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Graph Neural Networks (GNN) emerged as a deep learning framework to generate node and graph 
embeddings for downstream machine learning tasks. Popular GNN-based architectures operate on 
networks of single node and edge type. However, a large number of real-world networks include 
multiple types of nodes and edges. Enabling these architectures to work on networks with multiple 
node and edge types brings additional challenges due to the heterogeneity of the networks and the 
multiplicity of the existing associations. In this study, we present a framework, named GRAF (Graph 
Attention-aware Fusion Networks), to convert multiplex heterogeneous networks to homogeneous 
networks to make them more suitable for graph representation learning. Using attention-based 
neighborhood aggregation, GRAF learns the importance of each neighbor per node (called node-level 
attention) followed by the importance of each network layer (called network layer-level attention). 
Then, GRAF processes a network fusion step weighing each edge according to the learned attentions. 
After an edge elimination step based on edge weights, GRAF utilizes Graph Convolutional Networks 
(GCN) on the fused network and incorporates node features on graph-structured data for a node 
classification or a similar downstream task. To demonstrate GRAF’s generalizability, we applied it to 
four datasets from different domains and observed that GRAF outperformed or was on par with the 
baselines and state-of-the-art (SOTA) methods. We were able to interpret GRAF’s findings utilizing the 
attention weights. Source code for GRAF is publicly available at https://github.com/bozdaglab/GRAF.
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Graphs naturally represent complex relationships in multimodal datasets including biological and biomedical 
datasets. For instance, multi-omics datasets can be represented as gene-gene similarity networks and drug- and 
protein-based datasets can be represented as drug-target networks.

To train machine learning (ML) models on graph-structured data, several shallow (e.g., DeepWalk1, 
node2vec2, NECo3) and deep learning methods such as Graph Neural Networks (GNN)4,5 have emerged. GNN 
utilizes deep neural networks on graph-structured data to learn node embeddings that capture both the graph 
topology and the features of node, edge, and/or graph4–7. Every node iteratively updates its current embedding 
by aggregating information from its local neighborhood. Graph Convolutional Networks (GCN) is one of the 
most popular GNN methods6, which treat all neighboring nodes with equal importance during information 
aggregation. Inspired from8, attention mechanisms are applied to graph-structured data7, where information 
aggregation from neighborhood is based on the importance of neighboring nodes in a given network.

Most GNN-based architectures are primarily designed for homogeneous networks-those composed of 
a single type of node and edge. However, real-world networks often exhibit multiplex (i.e., having multiple 
types of edges) and heterogeneous (i.e., having multiple types of nodes) characteristics. For example, nodes in 
a network could represent papers, authors, and venues, with edges denoting relationships such as authorship 
and publication. We refer to each layer of the multiplex network as a network layer, which corresponds to each 
subnetwork within the multiplex network that contains edges of a distinct type. A heterogeneous network can 
be converted into a multiplex homogeneous network (i.e., multiple edge types and single node type) using meta-
paths. In general, a meta-path is a path in a graph that visits different types of nodes via different types of 
edges. To build multiplex homogeneous networks, a meta-path starts and ends at the same node type and visits 
specific edge types in a given order to measure the similarity between the start and end nodes. Two meta-paths 
of equal length that follow the same node and edge types belong to the same meta-path type. For instance, in a 
heterogeneous network with node types author, paper, and venue, a meta-path author-paper-author defines the 
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similarity between two authors based on co-authorship, whereas a meta-path author-paper-venue-paper-author 
defines the similarity between two authors who publish at the same venue.

To perform graph representation learning on a multiplex network, GNN could be applied separately to 
each network layer. For instance, MOGONET9 constructs a multiplex patient similarity network where each 
network layer was based on a distinct omics type. MOGONET applies a separate GCN on each network layer 
and integrates label distributions from each to determine final node labels. Similarly, SUPREME10 learns node 
embeddings from each omic-based network layer in a multiplex patient similarity network using GCN. Then, it 
trains an ML model for each embedding combination to predict patient diagnosis. However, this operation could 
be computationally expensive when there are many omics types. In addition, these models typically overlook 
attention of nodes and edges, highlighting the need for more efficient and advanced methodologies in multiplex 
network analysis.

To address these limitations, in this study, we introduce GRAF (Graph Attention-aware Fusion Networks), a 
computational framework designed to transform multiplex heterogeneous networks to homogeneous networks 
for effective graph representation learning. GRAF utilizes node- and network layer-level attention as in11 during 
the fusion process of these networks. Once fused, GRAF employs GCN to perform a node classification or a 
similar downstream task, incorporating node features.

We applied GRAF to four networks (including three heterogeneous networks and one multiplex network) 
spanning various domains to perform node classification. Our results show that GRAF outperformed most 
state-of-the-art (SOTA) and baseline methods across all datasets. Utilizing attention weights, GRAF provides 
interpretable results, highlighting the significance of nodes and network layers crucial for the prediction task.

The contributions of our work are summarized as follows:

•	 We developed GRAF, a framework to convert multiplex heterogeneous networks to homogeneous networks 
with an attention-aware network fusion strategy. GRAF runs GCN on the fused network for the desired node 
classification or a similar downstream task.

•	 GRAF provides attention values for each node and network layer, enabling the identification of critical net-
work components for downstream tasks.

•	 We applied GRAF to four different networks-three heterogeneous and one multiplex-across four node classi-
fication problems from various domains, showing its robustness and generalizability.

•	 We conducted extensive evaluations to measure the performance of GRAF including an ablation study to 
assess the effectiveness of GRAF’s components and their contributions to overall performance.

Related work
GNN-based methods
GNN attracted high interest as a deep learning framework to learn node, subgraph, and graph embeddings. 
Several GNN-based architectures have been developed with different approaches in message aggregation6,7,12,13. 
GCN uses self edges in the neighborhood aggregation and normalizes across neighbors with equal importance6. 
On the cancer type prediction problem, in14, the authors leveraged GCN on a single biological network with 
one data modality, thus limiting the utilization of multiple data and networks. In15, the authors proposed a 
hybrid model leveraging graph convolution and relation network on the breast cancer classification task, while 
in16, the authors used a GCN-based model on drug and protein interaction network for multirelational link 
prediction. While most GNN-based models ignore edge directionality, Dir-GNN17 extends GNN to preserve 
edge directionality, showing improved performance over conventional GNN-based models.

Generalizing the self-attention mechanisms of transformers8, Graph Attention Networks (GAT) has been 
developed using attention-based neighborhood aggregation learning the importance of each neighbor7. A 
follow-up study has shown that GAT computes static attention, maintaining consistent rankings for attention 
coefficients within the same graph. They proposed GATv218 by changing the order of operations, and improved 
the expressiveness of GAT. SuperGAT19 improves upon standard GAT by introducing a self-supervised approach 
that enhances attention robustness in noisy graphs by encoding edge presence and absence.

GNN-based methods on multiplex and heterogeneous networks
To utilize more knowledge, studies utilized GNN-based architectures to operate on multiplex network9,10. 
MOGONET9 runs three different GCN models, each operating on a distinct patient similarity network 
constructed using a distinct data modality. Then, it uses the label distribution from three different models and 
utilizes them to predict the final label of each node. SUPREME10 is a GCN-based node classification framework 
that operates on each layer of a multiplex network individually, encoding features from all data modalities within 
each network. In contrast to MOGONET, SUPREME utilizes intermediate embeddings and integrates them with 
node features, resulting in a consistent and improved performance. Also, SUPREME integrates embeddings by 
evaluating all network combinations to identify the best model.
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In the realm of heterogeneous networks, Heterogeneous Graph Attention Network (HAN)11 introduces a 
GNN-based architecture on a heterogeneous network, incorporating attention mechanisms. HAN first generates 
meta-path-based networks from a heterogeneous network and applies individual transformation matrices 
(i.e., matrices used to linearly transform node features) to nodes of different types. It then learns node-level 
attention within each node’s meta-path-based neighborhood and network layer-level attention across meta-
paths to improve model expressiveness . Similarly, Heterogeneous Graph Transformer (HGT)20 handles graph 
heterogeneity by characterizing the heterogeneous attention over each edge. In addition, PreGAT21 introduces 
predicate-aware graph attention networks to integrate relational information and enhance node differentiation, 
resulting in enriched embeddings that improve downstream node importance models.

Network fusion methods
Since multiplex networks may contain complementary information, some studies integrated these networks 
into a single network22,23. For instance, Similarity Network Fusion (SNF)22 builds a patient similarity network 
based on each data modality, fuses all networks into one consensus network by applying a nonlinear step, and 
performs clustering on this consensus network. Affinity Network Fusion (ANF)23 builds on SNF by simplifying 
the required computational operations. Network fusion methods show good performance without using 
probabilistic modeling, however, they heavily rely on constructing a similarity network to integrate information 
from multiple data modalities. In addition, these tools cannot utilize node features within the network, which 
could be potentially informative.

Materials and methods
GRAF
GRAF is a computational framework that transforms heterogeneous and/or multiplex networks into a 
homogeneous network using attention mechanisms and network fusion simultaneously (Fig. 1). Briefly, the 
first step of GRAF is to generate a meta-path-based multiplex network if the initial network is a heterogeneous 
network. In the second step, GRAF computes node- and network layer-level attention. In the third step, GRAF 
fuses multiple networks into a single weighted network using node- and network layer-level attention weights. 
Following this, GRAF removes edges from the fused network based on their strength. Finally, GRAF learns node 
embeddings using GCN and performs downstream ML tasks. The detailed explanation of each step in GRAF is 
as follows.

Fig. 1.  The GRAF pipeline on a heterogeneous network. Initially, GRAF generates meta-path-based 
neighborhood. Then, it obtains node- and network layer-level attention. Using these attentions, GRAF fuses 
multiple network layers into a single weighted network. GRAF subsequently removes low-weighted edges and 
learns node embeddings through graph convolutions applied to the fused network.
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Multiplex network generation
Networks generated based on meta-paths are referred to as meta-path-based networks. If the input network 
is a heterogeneous network (IMDB, ACM, and DBLP data for our case), GRAF converts this network into a 
multiplex network using meta-paths that start and end with the node types relevant to the downstream task. If 
the input network is already a multiplex network (DrugADR data for our case), GRAF skips this transformation. 
Below, we provide a detailed explanation of the conversion from heterogeneous to multiplex networks.

Let’s assume we have a heterogeneous network GH . We denote the nodes in GH  as V = {v1, v2, . . . , vn}, 
where n is the total number of nodes. Each meta-path-based network is represented by a set of edges, including 
self-edges, denoted as Eϕ. For every node pair (vi, vj) ∈ GH , if there is a path between them based on the meta-
path ϕ, then we add an edge to the edge set Eϕ, that is (vi, vj) ∈ Eϕ, where ϕ ∈ {1, 2 . . . Φ} and Φ is the total 
number of meta-path types. This edge can be formalized using an indicator function I:

	
IEϕ (vi, vj) =

{
1 if (vi, vj) ∈ Eϕ

0 otherwise � (1)

After constructing all Eϕ in GH , we obtain a graph Gϕ = (V, Eϕ). All datasets have undirected graphs, 
(vi, vj) ∈ Eϕ ⇐⇒ (vj , vi) ∈ Eϕ. In that way, we obtained a multiplex network from a heterogeneous network 
with a separate network layer ϕ for each meta-path type.

The neighborhood Nϕ
i  of node vi is defined as Nϕ

i =
{

vj : (vi, vj) ∈ Eϕ
}

, representing nodes associated with 
vi according to meta-path ϕ. Additionally, a feature matrix X ∈ Rnxf  is generated, where xi ∈ Rf  represents 
the original node features of vi, and f is the input feature size. X serves as input for the attention model and the 
final GCN model.

Computing node- and network layer-level attention
GRAF computes node-level attention αϕ

ij  to learn the importance of each neighbor vj  relative to node vi 
based on network layer ϕ. In addition, GRAF learns the network layer-level attention βϕ, which indicates the 
importance of the network layer ϕ to the prediction task. GRAF extracts node- and network layer-level attention 
values using the end-to-end HAN architecture11 (see Supplementary Methods 1.1 for details). Alternatively, 
these attention values could be obtained through different approaches.

Attention-aware network fusion
Node pairs may have edges in multiple network layers. For each node pair, their attention (i.e., influence) to each 
other can vary from network layer to network layer. Furthermore, some network layers could be more influential 
than others. Therefore, when fusing multiple network layers, we ought to consider both node- and network 
layer-level attention weights.

Incorporating attention weights at both levels, we computed the edge weight from vi to vj  (denoted as 
score(vi,vj)) using a weighted sum of existing edges, defined as follows:

	
score(vi,vj) =

∑
ϕ∈{1,2...Φ}

(
βϕαϕ

ijIEϕ (vi, vj)
)

� (2)

Intuitively, edges with higher node- or network layer-level attention receive greater weight. Thus, we considered 
the importance of node neighbors and their respective network layers. This edge scoring approach ensures a 
proper prioritization of all edges. These scores were utilized to construct a weighted network for the prediction 
task.

The overall attention-aware network fusion strategy is shown in Algorithm 1. Bias vectors prior to non-linearity 
are omitted for simplicity.
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Algorithm 1.  Attention-aware network fusion.

Edge elimination
The fused network keeps all the edges from multiple network layers regardless of their weight. Depending on the 
input network layer quality, this may result in a densely connected network with many weak edges. To address 
this, we included an edge elimination step, where we eliminated some portion of the edges.

We used edge weights as probabilities to keep each edge in the network. We preserved a specified percentage, 
x%, of edges by randomly eliminating them based on a probability distribution that is proportional to their 
weights. Here, x is a hyperparameter. This approach intuitively removes edges with low attention or those from 
less important network layers from the fused network . Now, the fused network is ready to be utilized in GCN 
model for downstream tasks.

Node classification task
To train the fused network for downstream tasks utilizing node features and network topology, GRAF generates 
node embeddings using a 2-layer GCN6. This step can be optimized for various downstream tasks such as 
subgraph classification or link prediction.

For a GCN model operating on a single network with edge set E, the adjacency matrix A ∈ Rnxn is defined 
as:
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A[i, j] =

{
score(vi,vj) if (vi, vj) ∈ E
0 otherwise

� (3)

The iteration process of the model is: H(l+1) = σ
(
D− 1

2 AD− 1
2 H(l)W(l)

)
 with H(0) = X where

	
D[i, i] =

n∑
j=1

A[i, j],� (4)

X ∈ Rnxf  is the feature matrix, and H(l) and W(l) are activation matrix and trainable weight matrix of lth 
layer, respectively. Feature aggregation on the local neighborhood of each node is done by multiplying X by nxn-
sized scaled adjacency matrix A

′
 where A′ = D− 1

2 AD− 1
2 .

Using a 2-layer GCN model, we had the forward model giving the output Zfinal ∈ Rnxc where

	 Zfinal = softmax
(
A′ReLU

(
A′XW(1)) W(2))� (5)

with W(1) ∈ Rfxf ′
, W(2) ∈ Rf ′xc and c is the number of class labels. Cross-entropy was used as the loss 

function.

See Supplementary Methods 1.1, 1.2, and 1.3 for methodology details.

Experiments
We applied our tool to four prediction tasks: movie genre prediction using IMDB data (https://www.imdb.com), 
paper type prediction using ACM data (http://dl.acm.org), author research area prediction using DBLP data 
(https://dblp.uni-trier.de/), and adverse drug reaction (ADR) prediction using ADReCS24.

IMDB: For movie genre prediction task, we collected and processed IMDB data using PyTorch Geometric 
library25. The dataset is represented as a heterogeneous network with three node types: movie (M), actor (R), 
and director (D); and two edge types: movie-actor and movie-director. We converted the heterogeneous network 
into a multiplex network for the movie node type using two meta-paths: MRM and MDM. Movie node features, 
extracted as elements of a bag-of-words, are obtained from the library’s data processing. We predicted the genre 
of the movies in this multiplex network. Movie nodes had three class labels: action, comedy, and drama.

ACM: For paper type prediction task, we collected ACM data using Deep Graph Library26. The dataset is 
represented as a heterogeneous network with three node types: paper (P), author (A), and subject (S); and two 
edge types: paper-author and paper-subject. We converted the heterogeneous network into a multiplex network 
for the paper node type using two meta-paths: PAP and PSP. Paper node features are the elements of a bag-of-
words representation, obtained from the library. We predicted the area of the papers in this multiplex network. 
Paper nodes had three class labels: database, wireless communication, and data mining.

DBLP: For author research area prediction task, we collected DBLP data from27 and preprocessed data 
using28. The dataset is represented as a heterogeneous network with four node types: paper (P), author (A), 
conference (C), and term (T); and three edge types: paper-author, paper-conference, and paper-term. We 
converted the heterogeneous network into a multiplex network for the author node type using four meta-paths: 
APA, APAPA, APCPA, and APTPA. Author features are from the preprocessed data in11. We predicted the 
research area of the authors in this multiplex network. Author nodes had four class labels: database, data mining, 
artificial intelligence, and information retrieval.

DrugADR: For ADR prediction task, we collected drug-ADR pairs from ADReCS24. We obtained multiplex 
drug similarity network with four network layers from29. We generated SMILES fingerprints as drug node 
features (see Supplementary Methods 1.4 for details). We predicted the ADR of the drugs in this multiplex 
network. Drug nodes had five most frequent ADRs as class labels: dizziness, hypersensitivity, pyrexia, rash, and 
vomiting.

A detailed description of each dataset is shown in Table 1.

SOTA and baseline methods
Here, we list SOTA and baseline methods compared with GRAF. Here, all networks are converted to multiplex 
network using the same procedure (see “Multiplex network generation” section in “Materials and methods”):

GCN6: Since GCN cannot operate on multiplex networks, we ran GCN on each network layer and reported 
the best performance.

GAT7 and GATv218: GAT and GATv2 involve attention mechanism designed for homogeneous networks, 
precluding their direct application to multiplex networks. Therefore, we ran them individually on each network 
layer and reported the best performance.

Baseline methods: We evaluated Multi-layer Perceptron (MLP), Random Forest (RF), and Support Vector 
Machine (SVM), which use only node features, without utilizing graph-structured data.

Dir-GNN17: Dir-GNN extends GNN to preserve edge directionality. We ran it on each network layer and 
reported the best performance.

SuperGAT19: SuperGAT improves upon graph attention models to enhance attention robustness in noisy 
graphs by encoding edge presence and absence. We ran this method on each network layer and reported the 
best performance.

HGT20: HGT works on heterogeneous graphs using heterogeneous attention mechanisms.
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HAN11: HAN integrates multiplex networks utilizing attention mechanisms.
SUPREME10: SUPREME learns node embeddings from multiple networks using GCN and trains separate 

models for each network layer combination to find the best performance. To ensure a fair comparison, we 
reported the minimum (SUPREMEmin), median (SUPREMEmed), and maximum (SUPREMEmax) 
scores based on validation macro F1 across all combinations.

Results
We evaluated GRAF and the other tools, reporting their performance based on three metrics: macro F1 score, 
weighted F1 score, and accuracy (with median scores across 10 repeats).

Comparison with SOTA/baseline: According to our results, GRAF achieved the best performance or was 
on par with the other tools across all metrics and datasets (Tables 2 and S1). GRAF consistently outperformed 
GCN, GAT, GATv2, Dir-GNN, and SuperGAT in macro F1 score across all datasets, highlighting the efficacy 

Method IMDB ACM DBLP DrugADR

GCN 58.7 ± 0 91.5 ± 0 90.5 ± 0 32.9 ± 0

GAT 56.8 ± 0 91.0 ± 0 91.4 ± 1 31.6 ± 2

GATv2 56.8 ± 1 90.9 ± 1 90.0 ± 1 31.2 ± 2

MLP 55.0 ± 1 89.0 ± 1 78.4 ± 1 22.0 ± 4

RF 53.4 ± 0 88.9 ± 0 69.3 ± 0 28.8 ± 1

SVM 55.1 ± 0 88.5 ± 0 76.5 ± 0 24.8 ± 0

Dir-GNN 53.7 ± 1 84.1 ± 1 90.5 ± 1 25.8 ± 2

SuperGAT 55.8 ± 1 84.5 ± 0 90.2 ± 1 28.9 ± 4

HGT 56.5 ± 1 84.0 ± 2 86.4 ± 2 29.2 ± 2

HAN 60.9 ± 0 92.0 ± 1 91.5 ± 1 30.2 ± 0

SUPREMEmin 53.7 ± 2 90.7 ± 0 77.9 ± 2 31.3 ± 5

SUPREMEmed 57.0 ± 2 92.4 ± 1 90.8 ± 1 31.4 ± 4

SUPREMEmax 60.8 ± 3 93.4 ± 1 92.3 ± 2 32.1 ± 3

GRAF 62.1 ± 0 92.6 ± 0 91.7 ± 1 34.7 ± 2

Table 2.  Node classification performance evaluated through macro F1 scores (%) across four distinct tasks: 
movie genre prediction from IMDB data, paper type prediction task from ACM data, author research area 
prediction task from DBLP data, and ADR (adverse drug reaction) prediction task. Results highlight the best 
score in bold and the second-best in italic. SUPREMEmin, SUPREMEmed, and SUPREMEmax represents 
the models achieving the minimum, median, and best model based on validation macro F1 scores among 
all network combinations, respectively. GCN, GAT, GATv2, Dir-GNN, and SuperGAT were evaluated for 
every single network, and the best performance was reported. [GAT: Graph Attention Network, GCN: Graph 
Convolutional Network, MLP: Multi-layer Perceptron, RF: Random Forest, SVM: Support Vector Machine].

 

Dataset # Nodes # Features # Classes Network layer type* # Edges

IMDB 4278 3066 3
MRM 85,358

MDM 17,446

ACM 3025 1870 3
PAP 29,281

PSP 2,210,761

DBLP 4057 334 4

APA 11,113

APAPA 40,703

APCPA 5,000,495

APTPA 7,043,627

DrugADR 664 1024 5

G-G1 8158

G-G2 10,518

G-G3 7328

G-G4 3512

Table 1.  Datasets used in the study. [*A: Author, C: Conference, D: Director, M: Movie, P: Paper, R: Actor, 
S: Subject, T: Term. G-Gx denotes drug-drug similarity networks based on four similarities: drug ATC 
(Anatomical Therapeutic Chemical) code-based similarity, drug interactions-based similarity, chemical 
structures-based molecular fingerprints similarity, and drug side effects-based similarity. IMDB, ACM, and 
DBLP networks were converted from heterogeneous network to multiplex network using meta-paths. See text 
for details.].
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of utilizing multiple networks. While GRAF generally performed better than the median SUPREME results, 
SUPREMEmax (i.e., SUPREME model with the best performing network layer combination) showed slightly 
better performance than GRAF on ACM and DBLP data. However, as the number of network layers increases, 
SUPREME’s computational cost rises notably, making it impractical to evaluate all possible combinations. 
Consequently, selecting the optimal SUPREME model becomes challenging, and subsetting the network layer 
combinations may be necessary. Conversely, GRAF demonstrated substantial superiority over all SUPREME 
models in IMDB and DrugADR datasets. GRAF also outperformed both HGT and HAN in all prediction tasks 
related to handling graph heterogeneity. This improved performance over HAN indicates that our attention-
aware network fusion strategy enhances the utilization of multiple graph-structured data further.

We also observed that GRAF, HAN, HGT, GCN, GAT, GATv2, Dir-GNN, RF, and SVM exhibited more 
consistent performance with small standard deviations, while other tools had higher standard deviations, which 
was particularly notable in DrugADR dataset. MLP, RF, and SVM exhibited the lowest performance, showing 
the importance of graph-structured data utilization. Overall, integrative approaches (i.e., SUPREME, GRAF, and 
HAN) had better performance.

Ablation studies: To assess the importance of various components within the GRAF architecture, we 
generated three variants: GRAFnet_lay  considers only network layer-level attention in edge scoring (thus 
excluding node-level attention). Therefore the score function is replaced with:

	
score(vi,vj) =

∑
ϕ∈{1,2...Φ}

(
βϕIEϕ (vi, vj)

)
� (6)

Thus, the same importance is assigned to every edge within the same network layer. GRAFnode considers 
only node-level attention in edge scoring (excluding network layer-level attention). That is, it assigns equal 
importance to each network layer type by replacing the score function with:

	
score(vi,vj) =

∑
ϕ∈{1,2...Φ}

(
αϕ

ijIEϕ (vi, vj)
)

� (7)

GRAFedge includes both attentions without eliminating edges (i.e., keeps all fused edges).

We observed that both node- and network layer-level attentions are crucial for GRAF’s performance (see Table 
3). Using only network layer-level attention, GRAFnet_lay  exhibited lower performance across all datasets, 
which is not surprising as all edges within the same network layer were assigned equal importance. On the other 
hand, using only node-level attention, GRAFnode had lower performance than GRAF overall, yet outperformed 
GRAFnet_lay . GRAFnode assigned equal importance to each network layer, but the inclusion of node-level 
attention preserved substantial amount of knowledge. GRAFedge demonstrated comparable performance to 
GRAF.

To check GRAF’s performance across various data splits, we generated four additional split sets using IMDB 
data (Supplementary Methods 1.5). In all split sets, GRAF consistently achieved superior performance compared 
to other methods (Figs. 2, S1, and S2). We also observed that most methods showed a tendency to increase their 
performance with higher training sample size, which aligns with expectations.

To assess the impact of percentage of eliminated edges on the fused network, we compared performance 
across all datasets (Figs. S3, S4, and S5). In all cases, including relatively easier tasks such as those on ACM and 
DBLP data, as well as more complex tasks on IMDB and DrugADR data, we found no notable differences, even 
when comparing scenarios of keeping only 10% of edges versus no elimination. Specifically, in the IMDB dataset, 
hyperparameter tuning led to no edge elimination, yielding identical results for GRAF and GRAFedge. GRAF 
models trained on other datasets utilized edge elimination (specifically keeping 70%, 70%, and %30 of the edges 
for ACM, DBLP, and DrugADR data, respectively).

Interpretation of results: GRAF enables interpretation of prediction results using node-level attention, 
network layer-level attention, and also fused edges combining both attentions. We reported network layer-
level attention to determine the general usefulness of each network layer (see Supplementary Table S2). Our 
integrative analysis enhances understanding of drug characteristics across different similarity network layers. 
It emphasizes the drug side effects-based similarity network as particularly crucial, followed by the chemical 

Method IMDB ACM DBLP DrugADR

GRAFnet_lay 56.3 ± 0 84.6 ± 2 89.7 ± 0 28.8 ± 2

GRAFnode 61.3 ± 0 90.9 ± 2 90.3 ± 1 31.8 ± 2

GRAFedge 62.1 ± 0 92.3 ± 0 91.3 ± 1 33.9 ± 2

GRAF 62.1 ± 0 92.6 ± 0 91.7 ± 1 34.7 ± 2

Table 3.  Ablation studies evaluated through macro F1 scores (%) across four distinct tasks: movie genre 
prediction from IMDB data, paper type prediction task from ACM data, author research area prediction task 
from DBLP data, and ADR (adverse drug reaction) prediction task. Results highlight the best score in bold. 
Models include GRAFnet_lay  (with only network layer-level attention), GRAFnode (with only node-level 
attention), and GRAFedge (without edge elimination). .
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structures-based molecular fingerprints similarity network. For IMDB data, each network layer had similar 
attention, while ACM and DBLP data had one network layer with strong attention (> 0.6). Specifically, the 
network layer constructed using paper-author-paper meta-path had a higher attention value than the network 
layer constructed using paper-subject-paper meta-path in ACM dataset, while in DBLP dataset, the network 
layer constructed using author-paper-conference-paper-author meta-path was the best network layer. Across 
these datasets, GCN, GAT, and GATv2 achieved the highest performance using network layers with the highest 
attention values. This result was also consistent with HAN’s findings11.

We leveraged four distinct drug similarity network layers based on different criteria: ATC codes, drug 
interactions, chemical structures, and drug side effects. Our findings uncover notable patterns among highly 
active nodes within each network. Specifically, in the ATC code-based similarity network layer, the top five drugs, 
having the highest number of connections, predominantly belong to the vomiting class, with Cisplatin emerging 
as the most active drug. Cisplatin, a platinum-based chemotherapy agent, is widely used in the treatment of 
various cancers, including sarcomas, carcinomas, lymphomas, and germ cell tumors30–32, albeit with associated 
risks such as ototoxicity in individuals with specific genotypes33. In drug interactions-based similarity network 
layer, Bupivacaine stands out as the most active drug, utilized extensively as a local anesthetic across diverse 
medical procedures34. Furthermore, Clomipramine and Pantoprazole emerge as pivotal drugs in chemical 
structures-based molecular fingerprints and drug side effects-based similarity network layers, respectively. 
Clomipramine, a tricyclic antidepressant, is indicated for treating conditions like obsessive-compulsive disorder, 
while Pantoprazole, a proton pump inhibitor, is prescribed for managing gastric acid-related disorders35–37. 
Both drugs show extensive reported drug interactions and ADRs, highlighting their clinical significance and 
challenges in therapeutic management.

Prior to fusing multiple networks, GRAF requires attention values, which we obtained using HAN11. HAN 
supports parallelization by computing attention across all nodes and meta-paths separately. The time complexity 
for node-level attention is O(VϕF1F2K + EϕF1K) for a given meta-path ϕ, where K is the number of attention 
heads, Vϕ is the number of nodes, Eϕ is the number of meta-path-based edges, and F1, F2 are the dimensions 
(row and column) of the transformation matrix. HAN’s overall complexity is linear to the number of nodes and 
edges. However, without parallelization, HAN may become computationally expensive, particularly with large 
networks or numerous networks to integrate. To address this limitation, node-level attention could be computed 
more efficiently using approaches like GAT. Furthermore, for network layer-level attention, graph sampling can 
be utilized to reduce computing cost.

Conclusion
In this study, we developed a computational framework to convert multiplex heterogeneous networks to 
homogeneous networks based on node- and network layer-level attention. Our extensive experiments on four 
different datasets showed that GRAF outperformed most methods in all tasks and it is a generalizable tool. 
Attention values computed by GRAF also makes it an interpretable tool. The proposed GRAF showed improved 
performance or was on par with SOTA and baseline methods, as well as its variants.

Data availability
The details of dataset used are explained in the Experiments section and in the supplemental file.

Code availability
Source code is publicly available at https://github.com/bozdaglab/GRAF.

Received: 1 April 2024; Accepted: 31 October 2024

Fig. 2.  Performance with different training splits on IMDB data (macro F1).
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