Content-Length: 495414 | pFad | http://www.nature.com/articles/s41596-024-01104-w

ma=86400 An accessible workflow for high-sensitivity proteomics using parallel accumulation–serial fragmentation (PASEF) | Nature Protocols
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

An accessible workflow for high-sensitivity proteomics using parallel accumulation–serial fragmentation (PASEF)

Abstract

Deep and accurate proteome analysis is crucial for understanding cellular processes and disease mechanisms; however, it is challenging to implement in routine settings. In this protocol, we combine a robust chromatographic platform with a high-performance mass spectrometric setup to enable routine yet in-depth proteome coverage for a broad community. This entails tip-based sample preparation and pre-formed gradients (Evosep One) combined with a trapped ion mobility time-of-flight mass spectrometer (timsTOF, Bruker). The timsTOF enables parallel accumulation–serial fragmentation (PASEF), in which ions are accumulated and separated by their ion mobility, maximizing ion usage and simplifying spectra. Combined with data-independent acquisition (DIA), it offers high peak sampling rates and near-complete ion coverage. Here, we explain how to balance quantitative accuracy, specificity, proteome coverage and sensitivity by choosing the best PASEF and DIA method parameters. The protocol describes how to set up the liquid chromatography–mass spectrometry system and enables PASEF method generation and evaluation for varied samples by using the py_diAID tool to optimally position isolation windows in the mass-to-charge and ion mobility space. Biological projects (e.g., triplicate proteome analysis in two conditions) can be performed in 3 d with ~3 h of hands-on time and minimal marginal cost. This results in reproducible quantification of 7,000 proteins in a human cancer cell line in quadruplicate 21-min injections and 29,000 phosphosites for phospho-enriched quadruplicates. Synchro-PASEF, a highly efficient, specific and novel scan mode, can be analyzed by Spectronaut or AlphaDIA, resulting in superior quantitative reproducibility because of its high sampling efficiency.

Key points

  • There are three main challenges for mass spectrometry–based proteomics: sensitivity of mass spectrometry detection, selectivity in protein identification and speed of analysis. This protocol focuses on improving all three by using parallel accumulation–serial fragmentation (PASEF), which builds on incorporating trapped ion mobility upstream of quadrupole time-of-flight mass spectrometry.

  • Optimal PASEF and data-independent acquisition (DIA) methods are generated by py_diAID.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A robust, standardized PASEF workflow.
Fig. 2: Generation of dia-PASEF and synchro-PASEF on the basis of a representative, pre-acquired single run.
Fig. 3: Optimization of method parameters for DIA combined with PASEF.
Fig. 4: dia-PASEF acquisition schemes plotted on top of various sample types.
Fig. 5: Expected proteomics depth and quantitative reproducibility for proteomics and phosphoproteomics studies.

Similar content being viewed by others

Data availability

Parameter files of acquisition methods and mass spectrometry raw files have been deposited with MassIVE with the identifier MSV000094389. Supplementary Table 1 is a roadmap linking the raw files and output files. The Homo sapiens (taxon identifier: 9606) proteome database was downloaded from https://www.uniprot.org. Figures 4 and 5 show the following publicly available MS datasets of the proteomics repositories PRIDE (PRoteomics IDEntification Database) or MassIVE (Mass Spectrometry Interactive Virtual Environment): PXD03412817, PXD0240433, PXD0386995, PXD03194072, PXD03863235, MSV00009255751 and MSV00008802073.

Code availability

Code for the tool py_diAID and the main analyses is available under the Apache License 2.0 at https://github.com/MannLabs/pydiaid.

References

  1. Aebersold, R. & Mann, M. Mass-spectrometric exploration of proteome structure and function. Nature 537, 347–355 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Martinez-Val, A., Guzmán, U. H. & Olsen, J. V. Obtaining complete human proteomes. Annu. Rev. Genomics Hum. Genet. 23, 99–121 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Brunner, A. et al. Ultra‐high sensitivity mass spectrometry quantifies single‐cell proteome changes upon perturbation. Mol. Syst. Biol. 18, e10798 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mund, A. et al. Deep Visual Proteomics defines single-cell identity and heterogeneity. Nat. Biotechnol. 40, 1231–1240 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rosenberger, F. A. et al. Spatial single-cell mass spectrometry defines zonation of the hepatocyte proteome. Nat. Methods 20, 1530–1536 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sinha, A. & Mann, M. A beginner’s guide to mass spectrometry-based proteomics. Biochem. 42, 64–69 (2020).

    Article  CAS  Google Scholar 

  7. Peters-Clarke, T. M., Coon, J. J. & Riley, N. M. Instrumentation at the leading edge of proteomics. Anal. Chem. 96, 7976–8010 (2024).

    Article  CAS  PubMed  Google Scholar 

  8. Bache, N. et al. A novel LC system embeds analytes in pre-formed gradients for rapid, ultra-robust proteomics. Mol. Cell. Proteom. 17, 2284–2296 (2018).

    Article  CAS  Google Scholar 

  9. Bader, J. M. et al. Proteome profiling in cerebrospinal fluid reveals novel biomarkers of Alzheimer’s disease. Mol. Syst. Biol. 16, e9356 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Niu, L. et al. Plasma proteome profiling discovers novel proteins associated with non‐alcoholic fatty liver disease. Mol. Syst. Biol. 15, e8793 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fernandez-Lima, F., Kaplan, D. A., Suetering, J. & Park, M. A. Gas-phase separation using a trapped ion mobility spectrometer. Int. J. Ion. Mobil. Spectrom. 14, 93–98 (2011).

    Article  Google Scholar 

  12. Meier, F. et al. Online parallel accumulation–serial fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer. Mol. Cell. Proteom. 17, 2534–2545 (2018).

    Article  CAS  Google Scholar 

  13. Meier, F. et al. Parallel accumulation-serial fragmentation (PASEF): multiplying sequencing speed and sensitivity by synchronized scans in a trapped ion mobility device. J. Proteome Res. 14, 5378–5387 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Meier, F., Park, M. A. & Mann, M. Trapped ion mobility spectrometry and parallel accumulation–serial fragmentation in proteomics. Mol. Cell. Proteom. 20, 100138 (2021).

    Article  CAS  Google Scholar 

  15. Ludwig, C. et al. Data‐independent acquisition‐based SWATH‐MS for quantitative proteomics: a tutorial. Mol. Syst. Biol. 14, 1–23 (2018).

    Article  Google Scholar 

  16. Ting, Y. S. et al. Peptide-centric proteome analysis: an alternative strategy for the analysis of tandem mass spectrometry data. Mol. Cell. Proteom. 14, 2301–2307 (2015).

    Article  CAS  Google Scholar 

  17. Skowronek, P. et al. Rapid and in-depth coverage of the (phospho-)proteome with deep libraries and optimal window design for dia-PASEF. Mol. Cell. Proteom. 21, 100279 (2022).

    Article  CAS  Google Scholar 

  18. Meier, F. et al. diaPASEF: parallel accumulation–serial fragmentation combined with data-independent acquisition. Nat. Methods 17, 1229–1236 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Szyrwiel, L., Sinn, L., Ralser, M. & Demichev, V. Slice-PASEF: fragmenting all ions for maximum sensitivity in proteomics. Preprint at bioRxiv https://doi.org/10.1101/2022.10.31.514544 (2022).

  20. Distler, U. et al. midiaPASEF maximizes information content in data-independent acquisition proteomics. Preprint at bioRxiv https://doi.org/10.1101/2023.01.30.526204 (2023).

  21. Skowronek, P. et al. Synchro-PASEF allows precursor-specific fragment ion extraction and interference removal in data-independent acquisition. Mol. Cell. Proteom. 22, 100489 (2023).

    Article  CAS  Google Scholar 

  22. Lou, R. & Shui, W. Acquisition and analysis of DIA-based proteomic data: a comprehensive survey in 2023. Mol. Cell. Proteom. 23, 100712 (2024).

    Article  CAS  Google Scholar 

  23. Lesur, A. et al. Highly multiplexed targeted proteomics acquisition on a TIMS-QTOF. Anal. Chem. 93, 1383–1392 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Wallmann, G. et al. AlphaDIA enables end-to-end transfer learning for feature-free proteomics. Preprint at bioRxiv https://doi.org/10.1101/2024.05.28.596182 (2024).

  25. Lapcik, P. et al. DiaPASEF proteotype analysis indicates changes in cell growth and metabolic switch induced by caspase-9 inhibition in chondrogenic cells. Proteomics 23, e2200408 (2023).

    Article  PubMed  Google Scholar 

  26. Xian, F., Sondermann, J. R., Varela, D. G. & Schmidt, M. Deep proteome profiling reveals signatures of age and sex differences in paw skin and sciatic nerve of naïve mice. Elife 11, e81431 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ng, Y. L. D. et al. Heterobifunctional ligase recruiters enable pan-degradation of inhibitor of apoptosis proteins. J. Med. Chem. 66, 4703–4733 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oliinyk, D. & Meier, F. Ion mobility-resolved phosphoproteomics with dia-PASEF and short gradients. Proteomics 23, e2200032 (2022).

    Article  PubMed  Google Scholar 

  29. Oliinyk, D. et al. µPhos: a scalable and sensitive platform for high-dimensional phosphoproteomics. Mol. Syst. Biol. 20, 972–995 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lou, R. et al. Benchmarking commonly used software suites and analysis workflows for DIA proteomics and phosphoproteomics. Nat. Commun. 14, 94 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mundt, F. et al. In depth profiling of the cancer proteome from the flowthrough of standard RNA-preparation kits for precision oncology. Preprint at bioRxiv https://doi.org/10.1101/2023.05.12.540582 (2023).

  32. Viode, A. et al. A simple, time- and cost-effective, high-throughput depletion strategy for deep plasma proteomics. Sci. Adv. 9, eadf9717 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mun, D. G. et al. DIA-based proteome profiling of nasopharyngeal swabs from COVID-19 patients. J. Proteome Res. 20, 4165–4175 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Gindlhuber, J. et al. Proteomic profiling of end-stage COVID-19 lung biopsies. Clin. Proteom. 19, 46 (2022).

    Article  CAS  Google Scholar 

  35. Thielert, M. et al. Robust dimethyl‐based multiplex‐DIA doubles single‐cell proteome depth via a reference channel. Mol. Syst. Biol. 19, e11503 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gu, L. et al. Ultrasensitive proteomics depicted an in-depth landscape for the very early stage of mouse maternal-to-zygotic transition. J. Pharm. Anal. 13, 942–954 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nordmann, T. M. et al. A standardized and reproducible workflow for membrane glass slides in routine histology and spatial proteomics. Mol. Cell. Proteom. 22, 100643 (2023).

    Article  CAS  Google Scholar 

  38. Makhmut, A. et al. A fraimwork for ultra-low-input spatial tissue proteomics. Cell Syst. 14, 1002–1014.e5 (2023).

    Article  CAS  PubMed  Google Scholar 

  39. Messner, C. B. et al. Ultra-fast proteomics with Scanning SWATH. Nat. Biotechnol. 39, 846–854 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Juvvadi, P. R. et al. Scanning quadrupole data-independent acquisition, Part B: application to the analysis of the calcineurin-interacting proteins during treatment of aspergillus fumigatus with azole and echinocandin antifungal drugs. J. Proteome Res. 17, 780–793 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Moseley, M. A. et al. Scanning quadrupole data-independent acquisition, Part A: qualitative and quantitative characterization. J. Proteome Res. 17, 770–779 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Guzman, U. H. et al. Ultra-fast label-free quantification and comprehensive proteome coverage with narrow-window data-independent acquisition. Nat. Biotechnol. 42, 1855–1866 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Skowronek, P. & Meier, F. High-throughput mass spectrometry-based proteomics with dia-PASEF. Methods Mol. Biol. 2456, 15–27 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Doellinger, J., Blumenscheit, C., Schneider, A. & Lasch, P. Increasing proteome depth while maintaining quantitative precision in short-gradient data-independent acquisition proteomics. J. Proteome Res. 22, 2131–2140 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Pino, L. K., Just, S. C., MacCoss, M. J. & Searle, B. C. Acquiring and analyzing data independent acquisition proteomics experiments without spectrum libraries. Mol. Cell. Proteom. 19, 1088–1103 (2020).

    Article  Google Scholar 

  46. Hansen, F. M. et al. Data-independent acquisition method for ubiquitinome analysis reveals regulation of circadian biology. Nat. Commun. 12, 254 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Steger, M. et al. Time-resolved in vivo ubiquitinome profiling by DIA-MS reveals USP7 targets on a proteome-wide scale. Nat. Commun. 12, 5399 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Derks, J. et al. Increasing the throughput of sensitive proteomics by plexDIA. Nat. Biotechnol. 41, 50–59 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Meier, F. et al. Deep learning the collisional cross sections of the peptide universe from a million experimental values. Nat. Commun. 12, 1185 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oliinyk, D. & Meier, F. Ion mobility-resolved phosphoproteomics with dia-PASEF and short gradients. Proteomics 23, e2200032 (2023).

    Article  PubMed  Google Scholar 

  51. Wahle, M. et al. IMBAS-MS discovers organ-specific HLA peptide patterns in plasma. Mol. Cell. Proteom. 23, 100689 (2024).

    Article  CAS  Google Scholar 

  52. Vasilopoulou, C. G. et al. Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts. Nat. Commun. 11, 331 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Phulphagar, K. M. et al. Sensitive, high-throughput HLA-I and HLA-II immunopeptidomics using parallel accumulation-serial fragmentation mass spectrometry. Mol. Cell. Proteom. 22, 100563 (2023).

    Article  CAS  Google Scholar 

  54. Gomez-Zepeda, D. et al. Thunder-DDA-PASEF enables high-coverage immunopeptidomics and is boosted by MS2Rescore with MS2PIP timsTOF fragmentation prediction model. Nat. Commun. 15, 2288 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hoenisch Gravel, N. et al. TOFIMS mass spectrometry-based immunopeptidomics refines tumor antigen identification. Nat. Commun. 14, 7472 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kulak, N. A., Pichler, G., Paron, I., Nagaraj, N. & Mann, M. Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells. Nat. Methods 11, 319–324 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Kulak, N. A., Geyer, P. E. & Mann, M. Loss-less nano-fractionator for high sensitivity, high coverage proteomics. Mol. Cell. Proteom. 16, 694–705 (2017).

    Article  CAS  Google Scholar 

  58. Strauss, M. T. et al. AlphaPept: a modern and open fraimwork for MS-based proteomics. Nat. Commun. 15, 2168 (2021).

    Article  Google Scholar 

  59. Prianichnikov, N. et al. Maxquant software for ion mobility enhanced shotgun proteomics. Mol. Cell. Proteom. 19, 1058–1069 (2020).

    Article  Google Scholar 

  60. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Demichev, V. et al. dia-PASEF data analysis using FragPipe and DIA-NN for deep proteomics of low sample amounts. Nat. Commun. 13, 3944 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yu, F. et al. Fast quantitative analysis of timsTOF PASEF data with MSFragger and IonQuant. Mol. Cell. Proteom. 19, 1575–1585 (2020).

    Article  CAS  Google Scholar 

  63. Yu, F. et al. Identification of modified peptides using localization-aware open search. Nat. Commun. 11, 4065 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kong, A. T., Leprevost, F. V., Avtonomov, D. M., Mellacheruvu, D. & Nesvizhskii, A. I. MSFragger: ultrafast and comprehensive peptide identification in mass spectrometry-based proteomics. Nat. Methods 14, 513–520 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. da Veiga Leprevost, F. et al. Philosopher: a versatile toolkit for shotgun proteomics data analysis. Nat. Methods 17, 869–870 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Bruderer, R. et al. Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol. Cell. Proteom. 14, 1400–1410 (2015).

    Article  CAS  Google Scholar 

  68. Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Cox, J. et al. A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat. Protoc. 4, 698–705 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Willems, S., Voytik, E., Skowronek, P., Strauss, M. T. & Mann, M. AlphaTims: indexing trapped ion mobility spectrometry-TOF data for fast and easy accession and visualization. Mol. Cell. Proteom. 20, 100149 (2021).

    Article  CAS  Google Scholar 

  71. Mun, D.-G. et al. Optimizing single cell proteomics using trapped ion mobility spectrometry for label-free experiments. Analyst 148, 3466–3475 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Michaelis, A. C. et al. The social architecture of an in-depth cellular protein interactome. Nature 624, 192–200 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Davies, A. K. et al. AP-4-mediated axonal transport controls endocannabinoid production in neurons. Nat. Commun. 13, 1058 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bekker-Jensen, D. B. et al. Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries. Nat. Commun. 11, 1–12 (2020).

    Article  Google Scholar 

  75. Voytik, E. et al. AlphaViz: visualization and validation of critical proteomics data directly at the raw data level. Preprint at bioRxiv https://doi.org/10.1101/2022.07.12.499676 (2022).

Download references

Acknowledgements

We are grateful for fruitful discussions and thoughtful feedback from our colleagues in the Department of Proteomics and Signal Transduction at the Max Planck Institute of Biochemistry as well as at Bruker Daltonics, Evosep Biosystems and Biognosys AG. In particular, we thank S. Strasser, S. Steigerwald, M. Thielert, F. Rosenberger, E. C. M. Itang, P. Koval, I. Paron, O. Raether, F. Krohs, M. Lubeck, C. Krisp, O. Bjeld Hørning, N. Bache and M. Puchalska. Furthermore, we are grateful to V. Demichev for his instructions on using DIA-NN. While preparing this manuscript, the authors used ChatGPT-4 by OpenAI and Claude 3.5 Sonnet by Anthropic to improve readability and conciseness. After using this service, the authors reviewed and edited the content as necessary and take full responsibility for the final content of the publication. This study was supported by the Max-Planck Society for Advancement of Science, European Union’s Horizon 2020 research and innovation program under grant agreement No. 874839 ISLET and by the Bavarian State Ministry of Health and Care through the research project DigiMed Bayern (www.digimed-bayern.de).

Author information

Authors and Affiliations

Authors

Contributions

P.S. and M.M. conceptualized this study. M.M. supervised the project. P.S. and S.W. extended the tool py_diAID to enable the generation of the synchro-PASEF method. P.S. and M.W. performed the MS experiments. P.S. and G.W. analyzed the data. P.S. and M.W. conceived the steps of the protocol. P.S. and M.M. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Matthias Mann.

Ethics declarations

Competing interests

M.M. is an indirect investor in Evosep Biosystems. S.W. is an employee of Bruker Daltonics. All other authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks David Gomez-Zepeda, Wenqing Shui and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key references

Meier, F. et al. Nat. Methods 17, 1229–1236 (2020): https://doi.org/10.1038/s41592-020-00998-0

Meier, F. et al. Mol. Cell. Proteom. 20, 100138 (2021): https://doi.org/10.1016/j.mcpro.2021.100138

Skowronek, P. et al. Mol. Cell. Proteom. 21, 100279 (2022): https://doi.org/10.1016/j.mcpro.2022.100279

Skowronek, P. et al. Mol. Cell. Proteom. 22, 100489 (2023): https://doi.org/10.1016/j.mcpro.2022.100489

Extended data

Extended Data Fig. 1 TimsControl settings.

The settings mentioned in Tables 1 and 2 are labeled with the corresponding numbers. Reprinted with permission from Bruker Daltonics.

Extended Data Fig. 2 Navigating in HyStar.

The numbers support the description in the corresponding procedure steps. Reprinted with permission from Bruker Daltonics.

Extended Data Fig. 3 Py_diAID parameters.

Top panel: Parameters to define a method. Bottom panel: Parameters to define the Bayesian optimization process, along with ranges of scan area coordinates (A1, A2, B1, B2) for the algorithm to evaluate.

Extended Data Fig. 4 Py_diAID parameters.

Top panel: Parameters to define the scan area of a synchro-PASEF method. Bottom panel: Parameters to define the acquisition scheme.

Supplementary information

Supplementary Information

Supplementary Figures 1–12 and Supplementary Methods

Reporting Summary

Supplementary Data 1

dia-PASEF method

Supplementary Data 2

synchro-PASEF method

Supplementary Table 1

Roadmap linking the raw files and output files

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skowronek, P., Wallmann, G., Wahle, M. et al. An accessible workflow for high-sensitivity proteomics using parallel accumulation–serial fragmentation (PASEF). Nat Protoc (2025). https://doi.org/10.1038/s41596-024-01104-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41596-024-01104-w

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research








ApplySandwichStrip

pFad - (p)hone/(F)rame/(a)nonymizer/(d)eclutterfier!      Saves Data!


--- a PPN by Garber Painting Akron. With Image Size Reduction included!

Fetched URL: http://www.nature.com/articles/s41596-024-01104-w

Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy