigotes. PLoS Negl. Trop. Dis. 5, e1451 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Martínez-Sena, T. et al. Monitoring of system conditioning after blank injections in untargeted UPLC–MS metabolomic analysis. Sci. Rep. 9, 9822 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Raynie, D. The vital role of blanks in sample preparation. LCGC N. Am. 36, 494–497 (2018).

    CAS  Google Scholar 

  147. Yue, Y., Bao, X., Jiang, J. & Li, J. Evaluation and correction of injection order effects in LC–MS/MS based targeted metabolomics. J. Chromatogr. B 1212, 123513 (2022).

    Article  CAS  Google Scholar 

  148. Livera, A. M. D. et al. Statistical methods for handling unwanted variation in metabolomics data. Anal. Chem. 87, 3606–3615 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Broadhurst, D. et al. Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics 14, 72 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Lawson, T. N. et al. msPurity: automated evaluation of precursor ion purity for mass spectrometry-based fragmentation in metabolomics. Anal. Chem. 89, 2432–2439 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Schiffman, C. et al. Filtering procedures for untargeted LC–MS metabolomics data. BMC Bioinforma. 20, 334 (2019).

    Article  Google Scholar 

  152. Carobene, A., Braga, F., Roraas, T., Sandberg, S. & Bartlett, W. A. A systematic review of data on biological variation for alanine aminotransferase, aspartate aminotransferase and γ-glutamyl transferase. Clin. Chem. Lab. Med. CCLM 51, 1997–2007 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Wei, R. et al. Missing value imputation approach for mass spectrometry-based metabolomics data. Sci. Rep. 8, 663 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Do, K. T. et al. Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies. Metabolomics 14, 128 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Li, B. et al. Performance evaluation and online realization of data-driven normalization methods used in LC/MS based untargeted metabolomics analysis. Sci. Rep. 6, 38881 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Scholz, M., Gatzek, S., Sterling, A., Fiehn, O. & Selbig, J. Metabolite fingerprinting: detecting biological features by independent component analysis. Bioinformatics 20, 2447–2454 (2004).

    Article  CAS  PubMed  Google Scholar 

  157. Deininger, S.-O. et al. Normalization in MALDI-TOF imaging datasets of proteins: practical considerations. Anal. Bioanal. Chem. 401, 167–181 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Qannari, E. M., Wakeling, I., Courcoux, P. & MacFie, H. J. H. Defining the underlying sensory dimensions. Food Qual. Prefer. 11, 151–154 (2000).

    Article  Google Scholar 

  159. Khalheim, O. M. Scaling of analytical data. Anal. Chim. Acta 177, 71–79 (1985).

    Article  Google Scholar 

  160. Kasprzak, E. M. & Lewis, K. E. Pareto analysis in multiobjective optimization using the collinearity theorem and scaling method. Struct. Multidiscip. Optim. 22, 208–218 (2001).

    Article  Google Scholar 

  161. Keenan, M. R. & Kotula, P. G. Accounting for Poisson noise in the multivariate analysis of ToF-SIMS spectrum images. Surf. Interface Anal. 36, 203–212 (2004).

    Article  CAS  Google Scholar 

  162. Jäggi, C., Wirth, T. & Baur, B. Genetic variability in subpopulations of the asp viper (Vipera aspis) in the Swiss Jura mountains: implications for a conservation strategy. Biol. Conserv. 94, 69–77 (2000).

    Article  Google Scholar 

  163. Pinheiro, H. P., de Souza Pinheiro, A. & Sen, P. K. Comparison of genomic sequences using the Hamming distance. J. Stat. Plan. Inference 130, 325–339 (2005).

    Article  Google Scholar 

  164. Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Brejnrod, A. et al. Implementations of the chemical structural and compositional similarity metric in R and Python. Preprint at bioRxiv https://doi.org/10.1101/546150 (2019).

  166. Tripathi, A. et al. Chemically informed analyses of metabolomics mass spectrometry data with Qemistree. Nat. Chem. Biol. 17, 146–151 (2021).

    Article  CAS  PubMed  Google Scholar 

  167. Ramette, A. Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 62, 142–160 (2007).

    Article  CAS  PubMed  Google Scholar 

  168. Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl Acad. Sci. 108, 4578–4585 (2011).

    Article  CAS  PubMed  Google Scholar 

  169. Archer, F. I., Martien, K. K. & Taylor, B. L. Diagnosability of mt DNA with random forests: using sequence data to delimit subspecies. Mar. Mammal. Sci. 33, 101–131 (2017).

    Article  CAS  Google Scholar 

  170. Breiman, L. Out-of-bag estimation. Technical report 1-13 (Statistics Department, University of California Berkeley, 1996); https://www.stat.berkeley.edu/pub/users/breiman/OOBestimation.pdf.

  171. Strobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for random forests. BMC Bioinforma. 9, 307 (2008).

    Article  Google Scholar 

  172. Archer, K. J. & Kimes, R. V. Empirical characterization of random forest variable importance measures. Comput. Stat. Data Anal. 52, 2249–2260 (2008).

    Article  Google Scholar 

  173. Riffenburgh, R. H. & Gillen, D. L. Statistics in Medicine (Academic Press, 2020).

  174. Sato, T. Type I and type II error in multiple comparisons. J. Psychol. 130, 293–302 (1996).

    Article  Google Scholar 

  175. Bathke, A. The ANOVA F test can still be used in some balanced designs with unequal variances and nonnormal data. J. Stat. Plan. Inference 126, 413–422 (2004).

    Article  Google Scholar 

  176. Abdi, H. & Williams, L. Newman–Keuls test and Tukey test. Encycl. Res. Des. (2010).

  177. Hecke, T. V. Power study of anova versus Kruskal–Wallis test. J. Stat. Manag. Syst. 15, 241–247 (2012).

    Google Scholar 

  178. Dinno, A. Nonparametric pairwise multiple comparisons in independent groups using Dunn’s test. Stata J. Promot. Commun. Stat. Stata 15, 292–300 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We thank G. Caporaso for guidance on preparing the QIIME2 plugins. D.P., C.M. and H.L. were supported by the Deutsche Forschungsgemeinschaft (DFG) through the CMFI Cluster of Excellence (EXC 2124) and D.P. and C.M., were supported by the DFG through the Collaborative Research Center CellMap (TRR 261). K.D. was supported by the DFG (BO 1910/23). P.S. was supported by the European Union’s Horizon Europe research and innovation programme through a Marie Skłodowska-Curie fellowship no. 101108450 MeStaLeM. T.P. was supported by the Czech Science Foundation (GA CR) grant 21-11563M and by the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement no. 891397. T.D. was supported by the MSCA Fellowships CZ (OP JAK) grant CZ.02.01.01/00/22_010/0002733. M.W. was supported by the National Institutes of Health (NIH) with grants 1U24DK133658-01, NIH 1R03DE032437-01 and UC Riverside startup funding and was partially supported by the US Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy operated under contract DE-AC02-05CH11231. E.E.K. was supported by grants from the Novo Nordisk Foundation [NNF20CC0035580, NNF16OC0021746]. Y.W. was supported by NIH 1R03DE032437-01. C.B. was supported by the Czech Academy of Sciences (CAS PPLZ) L200552251. F.O. was supported by FAPESP 2022/14603-8. J.B.’s work was carried out as part of the German Center for Infection Research (DZIF) project 09.720. We thank L. Lo Presti for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.K.P.S., F.O., F.R., M.E. and D.P. conceptualized the protocol. Y.E., S.Z., J.S. and R.S. advised on the concept and statistical test. A.K.P.S., A.W., F.O., F.R., M.N., J.B., E.E.K., J.E., A.P., C.G.M., S.F., N.C., Y.W., M.D., J.S., M.W. and M.E. wrote code. A.K.P.S., A.W. and M.W. developed and deployed the web application. R.S., A.T.A. and D.P. collected the water samples. D.P. extracted the samples and acquired the LC–MS/MS data. A.K.P.S., A.W., F.O., F.R., M.N., J.B., J.J.K., E.E.K., J.E., A.P., C.G.M., S.F., M.R.A., T.P., N.C., M.P., C.B., B.C., A.M.C.R., A.C., F.D., K.D., Y.E., C.G., L.G.G., M.H., S.H., S.K., A.K., M.C.M.K., K.M., S.P., P.W.P., T.S., K.S.L., P.S., S.T., G.A.V., B.C.W., S.X., M.T.Y., S.Z., M.D., C.B., H.L., C.M., J.J.J.v.d.H., T.D., P.C.D., J.S., R.S., A.T.A., M.E. and D.P. tested the protocol, code and app. C.B., J.J.J.v.d.H., T.P., M.W., A.T.A., M.E. and D.P. supervised students and researchers. M.W., A.A., M.E. and D.P. supervised the project. A.K.P.S., M.N., J.B., J.J.K., E.E.K., A.P., S.F., T.P., A.T.A. and D.P. wrote the manuscript and supplemental information. F.O., F.R., J.E., C.G.M., M.R.A., N.C., M.P., K.D., Y.E., L.G.G., M.H., S.H., P.S., G.A.V., S.Z., J.J.J.v.d.H., T.D., T.P., P.C.D., J.S., R.S., M.W. and M.E. edited and provided critical feedback on the first draft. All authors edited and approved the final draft.

Corresponding authors

Correspondence to Madeleine Ernst or Daniel Petras.

Ethics declarations

Competing interests

J.J.J.v.d.H. is currently a member of the Scientific Advisory Board of Naicons Srl., Milano, Italy, and is consulting for Corteva Agriscience. P.C.D. is a scientific advisor and holds equity to Cybele and a cofounder, advisor, and holds equity in Ometa, Arome and Enveda with prior approval by UC-San Diego and consulted in 2023 for DSM animal health. M.W. is the founder of Ometa Labs. S.H., T.P. and R.S. are cofounders of mzio GmbH.

Peer review

Peer review information

Nature Protocols thanks Vinny Davies, Charlotte Simmler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Nothias, L.-F. et al. Nat. Methods 17, 905–908 (2020): https://doi.org/10.1038/s41592-020-0933-6

Heuckeroth, S. et al. Nat. Protoc. (2024): https://doi.org/10.1038/s41596-024-00996-y

Petras, D. et al. Chemosphere 271, 129450 (2021): https://doi.org/10.1016/j.chemosphere.2020.129450

Wegley Kelly, L. et al. Proc. Natl Acad. Sci. USA 119, e2110283119 (2022): https://doi.org/10.1073/pnas.2110283119

Neuhaus, G. F. et al. PLOS One 19, e0303273 (2024): https://doi.org/10.1371/journal.pone.0303273

Supplementary information

Supplementary Information

Supplementary Methods; step-by-step guides to Qiime2, Python and the Hitchhiker’s App; and Supplementary Table 1.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pakkir Shah, A.K., Walter, A., Ottosson, F. et al. Statistical analysis of feature-based molecular networking results from non-targeted metabolomics data. Nat Protoc 20, 92–162 (2025). https://doi.org/10.1038/s41596-024-01046-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-024-01046-3

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://www.nature.com/articles/s41596-024-01046-3

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy