
Artificial intelligence in risk 
prediction and diagnosis of 
vertebral fractures
Srikar R. Namireddy1,2, Saran S. Gill1,2, Amaan Peerbhai1,2, Abith G. Kamath1,2,  
Daniele S. C. Ramsay1,2, Hariharan Subbiah Ponniah1,2, Ahmed Salih1,2, Dragan Jankovic3, 
Darius Kalasauskas3, Jonathan Neuhoff4, Andreas Kramer3, Salvatore Russo5 &  
Santhosh G. Thavarajasingam1,3

With the increasing prevalence of vertebral fractures, accurate diagnosis and prognostication are 
essential. This study assesses the effectiveness of AI in diagnosing and predicting vertebral fractures 
through a systematic review and meta-analysis. A comprehensive search across major databases 
selected studies utilizing AI for vertebral fracture diagnosis or prognosis. Out of 14,161 studies 
initially identified, 79 were included, with 40 undergoing meta-analysis. Diagnostic models were 
stratified by pathology: non-pathological vertebral fractures, osteoporotic vertebral fractures, and 
vertebral compression fractures. The primary outcome measure was AUROC. AI showed high accuracy 
in diagnosing and predicting vertebral fractures: predictive AUROC = 0.82, osteoporotic vertebral 
fracture diagnosis AUROC = 0.92, non-pathological vertebral fracture diagnosis AUROC = 0.85, and 
vertebral compression fracture diagnosis AUROC = 0.87, all significant (p < 0.001). Traditional models 
had the highest median AUROC (0.90) for fracture prediction, while deep learning models excelled in 
diagnosing all fracture types. High heterogeneity (I² > 99%, p < 0.001) indicated significant variation in 
model design and performance. AI technologies show considerable promise in improving the diagnosis 
and prognostication of vertebral fractures, with high accuracy. However, observed heterogeneity and 
study biases necessitate further research. Future efforts should focus on standardizing AI models and 
validating them across diverse datasets to ensure clinical utility. 
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Vertebral fractures, as the most frequent type of fragility fractures, are a hallmark of osteoporosis, particularly 
among the elderly. Studies in Europe show that for individuals aged 50 and older, the incidence rates of new 
vertebral fractures stand at 10.7 per 1000 person-years for women and 5.7 per 1000 person-years for men1,2. 
Globally, they can account for up to 8.6 million cases per year3. Risk factors include inactivity, chronic conditions 
(such as osteoporosis), smoking and previous falls4,5. With the rate of osteoporosis reported to be rising6, the 
subsequent incidence of vertebral fractures is also predicted to increase. Vertebral fractures, unlike fractures of 
other areas of the skeleton, tend not to be treated at the time of injury, with up to 33% going undetected7,8. This 
results in an increased risk of mortality after such injuries9, and can lead to chronic pain and disability in the 
long term, with significant economic ramifications10. As such, the timely detection and treatment of vertebral 
fractures has become a key challenge for healthcare providers.

While Artificial Intelligence (AI), including its subset Machine Learning (ML), is no longer a novel 
concept, the rise in its clinical usage has been exponential in recent years11–13. Multimodal data, along with 
the development of the ethical framework surrounding AI, have had an impact in the uptake of AI within 
the medical field14. Diagnostically, AI based systems are currently being used, and have potential, to speed 
up and improve the precision in diagnostic medicine15. Clinically, AI models have been used heavily within 
dermatology, orthopaedics, and otorhinolaryngology demonstrate the utility of such models in different medical 
specialties16–18. However, the uptake of AI in clinical spinal neurosurgery has been less pronounced.
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The current approach to diagnosing and classifying vertebral fractures involves different members of a 
multidisciplinary team, including specialists from orthopaedics, radiology, neurosurgery, and, in some cases 
rheumatology and geriatrics. The combined clinical experience can often be limited by intrinsic risks of 
inaccuracies and lack of efficiency. As such, the use of AI, with a focus on Machine Learning, in these situations 
is of significant interest19,20. However, a robust analysis including both qualitative and quantitative synthesis 
is required evaluate its use in this context – however such an analysis does not exist currently. Hence, this 
systematic review aims to assess the literature surrounding the use of AI, particularly Machine Learning, in the 
detection and prognostication of vertebral fractures.

Methodology
Literature search strategy
This systematic review was conducted using the guidelines outlined by the Cochrane Collaboration, and the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The detailed study protocol 
can be found in Supplemental Digital Content 1: Supplementary Material S1. The completed PRISMA flowchart 
is shown in Fig. 1a. The literature search was carried out on February 12th, 2024, using a search of MEDLINE, 

Figure. 1.   a. The preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flowchart 
outlining the study selection process is shown. b. A world map indicated the origin of publications included in 
this study (n = 79) (Superscript references). The countries are coloured according to whether n = 1, 2, 3, 4, 5, 
6, 11 or 19 studies from these countries have been included in this systematic review. Following countries are 
coloured: Germany (n = 5), China (n = 19), South Korea (n = 11), United States of America (n = 11), Brazil  
(n = 2), Japan (n = 4), Taiwan (n = 4), Italy (n = 3), Canada (n = 3), Switzerland (n = 6), Denmark (n = 1),  
India (n = 3), Australia (n = 3), Belgium (n = 1), Philippines (n = 1), Poland (n = 1), United Kingdom (n = 1). 
This map was created using R software (version 4.3.0; https://www.r-project.org/ ) with the rworldmap and 
ggplot2 packages. c. A risk of bias summary plot for all included studies (n = 79) across the domains of the 
Prediction model Risk Of Bias Assessment Tool (PROBAST).
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Figure 1.  (continued)
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Embase, Scopus, PubMed, and Web of Science Library. Search strings were created for the following research 
question: “Is AI an effective and accurate tool for predicting and diagnosis vertebral fractures?”. The search string 
can be found in Supplemental Digital Content 1: Supplementary Table S1.

Inclusion and exclusion criteria
The inclusion and exclusion criteria can be found in Supplemental Digital Content 1: Supplementary Table S2. 
Vertebral fractures were defined as the breakage or collapse of one or more bones in the spine, often leading to 
pain, reduced mobility, and potential changes in posture2. Only studies that used artificial intelligence tools for 
the diagnostic and prognostication of vertebral fractures were included in the meta-analysis.

Screening and appraisal
Identified studies were uploaded to COVIDENCE for duplicate removal and title and abstract screening. In the 
first abstract screening, conducted by four reviewers (SG, AGK, SRN, AP). All original articles in the English 
language that reported on vertebral fractures were included. Subsequently, only studies reporting on artificial 
intelligence tools for diagnosis and/or prognostication which also fulfilled our inclusion criteria were included. 
All included papers were assessed by two independent reviewers. Any disagreements were resolved by consensus 
after discussion with SRN and HSP.

Critical appraisal
Two evaluators independently used the Prediction model Risk Of Bias Assessment Tool (PROBAST) to gauge 
potential biases in the studies analysed21. PROBAST examines four key aspects: participants, predictors, 
outcomes, and analysis. Within these areas, biases related to participant selection, prediction methods, outcome 
determination, and data analysis were scrutinized using specific guiding questions. Discrepancies in study quality 
were resolved by a third reviewer. In our review, adherence to the Transparent Reporting of a multivariable 
prediction model for Individual Prognosis Or Diagnosis (TRIPOD) guidelines was rigorously evaluated by two 
independent researchers for each included study. TRIPOD provides a comprehensive checklist of 22 essential 
items aimed at enhancing the transparency and completeness of reporting in studies developing, validating, or 
updating prediction models for diagnostic or prognostic purposes23,24.

Statistical analysis
Data preparation was performed using SPSS (IBM, USA) Version 28.0.0.0. Subsequently, R software (version 
4.3.0) was used for statistical analysis and forest plot synthesis, by utilising the meta package. Firstly, a Random 
Effects model meta-analysis was performed for AUROC among models predicting the risk of vertebral fractures. 
We defined ‘acceptable’ performance as an AUROC between 0.70 and 0.80, ‘excellent predictive accuracy’ as an 
AUROC between 0.80 and 0.90, and ‘outstanding performance’ as an AUROC above 0.90, based on established 
thresholds in the literature22. Similar such plots were created for models aiming to diagnose non-pathological 
vertebral fractures, osteoporotic vertebral fractures and vertebral compression fractures. All outcome variable 
computation included 95%-CI, as well as heterogeneity measured by the I2 test. An influence analysis was 
conducted to exclude outliers and a meta regression was calculated to look for correlations between the metrics 
using a mixed-effects single variate meta-regression. Correlation coefficients, standard errors and p-values were 
determined. A p-value < 0.05 was considered statistically significant.

Results
A total of 14,161 studies were screened. From these, 165 full texts were assessed using our inclusion criteria. A 
total of 79 studies were included in this systematic review. 40 of these studies were also included in the meta-
analysis. Figure 1b depicts a world map, with the origin of each paper highlighted. Risk of bias was assessed 
using the PROBAST framework; the complete assessment for each included original study can be found in 
Supplemental Digital Content 1: Supplementary Table S3. Characteristics of each study included in the systematic 
review, along with details on the clinical utility of each AI model, can be found in Supplemental Digital Content 
1: Supplementary Tables S4 and S5, describing the diagnostic and prediction arms of this study, respectively. 
Based on the data, the most common study design was retrospective (n = 69) (Fig. 2a), the most frequent sample 
size was between 100 and 999 participants (n = 37) (Fig. 2b), and the most common year of publication was 2023 
(n = 29) (Fig. 2c).

Prediction of vertebral fractures
The part of this systematic review focussing on the use of AI in prediction of vertebral fractures consisted of 9 
studies, encompassing 26 trial arms (Fig. 3a). Specificity and AUROC, sensitivity and specificity were among 
the most commonly reported metrics, with 78%, 67% and 44% of papers including these, respectively (Fig. 
3b). 56% of these papers reference convoluted neural networks directly. Of the 9 included papers, 56% (n = 5) 
were published in 2023, 33% (n = 3) were published in 2022 and the remaining 11% (n= 1) was published in 
2020. Specific studies like those of Chen Y et al.25, Park T et al.26, and Ma Y et al.27 concentrated on vertebral 
compression fractures, whereas Hu X et al.28 and Kong HS et al.29 focused on osteoporotic fractures, with Kong’s 
study noting higher sample sizes and more comprehensive AUROC evaluations. The findings are summarised in 
Supplemental Digital Content 1: Supplementary Table S3.

Diagnosis & classification of vertebral fractures
The part of this systematic review focussing on the use of AI in the diagnosis of vertebral fractures is based 
on 70 studies, consisting of over 130 diagnostic models in total. Sensitivity and specificity were the two 
most commonly reported metrics, followed by accuracy, with 97%, 94% and 91% of papers including these, 
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Figure. 2.   a. Bar plot visualizes the number of prospective (n = 9), retrospective (n = 69) and ambispective 
(n = 1) studies included in the systematic review (n = 79) (Superscript references). b. Bar plot visualizes the 
number of studies with certain sample sizes: 0–99 (n = 11), 100–999 (n = 37), 1000–9999 (n = 20), 10,000+  
(n = 7), unsure (n = 3). c. Line plot displays the number of studies for the following years of publications: 2011 
(n = 1), 2012 (n = 1), 2013 (n = 1), 2017 (n = 3), 2018 (n = 3), 2019 (n = 2), 2020 (n = 9), 2021 (n = 13), 2022  
(n = 12), 2023 (n = 29), 2024 (n = 4). Each year is indicated as a blue circle, and the circles are connected by an 
interrupted line to visualise the trend more clearly.
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Figure. 3.   a. This Sankey diagram represents the categorization of 162 total artificial intelligence (AI) 
models into various types and performance levels based on their AUROC scores. Of the total, 136 models are 
designated as diagnostic AI models, while 26 are predictive AI models. The performance levels, corresponding 
to different ranges of AUROC scores, are color-coded and flow from these categories into four distinct 
performance categories: Suboptimal performance (AUROC score: 0.5–0.7) includes 9 models, acceptable 
performance (AUROC score: 0.7–0.8) includes 25 models, excellent performance (AUROC score: 0.8–0.9) 
includes 20 models, and outstanding performance (AUROC score: 0.9+) includes 49 models. Additionally, 
there are 59 models for which no AUROC values are provided. Diagnostic AI models are further broken down 
into osteoporotic vertebral fractures (OVFs) with 11 models, vertebral compression fractures (VCFs) with 
39 models, and non-pathological vertebral fractures (non-pathological VFs) with 30 models. Each subgroup 
of fractures feeds into the various performance levels, showing the distribution of models’ performance 
based on their diagnostic category. b. This radar chart provides a comparative visualization of the mean 
performance metrics for different groups of AI models. The chart is segmented into five performance metrics: 
AUROC, Accuracy, Precision, Sensitivity, and Specificity, with values ranging from 0 to 1. There are four 
groups of models compared: Predictive Models, Non-Pathological Vertebral Fracture (VF) Diagnostic Models, 
Osteoporotic Vertebral Fractures (OVF) Diagnostic Models, and Vertebral Compression Fractures (VCF) 
Diagnostic Models. Each group is represented by a different coloured line that traces the mean score for each 
performance metric. The lines create shapes that allow for an at-a-glance comparison of how each model group 
performs across these metrics. The closer the edge of a shape is to the outer perimeter of the radar chart, the 
higher the mean performance score for that metric. The chart facilitates a direct comparison of the model 
groups, indicating areas where some models excel or where there may be room for improvement.
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respectively. We categorized the studies based on the type of vertebral fractures: Non-Pathological Vertebral 
Fractures, Osteoporotic Vertebral Fractures, and Vertebral Compression Fractures. These studies commonly 
aimed to detect the presence of fractures using expert opinions for validating AI model outputs. Noteworthy 
contributions include Hong N et al.20, who utilized a qualitative algorithm to classify vertebral fractures, 
with large datasets allowing robust comparisons across different scoring systems like the VERTE-X pVF and 
VERTE-X osteo scores. Similarly, Yilmaz EB et al.30,31 and Monchka BA et al.32,33 employed convolutional neural 
networks and a modified algorithm-based qualitative approach, respectively, to classify fractures, focusing on 
binary outcomes—either ‘fracture’ or ‘no fracture’.

The findings are summarised in Supplemental Digital Content 1: Supplementary Tables S4.

Performance breakdown of vertebral fracture models
Figure 3a summarises the performance of 162 AI models into a decisive visualization of efficacy. With 136 
models focused on diagnosis and 26 on prediction, the diagnostic models are further categorized by fracture 
type: 11 for osteoporotic fractures (OVFs), 39 for vertebral compression fractures (VCFs), and 30 for non-
pathological fractures. Performance-wise, 49 models are at the forefront with outstanding AUROC scores above 
0.9. Meanwhile, 20 models show excellent performance, 25 have acceptable levels, and 9 fall under suboptimal, 
reflecting a high-precision stratification in the field. The Sankey diagram underscores the concentration of 
superior AI models within the diagnostic realm, particularly in the detection of OVFs and VCFs, despite a 
notable 59 models lacking AUROC data.

In the evaluation of AI models for predicting vertebral fractures (Fig. 4a), traditional machine learning 
models show the highest median AUROC scores, indicating a stronger predictive performance compared to 
specialised ensemble and traditional machine learning models. For the diagnosis of non-pathological vertebral 
fractures deep learning models exhibit the highest median AUROC scores (Fig. 4b). In the context of diagnosing 
osteoporotic vertebral fractures (OVFs) as shown in Fig. 4c, specialized ensemble deep learning models showed 
very similar performance simple deep learning models. Lastly, for the diagnosis of vertebral compression 
fractures (VCFs) deep learning models again lead with higher median AUROC scores (Fig. 4d).

Meta-analysis
Prediction vertebral fractures
The meta-analysis26–29,34–36 (Fig. 5) compares different machine learning models and their effectiveness in 
predicting a certain outcome. With AUROCs ranging from 0.72 to 0.94, it is evident that some models perform 
significantly better than others. Models by Ma et al.27 utilizing logistic regression, gradient boosting machine, 
and neural networks, and Yoon et al.26 with CNN, achieved high predictive accuracy, with AUROCs at or above 
0.90. In contrast, several models, particularly those by Cho et al.34 and Kong et al.29, show relatively lower 
accuracy, with AUROCs closer to 0.72. The overall predictive performance across all models, indicated by the 
RE Model’s AUROC of 0.82, suggests excellent predictive accuracy by the models, though there is substantial 
heterogeneity (I² > 99%, p < 0.01).

Diagnosis/Classification of non-pathological vertebral fractures
The forest plot37–50 (Fig. 6) in question provides a comprehensive overview of the predictive accuracy of various 
machine learning models, as measured by AUROC. There is a notable range in performance, with AUROC 
values spanning from roughly 0.68 to a near perfect score of 0.99. Models by Li et al. applying ensemble deep 
learning techniques to different grades of fractures in 2021, demonstrated near-perfect predictive capabilities. 
Meanwhile, the study by Wu-Gen Li et al. explored a variety of methods including Support Vector Machine 
(SVM), Bayesian analysis, and logistic regression, only to display a wide array of outcomes with moderate to high 
accuracy. On the contrary, the models by Eßer-Vainicher et al. which utilised CNNs on patients where SDI ≥ 1, 
show lower AUROCs. The aggregate predictive accuracy across all models is indicated by the Random Effects 
(RE) Model’s AUROC of 0.85, suggesting excellent performance. Nonetheless there is high heterogeneity (I² > 
99%, p < 0.001).

Diagnosis/Classification of osteoporotic vertebral fractures
The forest plot20,30,31,51–53 (Fig. 7) presents a comparative analysis of machine learning models based on their 
AUROC values for predicting specific outcomes. The models investigated show a considerable spread in 
performance, with AUROC values ranging from 0.77 to near perfection at 0.99. The models devised by Hong 
et al. in 2023 exhibit varying results, with internal assessments resulting in AUROCs of 0.93 and 0.85 for 
PVF and osteo scores respectively, indicating a solid predictive capability, whereas their external assessments 
reveal a slightly reduced accuracy. Yabu et al. and Yoda et al. through their incorporation of multiple CNN 
architectures demonstrate superior predictive performance, particularly Yoda et al. with an AUROC close to 
1.00, showing an excellent fit for the predictive task. Ono et al. created a model that utilised a combination of 
Resnet-50, DenseNet-161, and NexResNet-50, however this resulted in a lower AUROC of 0.77, which could 
imply limitations in their data, or the combination of AI models used. Yilmaz et al. across three studies in 2020 
and 2021 employing U-Net, CNN, and Fnet, consistently showcased high prediction accuracy, with two studies 
achieving AUROCs of 0.99. The combined predictive accuracy, as summarized by the Random Effects (RE) 
Model, reported an AUROC of 0.92, showing that on average, the models are outstandingly accurate in their 
predictions. However there is high heterogeneity (I²=99.16, p < 0.001).

Diagnosis/Classification of Vertebral Compression fractures
The forest plot32,33,48,54–63 (Fig. 8) provided details the performances of a diverse set of machine learning models, 
as denoted by their AUROC values. These models range from deep learning CNNs to traditional methods like 
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logistic regression and decision trees. The variability in performance is significant, with AUROCs as high as 0.99 
for some ensemble CNN methods by Moncicka et al. down to 0.54 for certain individual models. This broad 
performance spectrum is further reflected in models by Zhang et al. with AUROCs spanning from 0.60 to 0.73 
across different algorithmic approaches like k-nearest neighbours (KNN), logistic regression (LR), decision trees 
(DT), and gradient boosting (GB). The models demonstrate that ensemble methods, particularly those involving 
CNNs, tend to yield higher predictive accuracies (such as the study by Kim et al. which achieved an AUROC 
of 0.99), while traditional machine learning methods like those by Thawani et al. hovered around the 0.76 
mark. The plot culminates in a Random Effects (RE) Model AUROC of 0.87. However, extreme heterogeneity 
(I²=99.95, p < 0.001) was calculated in the meta-analysis.

Sensitivity analysis and linear regression
The exclusion of outlier studies based on an influence analysis did not yield a significant change in effect 
size. Similarly, excluding studies with high levels of risk of bias (based on the PROBAST assessment) did not 

Figure. 4.   a. Presents a violin plot comparing the performance of different AI models in predicting vertebral 
fractures. Three strata of models are displayed: ‘Specialised ensemble models,’ ‘Deep learning models,’ 
and ‘Traditional machine learning models,’ with their respective AUROC scores. The width of each violin 
represents the distribution density of the AUROC scores, with wider sections indicating a higher frequency 
of scores in that range. The box within each violin shows the interquartile range, and the line within denotes 
the median AUROC score. b. presents a violin plot comparing the performance of different AI models in 
diagnosing non-pathological vertebral fractures. Four strata of models are displayed: ‘Probabilistic models,’ 
‘Specialised ensemble models,’ ‘Deep learning models,’ and ‘Traditional machine learning models,’ with their 
respective AUROC scores. The width of each violin represents the distribution density of the AUROC scores, 
with wider sections indicating a higher frequency of scores in that range. The box within each violin shows the 
interquartile range, and the line within denotes the median AUROC score. c. presents a violin plot comparing 
the performance of different AI models in diagnosing OVFs. Two strata of models are displayed: ‘Specialised/
ensemble deep learning models,’ and ‘Deep learning models,’ with their respective AUROC scores. The width 
of each violin represents the distribution density of the AUROC scores, with wider sections indicating a 
higher frequency of scores in that range. The box within each violin shows the interquartile range, and the line 
within denotes the median AUROC score. d. presents a violin plot comparing the performance of different 
AI models in diagnosing VCFs. Three strata of models are displayed: ‘Specialised ensemble models,’ ‘Deep 
learning models,’ and ‘Traditional machine learning models,’ with their respective AUROC scores. The width 
of each violin represents the distribution density of the AUROC scores, with wider sections indicating a higher 
frequency of scores in that range. The box within each violin shows the interquartile range, and the line within 
denotes the median AUROC score.
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significantly alter the effect size across any of the outcome variables, with the average effect size (AUROC) for 
the remaining low-risk studies remaining at 0.87. The meta-regressions, which assessed the influence of various 
co-variates on the overall effect size across different meta-analyses (predictive AI models, non-pathological VF 
diagnostic AI models, OVF diagnostic AI models, VCF diagnostic AI models), found no significant covariates 
(p < 0.05) (Table 1).

Discussion
This meta-analysis is the first to formally assess and analyse the use of AI in prediction, diagnosis and classification 
of vertebral Fractures. It encompasses 40 studies incorporating data from 162 AI models. Our findings indicate 
that AI models exhibit an overall robust predictive capacity (AUROC = 0.82 [0.78–0.85]) and diagnostic accuracy 
(osteoporotic vertebral fracture diagnosis AUROC = 0.92 [0.88–0.96]; non-pathological vertebral fracture 
diagnosis AUROC = 0.85 [0.81–0.88] and vertebral compression fracture diagnosis AUROC = 0.87 [0.83–0.91]), 
all being statistically significant at p < 0.001. These findings are robust, as sensitivity analysis and meta-regression 
showed no significant changes in effect sizes after excluding outliers and high-risk studies, with low-risk studies 
maintaining an AUROC of 0.87. Additionally, no significant covariates (p > 0.05) were identified, reinforcing the 
consistency of our results across different study conditions.

Our systematic review showed that traditional machine learning excels in predicting vertebral fractures, 
topping AUROC scores and proving its predictive reliability. Conversely, deep learning had the best accuracy in 
diagnosing all 3 types of vertebral fractures. Future AI should merge traditional machine learning’s predictive 
precision with deep learning’s diagnostic acuity for vertebral fracture assessment.

The high predictive AUROC supports the narrative that AI can play a vital role in pre-empting fractures, 
an insight that dovetails with existing literature emphasizing early detection and intervention in osteoporotic 
conditions64. The potential of such technology to forecast risk and inform clinical decision-making prior 
to fracture occurrence is not only innovative but aligns with the preventive care model that is becoming 
increasingly crucial in an aging65. Nevertheless, there remains a need for a nuanced understanding of the models’ 
performance across diverse demographic and clinical settings, echoing calls for broader and more inclusive 
datasets in AI training66.

Figure. 5.   A forest plot displaying the predictive performance of various statistical models is presented, 
pooling the results from several studies conducted between 2020 and 2023. Each study is listed with the author, 
the year of publication, and the specific model used, such as neural networks, decision trees, or convolutional 
neural networks (CNNs). The predictive accuracy of each model is quantified by the AUROC (Area Under the 
Receiver Operating Characteristic curve), with the size of the grey square indicating the model’s performance 
and correlating to the sample size of the study. The horizontal lines represent the 95% confidence intervals (CI) 
for the AUROC, and the overall pooled predictive accuracy across all studies is illustrated by the diamond at 
the bottom of the plot. This summary measure combines the strength of evidence from the individual studies. 
Heterogeneity in study outcomes is expressed through the I² statistic and its associated tau² (τ²) and p-value, 
providing insight into the variability among the different predictive models. A p-value less than 0.05 indicates 
statistically significant predictive accuracy. The weighting of each study, displayed as a percentage, is based on 
the inverse of the variance, granting more influence to studies with more precise effect estimates.
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In the realm of diagnosis, AI models showed particular promise in distinguishing between non-pathological, 
osteoporotic, and other types of vertebral fractures. These findings prompt a re-evaluation of traditional 
diagnostic methods, which may be augmented or, in some instances, surpassed by AI capabilities. However, 
the clinical integration of these models requires careful consideration of their performance in real-world 
settings. The consistency and reliability of AI model outputs against the gold standard of clinical diagnoses 
present an ongoing area of research that must address the full spectrum of clinical scenarios67. Notably, while 
AI models demonstrate considerable strengths, our analysis identified areas where performance is less than 
optimal, particularly in the prediction of vertebral compression fractures. This nuanced understanding of model 
capabilities must inform future research directions, emphasizing the refinement of AI algorithms for these 
specific clinical challenges68.

Importantly, our study has brought to the forefront the substantial heterogeneity present within AI models 
within this field, echoing the sentiments of other researchers calling for standardization and harmonization of 
AI methodologies69. The disparity in model performance reflects a broader issue within the field: the absence 
of a unified framework or consensus on model development and evaluation criteria. This makes comparisons 
across studies challenging and impedes the ability to draw definitive conclusions about the best practices and 
most effective approaches70.

Regarding the clinical utility of AI, there is evidence to suggest that the integration of AI can augment 
the efficiency of radiological workflows. By potentially reducing the time spent on image interpretation, AI 
could serve as an adjunct to radiologists, enabling a more rapid turnaround and thereby addressing current 
diagnostic backlogs. Such a development would be a significant leap forward in healthcare delivery, aligning 

Figure. 6.   This comprehensive forest plot aggregates the diagnostic accuracies of a multitude of studies, 
evaluating the AUROC (Area Under the Receiver Operating Characteristic curve) of various diagnostic models 
in the medical field tailored towards identifying non-pathological vertebral fractures. Each entry details 
the study by author, publication year, and utilized model or technique, ranging from advanced algorithms 
like CNN (Convolutional Neural Networks) and LSTM (Long Short-Term Memory networks) to ensemble 
methods and radiomic analyses. The size of the grey squares reflects the study’s sample size, directly influencing 
the visual weight of each study’s AUROC result on the plot. The black horizontal lines spanning from each 
square represent the 95% confidence intervals, providing a graphical representation of the estimate’s precision. 
At the plot’s base, the black diamond summarizes the combined AUROC across all studies, indicating the 
overall predictive strength of these models. Heterogeneity among the studies’ outcomes is quantified by an 
I² statistic, tau² (τ²), and p-value, signaling the extent of variability and its statistical significance. Studies 
with higher weights, denoted in percentages, suggest a greater impact on the pooled result due to their lower 
variance. This plot serves as a critical summary, enabling readers to visualize the efficacy of various predictive 
models in a specific medical domain.
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with recent research demonstrating AI’s ability to reduce workload and enhance diagnostic accuracy (Studies 
demonstrating AI’s impact on radiological efficiency). Studies, such as that by Meng F et al.71, directly measure 
how AI can speed up this reporting process, finding that there was a significant improvement in reporting time 
when Radiologists are assisted by AI software (p < 0.01). While Meng F et al’s study focusses on the detection of 
community acquired pneumonia, the principles are universal.

Given the results of this systematic review and meta-analysis, that AI in this context is provenly accurate and 
apt for use in clinical practise. However, financial and certification requirements are restricting the uptake. In 
2024, Pauling C et al.72 evaluated several commercially available AI models used to detect fractures, and found 
variations in pricing strategies for such models from a pay-per-use framework to an annual fee. This study 
highlighted the scarcity of models that are externally validated for clinical use and commercially available, in 
the United Kingdom post-Brexit. Pauling C et al. emphasized need to develop models that are ready for use and 
certified by the Medical Devices Directive, the United Kingdom Conformity Assessed marking or similar bodies 
and certifications. Given the epidemiological burden of vertebral fractures, and the increasing constraints of 
healthcare systems globally, a cost-efficiency analysis is warranted to assess whether funding for AI technologies 
in spinal neurosurgery would have a significant positive impact at large.

We undertook an exhaustive search of the literature, resulting in a study with a very large and high-powered 
pooled analysis. However, our findings must also be viewed in the context of the limitations of this study. Less 
than half of the studies included in the meta-analysis provided AUROC data in the required format, with metrics 
such as specificity and sensitivity being more prevalent; nonetheless it was used as the primary metric for its 
ability to comprehensively evaluate model performance by integrating both sensitivity and specificity across 
all thresholds, making it ideal for comparing AI models in vertebral fracture prediction and diagnosis. The 
assessment of articles, in line with the PROBAST framework, revealed a general lack of information concerning 
missing data handling and overall data analysis procedures. Moreover, substantial variance in sample sizes was 
observed, with some studies having as few as 15 data points available for analysis. Additionally, confidence 

Figure. 7.   This comprehensive forest plot aggregates the diagnostic accuracies of a multitude of studies, 
evaluating the AUROC (Area Under the Receiver Operating Characteristic curve) of various diagnostic models 
in the medical field tailored towards identifying osteoporotic vertebral fractures. Each entry details the study 
by author, publication year, and utilized model or technique, ranging from advanced algorithms like CNN 
(Convolutional Neural Networks) and LSTM (Long Short-Term Memory networks) to ensemble methods 
and radiomic analyses. The size of the grey squares reflects the study’s sample size, directly influencing the 
visual weight of each study’s AUROC result on the plot. The black horizontal lines spanning from each square 
represent the 95% confidence intervals, providing a graphical representation of the estimate’s precision. At 
the plot’s base, the black diamond summarizes the combined AUROC across all studies, indicating the overall 
predictive strength of these models. Heterogeneity among the studies’ outcomes is quantified by an I² statistic, 
tau² (τ²), and p-value, signalling the extent of variability and its statistical significance. Studies with higher 
weights, denoted in percentages, suggest a greater impact on the pooled result due to their lower variance. This 
plot serves as a critical summary, enabling readers to visualize the efficacy of various predictive models in a 
specific medical domain.
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intervals were not consistently reported across the papers, necessitating our calculation of these intervals. Each 
study utilized a different AI model, each with its own parameters and methodologies. We aimed to account for 
the intrinsic weaknesses of the existing literature using a robust analytical approach, nonetheless it necessitates 
cautious interpretation of the results.

Conclusion
This meta-analysis, included 162 AI models suggests that AI based programmes can accurately diagnose and 
predict the risk of vertebral fractures, (predictive AUROC = 0.82 [0.78–0.85]; osteoporotic vertebral fracture 
diagnosis AUROC = 0.92 [0.88–0.96]; non-pathological vertebral fracture diagnosis AUROC = 0.85 [0.81–0.88] 
and vertebral compression fracture diagnosis AUROC = 0.87 [0.83–0.91]) at a significant level (p < 0.001). 
Traditional AI models accounted for the most successful predictive tools and deep learning models contributed 
to the most successful diagnostic tools. As such future development should be centred around this. However, 
given the high risk of bias in the papers included, likely including some level of selection and sampling bias, our 
findings should be interpreted with caution. We recognise the potential benefit of the widespread use of AI both 
predictively and diagnostically and highlight the need for a well-designed large multicentric study to further 
explore the benefits of AI in spine surgery, and answer questions on the practicality, efficacy, and cost-efficiency 
of the AI models in clinical practice.

Figure. 8.   This comprehensive forest plot aggregates the diagnostic accuracies of a multitude of studies, 
evaluating the AUROC (Area Under the Receiver Operating Characteristic curve) of various diagnostic models 
in the medical field tailored towards identifying vertebral compression fractures. Each entry details the study 
by author, publication year, and utilized model or technique, ranging from advanced algorithms like CNN 
(Convolutional Neural Networks) and LSTM (Long Short-Term Memory networks) to ensemble methods 
and radiomic analyses. The size of the grey squares reflects the study’s sample size, directly influencing the 
visual weight of each study’s AUROC result on the plot. The black horizontal lines spanning from each square 
represent the 95% confidence intervals, providing a graphical representation of the estimate’s precision. At 
the plot’s base, the black diamond summarizes the combined AUROC across all studies, indicating the overall 
predictive strength of these models. Heterogeneity among the studies’ outcomes is quantified by an I² statistic, 
tau² (τ²), and p-value, signalling the extent of variability and its statistical significance. Studies with higher 
weights, denoted in percentages, suggest a greater impact on the pooled result due to their lower variance. This 
plot serves as a critical summary, enabling readers to visualize the efficacy of various predictive models in a 
specific medical domain.
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