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Hepatocellular carcinoma (HCC) is a highly aggressive malignancy with increasing global prevalence 
and is one of the leading causes of cancer-related mortality in the human population. Developing 
robust clinical prediction models and prognostic stratification strategies is crucial for developing 
individualized treatment plans. A range of novel forms of programmed cell death (PCD) plays a role 
in the pathological progression and advancement of HCC, and in-depth study of PCD is expected 
to further improve the prognosis of HCC patients. Sixteen patterns (apoptosis, autophagy, anoikis, 
lysosome-dependent cell death, immunogenic cell death, necroptosis, ferroptosis, netosis, pyroptosis, 
disulfidptosis, entotic cell death, cuproptosis, parthanatos, netotic cell death, alkaliptosis, and 
oxeiptosis) related to PCD were collected from the literatures and used for subsequent analysis. 
Supervised (Elastic net, Random Forest, XgBoost, and Boruta) and unsupervised (Nonnegative Matrix 
Factorization, NMF) clustering algorithms were applied to develop and validate a novel classifier for 
the individualized management of HCC patients at the transcriptomic, proteomic and single-cell levels. 
Multiple machine learning algorithms developed a programmed cell death index (PCDI) comprising 
five robust signatures (FTL, G6PD, SLC2A1, HTRA2, and DLAT) in four independent HCC cohorts, and a 
higher PCDI was predictive of higher pathological grades and worse prognoses. Furthermore, a higher 
PCDI was found to be correlated with the presence of a repressive tumor immune microenvironment 
(TME), as determined through an integrated examination of bulk and single-cell transcriptome data. 
In addition, patients with TP53 mutation had higher PCDI in comparison with TP53 WT patients. Three 
HCC subtypes were identified through unsupervised clustering (NMF), exhibiting distinct prognoses 
and significant biological processes, among the three subtypes, PCDcluster 3 was of particular interest 
as it contained a large proportion of patients with high risk and low metabolic activity. Construction 
and evaluation of the Nomogram model was drawn based on the multivariate logistic regression 
analysis, and highlighted the robustness of the Nomogram model in other independent HCC cohorts. 
Finally, to explore the prognostic value, we also validated the frequent upregulation of DLAT in 
a real-world cohort of human HCC specimens by qPCR, western blot, and immunohistochemical 
staining (IHC). Together, our work herein comprehensively emphasized PCD-related patterns and key 
regulators, such as DLAT, contributed to the evolution and prognosis of tumor foci in HCC patients, 
and strengthened our understanding of PCD characteristics and promoted more effective risk 
stratification strategies.
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HCC is a major health burden, and its incidence is increasing worldwide. With the advancement of medical 
technology in the fields of medical diagnosis, imaging, and nonsurgical therapies, the practice of early diagnosis 
and surgical resection of HCC has become increasingly prevalent. However, it is disconcerting to note that a 
significant proportion of patients, exceeding 70%, are already in the advanced stage at their initial diagnosis, 
rendering them ineligible for surgical resection1. Nevertheless, the 5-year survival rate is lower than 70% in 
patients with early HCC who have received surgical resection. Despite the constrained accessibility of diagnostic 
tools such as histology and imaging, there exists a substantial demand for expeditious, precise, and convenient 
diagnostic approaches for HCC2. Consequently, it is imperative to advance novel diagnostic methods for 
monitoring cancer progression. While clinically pertinent biomarkers such as alpha-Fetoprotein (AFP) are 
frequently employed in HCC diagnosis, their application is surrounded with numerous controversies and 
limitations3,4.

Programmed cell death (PCD) is a meticulously orchestrated and systematic mechanism of intracellular self-
degradation, which plays a vital role in preserving tissue integrity and governing the progression of pathological 
conditions. PCD assumes a significant role in a diverse range of diseases, encompassing tumors, neurodegenerative 
disorders, and cardiovascular ailments5. Dysregulation of PCD is associated with various diseases, including 
cancer. In the case of HCC, the most common type of liver cancer, dysregulation of PCD has been implicated 
in the initiation, progression, and treatment of the disease6,7. Extensive investigation has revealed that distinct 
characteristics exhibited by various PCD patterns hold significant implications for disease progression and 
therapeutic interventions. Apoptosis was once synonymous with PCD but now many other forms have been 
described, cell death subroutines can be categorized based on their discernible morphological and biochemical 
characteristics, encompassing apoptosis, autophagy, anoikis, lysosome-dependent cell death, immunogenic cell 
death, necroptosis, ferroptosis, NETosis, pyroptosis, disulfidptosis, entotic cell death, cuproptosis, parthanatos, 
netotic cell death, alkaliptosis, and oxeiptosis, each of which exhibits distinct molecular cascades and regulatory 
pathways8–10. Studies have shown that distinct PCD patterns are not mutually exclusive but share a coordinated 
system. The redundancy ensures that the process of cell death can be triggered before they cause unnecessary cell 
death even if one of the pathways is impaired or not functioning properly. The gradual emergence of supportive 
evidence has elucidated the principal molecular mechanisms underlying each subroutine, consequently 
presenting a range of potential targets for cancer therapy. However, the intricate interconnections among distinct 
cell death subroutines still require further clarification. The utilization of bioinformatics techniques, including 
transcriptomics, proteomics, and bio-network analysis, facilitates the elucidation of molecular mechanisms 
underlying PCD, identification of potential targets, and refinement of therapeutic approaches. In HCC, 
dysregulation of PCD pathways can occur through various genetic and epigenetic mechanisms, each involving 
different factors including alterations of gene expression involved in PCD, dysregulation of mitochondrial 
function, and changes in the tumor microenvironment (TME). For example, increased levels of anti-apoptotic 
proteins such as the BCL-2 family members (for example, Bcl-2, Bcl-XL, and Mcl-1) and decreased expression 
of pro-apoptotic proteins (BAX, BAK) have been described in HCC, leading to a reduction in PCD. Additionally, 
alterations in the expression of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been shown 
to modulate PCD biological process in HCC cells6,7,11. In this context, the discovery of comprehensive PCD 
patterns will promote the potential benefits for patients through the utilization of small-molecule compounds 
that target classical PCD modalities. Notable advances have been accomplished in targeted cancer therapy 
for the past several decades, several targeted small-molecule drugs have been approved for the treatment of 
various types of tumor. Emerging evidence has elucidated that local immune suppression of the TME exhibits 
a strong association with PCD patterns in cancer growth, metastasis and even tumor immune escape12,13. This 
correlation encompasses the stimulation of inflammatory reactions, facilitation of cell phagocytosis, mediation 
of inflammatory responses, recruitment and activation of immune cells such as natural killer (NK) cells, 
dendritic cells (DCs), and CD8 + T cells, as well as the proliferation of cytokines14. The dysregulation of PCD in 
HCC has important implications for the development of novel therapeutic strategies. Targeting PCD pathways, 
such as apoptosis, autophagy, and necroptosis, has been explored as a potential therapeutic strategy for HCC. For 
example, several agents that induce apoptosis, such as BH3 mimetics and Smac mimetics, have shown promise 
in preclinical studies15. Several studies have developed a variety of nanoparticle drugs, which can initiate PCD 
progress and reprogram the immunosuppressive TME. When combined with an immune checkpoint blockade 
(αPD-1, αPD-L1), they can reduce tumor growth and enhance gemcitabine chemotherapy efficacy for cancer 
treatment16,17. Although immune- and targeted therapeutics have been approved for HCC treatment, biomarker-
based stratification of patients for optimal response to therapy is an unmet need.

While increasing advances have been employed in understanding different PCD patterns in several cancer 
types, a comprehensive evaluation and integrated multi-omics analysis of different cell death subroutines are still 
essential. Insight into the molecular players and pathways involved in cell death are important for understanding 
the mechanisms of HCC. Moreover, the association between PCD patterns and HCC prognosis remains unclear, 
the dearth of research highlights the need for further investigation in this area. The integration of different 
modalities is necessary to elucidate potential underlying mechanisms, which were contingent upon coordinated 
changes occurring across different regulatory molecular layers. In our study, we defined a novel PCD index 
(PCDI) and developed a novel ML-based classifier for HCC patients. We then sought to validate the prognostic 
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value of this PCDI across three independent cohorts. In addition, we performed a scheme of integrative analyses 
of multi-omics data, including TME and gene mutation landscape, single-cell RNA-seq, and small targeted 
therapeutic molecules sensitivity analysis, to gain a greater in-depth cellular and molecular understanding of 
PCD, the heterogeneous nature of HCC will become more apparent. Finally, we validated the expression level of 
DLAT through human tissues including HCC tissue and adjacent hepatic tissues in a real-world cohort. These 
results provide new insights informing the patient stratification strategies for targeted therapeutic approaches 
for HCC. Overall, the dysregulation of PCD in HCC is a complex process that involves multiple mechanisms. 
Further exploration is still needed to better investigate the PCD process in the development and progression of 
HCC and to develop more effective targeted therapies for this devastating disease.

Materials and methods
Study subjects and biospecimens of HCC patients
A schematic illustration of our research design was displayed in Fig. 1. 983 individuals with HCC were enrolled 
from three public RNA-seq cohorts (TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; ICGC, 
International Cancer Genome Consortium) and a proteome cohort (PDC000198)18. The detailed demographic 
characteristics and clinical information of the study subjects were obtained from corresponding raw records. 
Samples without complete overall survival or recurrence-free survival data were removed. Single‑cell RNA‑seq 
data were downloaded from GSE14961419. Detailed demographic and clinical characteristics of participants at 
baseline were presented in Supplementary Table S1.

Data processing
For bulk RNA-seq data, the HTSeq generated read counts were transformed into TPM (per kilobase million) 
values by dividing raw counts by gene length, then scaling with a factor of 1e6and dividing by total read counts in 
the sample. For proteome analysis, data normalization median centering was performed across the total proteins 
for each sample to correct sample loading differences using the NormalyzerDE package20. In normalized samples, 
these reporter intensities should have a log TMT ratio centered at zero. For single-cell RNA-seq analysis, the UMI 
counts of each cell were normalized using the NormalizeData () function and identified highly variable features 
for each sample using the FindVariableFeatures function with 10,000 scale factors in R package Seurat21. We 
applied dimensionality reduction and unsupervised cell clustering to identify each cell subpopulation, including 
principal component analysis (PCA) and t-stochastic neighbor embedding (t-SNE), after batch effect correction 
in R package Harmony22.

Construction and validation of a prognostic PCD index
Several machine learning algorithms, including random forest (RF), XGBoost, Boruta, and Elastic net 
proportional hazards models, were employed to identify and integrate gene signatures linked to the overall 
survival (OS) of HCC patients23,24. The model efficacy was evaluated through cross-validation and compared 
against other clinical and genomic predictors. We used a ten-fold nested cross-validation strategy to assess the 
robustness and generalizability of the PCD index (PCDI) in three independent HCC cohorts. The performance 
of the model was assessed using various metrics such as receiver operating characteristic (ROC) curves, area 
under the curve (AUC) scores, and Kaplan–Meier survival curves.

Estimation of immune infiltration and matrix composition
In order to estimate the profiling of immune cells in the TME and abundances of immune cells from the bulk 
RNA-seq, we employed CIBERSORT to calculate the proportions of 22 human leukocyte cell subsets defined in 
the CIBERSORT package for each bulk RNA-seq sample25.

Chemotherapy sensitivity prediction
Drug responses of cancer cell lines were represented by the half-maximal inhibitory concentration (IC50), the 
slope of the dose response curve, and area under the dose response curve (AUC), and all screened cell line/ drug 
combinations were downloaded from the Genomics of Drug Sensitivity in Cancer (GDSC)26. We employed a 
ML model to predict the clinical response to drug response in TCGA patients by training a multinomial logistic 
regression classifier on IC50 values on 982 cell lines from the GDSC, in the R package pRRophetic27.

Molecular subtyping of PCD signatures by NMF
The candidate signatures with high median absolute deviation (MAD) value (MAD ≥ 0.5) across all samples were 
adopted for unsupervised decomposition and clustering analysis. Based on the maximum cophenetic correlation 
score and the average silhouette width of the consensus membership matrix (non-negative matrix factorization 
(NMF) method), the optimal number of clusters (optimal factorization rank k, 2 to 10) was determined. The 
NMF clustering was performed on 100 runs based on the 2000 most variable genes by the R package NMF, 
as determined in the RNA-seq analysis. To conduct a comprehensive prognostic assessment of three NMF 
clusters, KM survival curves were generated, with estimated survival probabilities computed using a product 
limit formula and log-rank tests.

Bioinformatic analysis
Unless otherwise noted, most of the data processing pipelines described in our study (data cleaning, feature 
selection, significance testing, correlation evaluation, supervised or unsupervised clustering, and plots 
producting) were performed as previously described in R (https://www.r-project.org/). Differentially expressed 
genes (DEGs) were identified using the moderated (empirical Bayesian) t-test implemented in the R package 
limma. The genes with an absolute log2 fold change > 1 and adjusted P value ≤ 0.05 were identified as DEGs. 
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Gene set variation analysis (GSVA) or gene set enrichment analysis (GSEA) was used to identify the most 
significant pathways using the Molecular Signatures Database (MSigDB) including Kyoto encyclopedia of 
genes and genomes (KEGG), Reactome, WikiPathways and other customized gene sets that have been reported 
between different subgroups18,28,29. The maftools package in R was used to summarize, analyze, annotate, and 
visualize the variants studied. Significant differences in independent samples were assessed using Fisher exact 
test for categorical variables, and t-test or Mann–Whitney test for continuous variables as appropriate. All P 
values were two-sided and P-value < 0.05 was considered statistically significant.

Fig. 1.  The flowchart for comprehensive analysis of 16 PCD patterns in HCC.
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Sample collection and quantitative PCR
A total of five fresh HCC tissue samples and matched normal para-cancerous tissues were obtained from HCC 
patients who have undergone surgical resection at the First Affiliated of Bengbu Medical University (Bengbu, 
China). Participants or their legal guardians signed a written informed consent agreeing on the use of tumor 
tissues for research, approved by the Bengbu Medical University Ethics Committee, including any relevant details. 
RNA extraction, cDNA synthesis and real-time quantitative PCR were performed as previously described18. All 
PCR amplification procedures were performed in triplicates using quantitative PCR kit (Takara) and ABI7500 
Real-Time PCR System (Applied Biosystem Company). Sequence-specific primers for DLAT and GAPDH were 
as follows: DLAT forward primer (5′-​A​G​G​A​A​C​T​T​C​G​G​C​A​T​T​T​C​A​T​C​G-3′) and DLAT reverse primer (5′-​T​G​
T​C​C​C​G​G​T​A​T​T​G​T​A​G​T​C​C​C​A-3′); GAPDH forward primer (5′-​A​C​A​A​C​T​T​T​G​G​T​A​T​C​G​T​G​G​A​A​G​G-3′), and 
GAPDH reverse primer (5′-​G​C​C​A​T​C​A​C​G​C​C​A​C​A​G​T​T​T​C-3′).

Western blotting and immunohistochemical staining (IHC)
In clinically matched HCC tissues, DLAT protein levels were measured by Western blot and immunohistochemical 
(IHC) staining. Proteins were extracted in RIPA buffer supplemented with complete, EDTA-free protease 
inhibitor cocktail (Beyotime Biotechnology, China) and phosphatase inhibitor cocktail 3 (Sigma). Protein 
extracts were separated on sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE, 8–12% gels) 
and transferred onto 0.22 μm PVDF membranes (Merck Millipore Ltd., Massachusetts, USA). Membranes were 
blocked with 5% milk in TBST (tris-buffered saline with 1% Triton X-100, 10 mM Tris–HCl pH 8.0, 150 mM 
NaCl, and 0.1% Tween-20), or 5% bovine serum albumin (BSA) in TBST, for 30  min at room temperature. 
Then the membranes were washed with TBST, and incubated with primary antibodies (anti-DLAT, 68,303–1-
Ig, Proteintech; anti-GAPDH, AP0066, Bioworld) in 5% BSA in TBST overnight at 4°℃, then probed with 
HRP-conjugated secondary antibodies (goat anti-mouse IgG-HRP, sc-2005; goat anti-rabbit IgG-HRP, sc-2004, 
Santa Cruz Biotechnology). For IHC analysis, slides were incubated with primary antibodies for 1 h at room 
temperature and washed with TRIS–HCL buffer after antigen retrieval, then sections were incubated with HRP-
conjugated secondary antibodies for 15 min followed by visualizing with a detection kit (DAB). Detailed methods 
for WB and IHC also refer to the reported work. Unprocessed images of gels and membranes are presented in 
our Supplementary Materials. All methods in our study were carried out in accordance with relevant guidelines 
and regulations.

Results
Identification of PCD-associated DEGs between HCC and non‑malignant liver samples
The overarching purpose of the literature survey was to integrate previously reported signatures that have been 
implicated in PCD-associated biological processes. A total of 16 PCD patterns yielded 1599 nonredundant 
gene signatures were identified. Specifically, 580 apoptosis genes, 367 autophagy genes, 338 anoikis genes, 220 
lysosome-dependent cell death genes, 117 immunogenic cell death genes, 101 necroptosis genes, 88 ferroptosis 
genes, 69 NETosis genes, 52 pyroptosis genes, 16 disulfidptosis genes, 15 entotic cell death genes, 14 cuproptosis 
genes, 9 parthanatos genes, 8 netotic cell death genes, 7 alkaliptosis genes, and 5 oxeiptosis genes (Supplementary 
Table S2). We next checked the expression patterns of PCD-associated genes between HCC tumor tissues and 
adjacent normal liver tissues. This analysis identified 950 and 69 genes that were significantly up- or down-
regulated, respectively (log2FC > 0.5, false discovery rate (FDR) < 0.05). RNA-seq data in TCGA was analyzed 
and represented as heatmap (Fig.  2A) and volcano plot (Fig.  2B). Furthermore, three independent cohorts 
also demonstrated that PCD-related signatures were dysregulated in HCC (Supplementary Fig.  S1). T-SNE 
analysis for the expression of 1109 DEGs showed that two groups were separated, indicating that they were well 
distinguished based on the expression of 1109 DEGs (Fig. 2C). Enrichment analysis revealed several significantly 
enriched GO terms were also related to programmed cell death, including regulation of autophagy, intrinsic 
or extrinsic apoptotic signaling pathways (Fig. 2D). KEGG pathway enrichment analysis shows the PCD gene 
signatures to be significantly enriched in necroptosis, ferroptosis, autophagy, apoptosis, mTOR/ P53/ NF-κB 
and metabolic-associated pathways (Fig. 2E). Boxplot revealed that 16 PCD patterns differed between HCC and 
normal liver tissues (Fig. 2F). Furthermore, Pearson correlation analysis revealed a tightly correlation between 
several different PCD patterns and celluar metabolism. Moreover, the PCD patterns including ferroptosis and 
autophagy were associated with glycolysis and lipid metabolism (Fig. 2G). UpSet plot showed the intersection 
analysis among different PCD patterns, which suggested that they also share some target signatures that were 
involved in the PCD-associated biological process (Fig. 2H).

Independent prognostic value of PCD-associated signatures
For each cohort, to evaluate associations of signature expression with overall survival, Cox proportional hazard 
regression models were fit upon the DEGs, using OS status as response, comparing high- to low-signature 
expression. 64 signatures were then combined with the intersection of 3 HCC cohorts through machine learning 
analysis to identify a series of gene signatures that can predict a patient to experience mortality. Using four feature 
selection algorithms (Elastic Net, RF, XGBoost, and Boruta) (Supplementary Fig. S2A–E), and a representative 
intersection (Supplementary Fig. S2F), we further reduce the number of signatures based on univariate Cox 
regression. Based on the signatures determined by each feature selection algorithm, we built multivariate Cox 
models. An intersection of 7 signatures remained with individual coefficients, HTRA2, SLC2A1, FTL, G6PD, 
and DLAT were identified as independent risk factors and integrated to build a PCD-related prognostic model 
based on step-wise multivariate Cox regression analysis. Forest plots showed the OS hazard ratios of cases in 
the TCGA cohort using a univariate Cox model (Supplementary Fig.  S2G). Time-dependent ROC analysis 
confirmed that Elastic Net models outperformed the prediction of OS compared with other models at various 
time points (Fig. 3A,B) (P < 0.05). The intersection model achieved considerable performance with significantly 
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Fig. 2.  Distribution characteristics of different PCD patterns in HCC. (A,B) Heatmap and volcano plot of the 
PCD-related DEGs between HCC and normal liver tissues. (C) The t-SNE analysis of two sample groups using 
1109 DEGs. Such normal and HCC tissues formed their own clusters, and appeared distant from each other 
on t-SNE. (D,E) GO enrichment analysis of molecular functions (MF), biological processes (BP), and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) terms. (F) Comparison of the relative levels of PCD patterns 
between two sample groups based on GSVA analysis. (G) Heatmap for the correlations between 16 PCD 
patterns and the 20 metabolism-related pathways by pearson’s analysis.
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Fig. 3.  Construction of 5-gene signature prognosis model (PCDI) for HCC risk stratification. (A,B) 
Performance of five feature selection strategies in prognostic models at different time points. An area greater 
than 0.75 under the ROC curve was considered good performance (C) Restricted cubic splines (RCS) 
determined the best fitting relationship and cutoff value between the risk score and hazard ratio of patient 
mortality. (D) Kaplan–Meier analysis demonstrated that patients with higher PCDI exhibited worse overall 
survival in the TCGA cohort. (E) Distribution of patients in different risk groups. (F,G) The two risk groups 
exhibited absolute dissimilarity in the PCA and t-SNE analysis (H,I) GO and KEGG enrichment analysis 
between high- and low-risk groups.
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fewer signatures, demonstrating the importance of the robustness of signatures confirmed by multiple ML 
algorithms.

Risk score (programmed cell death index, PCDI) was defined as the following formula: 
0.021*SLC2A1 + 0.217*DLAT + 0.032*G6PD + 0.041*HTRA2 + 0.016*FTL. We further investigated the 
linearity assumption of the association between risk score and OS using restricted cubic splines with three knots 
and determined an optimal cutoff value (risk score = 0.84, P < 0.001) with a hazard ratio (HR) of 1 (Fig. 3C). 
Patients in each cohort were divided into a high- and low-risk group according to the redefined cutoff value. 
Kaplan–Meier (KM) survival curves showed that higher is associated with worse survival (HR = 2.42, P < 0.001) 
(Fig. 3D,E). PCA and t-SNE analyses identified two well-defined subgroups based on the risk model (Fig. 3F,G). 
For a more comprehensive assessment of the two risk groups, we performed GO and KEGG analyses where a 
series of pathways associated with cell proliferation were activated in the high-risk group, including chromosome 
segregation, mitotic nuclear division, cell cycle, ECM-receptor interaction, and hippo signaling pathway, etc. 
(Fig. 3H,I).

Validation of the PCDI in independent HCC cohorts
In three independent cohorts, patients were divided into two risk groups based on cutoff values in the TCGA 
cohort (Fig. 4A). Consistently, the groups with higher scores had worse outcomes compared to the group with 
lower risk scores (Fig.  4B, GEO cohort, HR = 1.80, P = 0.013; ICGC cohort, HR = 4.05, P < 0.001; Proteome 
cohort, HR = 3.81, P < 0.01, respectively). Figure  4C,D indicated the PCDI model had better discriminatory 
ability among high- and low-risk groups, based on dimensionality reduction analysis with both PCA and t-SNE. 
Importantly, the time-dependent AUC values demonstrated the robustness of the PCDI in three independent 
cohorts (Fig. 4E).

Inter-tumor TME heterogeneity in two risk groups
Next, we analyzed the heterogeneity of immune infiltration in the two subtypes. Inthe TCGA cohort, the low-
risk group had more infiltrating CD8 + T cells (P < 0.05), while the high-risk group had more infiltrating M2 
macrophages and Tregs (P < 0.05) (Fig. 5A). This finding remained significant within the ICGC cohort while 
diverging from the results observed in the GEO cohort. CD8 + T cells and Tregs were not significant in the GEO 
cohort (P > 0.05). Immune cell deconvolution analyses revealed that the risk score was positively correlated with 
M2 macrophages and Tregs infiltration in three HCC cohorts (Fig. 5B). Furthermore, the patients with higher 
M2 macrophage infiltration had shorter OS and RFS than those with lower infiltration (Fig. 5C). The findings 
strongly endorse the potential significance of M2 macrophages in HCC. In addition, our further analysis showed 
that higher CD8 + T levels predicted a more optimistic prognosis (TCGA, OS: P < 0.001, RFS: P = 0.022; ICGC, 
OS: P = 0.224, RFS: P = 0.359; ICGC, OS: P = 0.154) (Supplementary Fig.  S3A). However, high Tregs often 
indicated a shorter OS or RFS (Supplementary Fig. S3B), but statistical differences were found only in the ICGC 
cohort.

Unsupervised clustering redefines the three molecular subtypes associated with PCD
Unsupervised NMF consensus clustering was used to reveal a novel molecular classification of HCC patients 
based on the PCD-associated genes with median absolute deviation (MAD) value > 1. Next, k = 3 was regarded 
as the optimal number of clusters according to the consensus maps and silhouette width value (Fig. 6A,B). The 
t-SNE plot and transcriptome heatmap reveal three distinct blocks of genes whose expression patterns vary as a 
group across genotypes (Fig. 6C,D).The KM analysis showed a significant prognostic difference between three 
subgroups, with longer OS (P < 0.001) and RFS (P = 0.013) in PCDcluster 1 than another two subgroups (Fig. 6E). 
To determine the robustness of the molecular subtype, we performed NMF in three additional independent 
cohorts. The robustness of clustering assignment was further confirmed by consensus matrix heatmap, rank 
survey, and silhouette width analysis that in three independent cohorts (Supplementary Fig. S4, Supplementary 
Fig. S5A). The t-SNE plot generated by PCD-associated genes demonstrated the three HCC subtypes clearly 
separated from each other (Supplementary Fig. S5B). Further analysis revealed the consistent presence of a HCC 
subtype exhibiting shorter OS and RFS across four distinct cohorts (Supplementary Fig. S5C), irrespective of 
statistical significance.

PCD clusters-specific clinicopathological characteristics of HCC
To reveal relevant clinical characteristics, we analyzed the distribution of clinical characteristics between the 
PCD clusters in the four HCC cohorts due to their clinical data integrity (Fig. 7). The results of the chi-square 
test revealed several noteworthy associations between clinicopathological characteristics and HCC subgroups. 
Specifically, PCD cluster 3 has a higher risk score and proportion of high-risk patients, in four HCC cohorts 
(P < 0.001). There was a significant correlation observed between PCD cluster 1 and lower pathological tumor 
grade (TCGA, P = 0.002; GEO, P = 0.022; ICGC, P = 0.002), TNM stage (TCGA, P = 0.027; GEO, P = 0.022; 
ICGC, P = 0.022), and AFP level (TCGA, P < 0.001; GEO, P < 0.001; Proteome, P < 0.001). Additionally, 
we identified the risk score was gradually increased corresponding to the tumor stage or pathological grade 
(Fig. 8A,B). Metabolic pathways play a crucial role in the regulation of PCD. Various metabolic pathways, such 
as glucose metabolism, lipid metabolism, and iron metabolism, can influence different types of PCD processes, 
including apoptosis, autophagy, ferroptosis, and necrosis. GSVA revealed elevated metabolic activity in pathways 
related to glucose, lipids, amino acids, and other metabolism-related processes in PCDcluster 1, as opposed to 
nucleotide metabolism. Additionally, PCDcluster 1 demonstrated an association with several HCC-associated 
subtypes that are correlated with a more favorable prognosis.. The oncogenic pathways associated with HCC 
progression, including hypoxia, TGF-β, Wnt and ferroptosis, were enriched in PCD cluster 2 and cluster 3 
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Fig. 4.  External validation for PCDI model in three independent HCC cohorts. Risk distribution, and survival 
scatter plot (A), Kaplan–Meier curve (B), PCA (C) and t-SNE (D) analysis, Time-dependent ROC curve 
analysis (E) in three validation cohorts.
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Fig. 5.  Heterogeneity of immune infiltration between two risk groups. (A) Violin plot visualizing the 
abundance of 22 immune cells between high and low-risk groups in 3 HCC cohorts. (B) Analysis of the 
correlation between PCDI and infiltration levels of M2 macrophages, Tregs and CD8 + T cells (C) Higher M2 
macrophages infiltration weas associated to worse prognosis in HCC.
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Fig. 6.  Unsupervised hierarchical clustering based on genes related to PCD. (A-B) HCC samples were 
clustered in three robust subtypes by NMF algorithm in the TCGA cohort using1000 iterations when the 
optimal cluster number k = 3. The homogeneity of red-coloring and average silhouette seen in the graphs 
indicate the presence of 3 clusters of HCC patients. (C) Visualization of cluster results using t-SNE analysis. 
The three clusters were separated from each other (D) Heatmaps of differential DEGs amomg three subtypes. 
(E) Survival analysis revealed prognostic differences (right, OS; left, RFS) between three HCC subtypes.
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Fig. 7.  Heatmap of differences in clinical and histological characteristics among subtypes and risk groups in 
four HCC cohorts. We compared categorical variables using the Chi-square (χ2) test for dichotomous variables 
and continuous variables using the t test.
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Fig. 8.  (A) Relative abundance of risk score between different histological grade and pathological stage 
(ANOVA test). The line and box represent median and upper and lower quartiles, respectively. (B) The levels 
of risk score were compared across different pathological stages in GEO (left), ICGC (middle), and Proteome 
cohort (right). (C) Heatmap of enriched pathways in each subtype using GSVA based on metabolism- and 
HCC-associated gene sets.
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(Fig. 8C). Notably, the same conclusion applied to another three independent HCC cohorts (Supplementary 
Figs. S6, S7). In summary, metabolic pathways were important factors in regulating PCD.

Mutant landscape between two risk group
Previous studies have correlated intrinsic genomic and epigenomic alterations with regulating PCD biological 
process and metabolic features of tumor cells. As shown in Supplementary Fig. S8A, among the TCGA and 
Proteome cohorts, the top four significantly mutated genes were identified, including TP53 (28–59%), TTN 
(25–37%), CTNNB1 (19–24%), and MUC16 (16–23%). Consistently, TP53 mutation frequencies were relatively 
higher in the high-risk group than the low-risk. The KM analysis showed a significantly favorable long-term 
prognosis in TP53 wild-type group rather than in TP53-mutant group, in two HCC cohorts (TCGA, OS: 
P = 0.012, RFS: P = 0.011; Proteome, OS: P = 0.014), which was consistent with the conclusion of previous study 
(Supplementary Fig. S8B). We performed GSEA (Supplementary Fig. S8C) and GSVA (Supplementary Fig. S8D) 
analyses between subgroups, and the mutant group contained higher glycolytic activity while the wild-type 
group having higher lipid metabolic activity. Previous studies have shown that loss of p53 transcriptional activity 
by mutation (missense mutations) or decreased expression accelerates glycolysis and leads to glutamine and lipid 
accumulation in tumor cells, which is metabolized through TCA cycle to provide fuel for cancer progression. 
Taken together, these results strongly support a functional role for TP53 mutations in PCD.

Novel targeted therapies for HCC subclasses
The sensitivity prediction score using the PCDI model significantly correlated with several small molecule drug 
response in GDSC project. To evaluate the prediction performances depending on the characteristics of the cell 
lines and drugs, the drug IC50 values were used for drug sensitivity measurements between high-risk and low-
risk groups in TCGA cohort. Supplementary Fig. S9 showed that the high-risk group was more sensitive and 
significantly correlated to commonly used kinase inhibitors such as Alisertib (R =  − 0.361, P < 0.05), AZD7762 
(R =  − 0.32, P < 0.05), PD173074 (R =  − 0.363, P < 0.05) and Wee1 inhibitor (R =  − 0.489, P < 0.05), and 
molecular targeting agents such as Axitinib (R =  − 0.460, P < 0.05) and Nilotinib (R =  − 0.469, P < 0.05), rather 
than Doramapimod (R = 0.389, P < 0.05). In addition, the high-risk group was more sensitive to Docetaxel, a 
microtubule degregization inhibitor (R = -0.311, P < 0.05).

Comprehensive characteristics of programmed cell death at the single-cell level
After the implementation of stringent quality control and batch correction, 71,566 single cells were retained for 
the following analyses (Fig. 9A,B). Our scRNA-seq analysis identified 37 cell clusters using t-SNE visualization 
(Fig. 9C). Based on the expression of cell type-specific marker signatures, these 37 clusters were then classified 
into 8 distinct cell populations and these cell populations were present in each patient (Fig. 9D,E). The total 
counts of CD8 + T cells were decreased in the primary tumor (PT), portal vein tumor thrombus (PVTT), and 
metastatic lymph node (MLN) tissues compared with the non-tumor liver (NTL) tissues, while NTL tissues 
had lower infiltration of CD4 + T cells. Besides, NTL tissues showed significant enrichment of CD8 + T cells 
as compared to MLN and PVTT tissues (Fig. 9F,G). The functions and pathways of various major cell types 
were meticulously characterized using scGSVA, while the activity of pathways was evaluated through AUCell 
scoring. The assessment of PCD pathway activity across all cell populations was conducted by scoring all cell 
types within the comprehensive model. Given the interspersed presence of distinct PCD patterns throughout 
multiple different cell types, there was a high degree of cell-type-specific difference despite the latitudinal 
gradient (Fig.  10A). The results showed that cuproptosis, parthanatos, ferroptosis, oxeiptosis had higher 
distribution in malignant hepatocyte cells. Anoikis, and disulfidptosis had higher pathway activity in specific 
cell types, especially in endothelial, and fibroblast. Myeloid showed high pathway activity in pyroptosis, NETosis, 
Lysosome-dependent cell death, and immunogenic cell death (Fig. 10B,C).

Construction and validation of integrated Nomogram model for optimal risk stratification 
and survival prediction in HCC
To further translate PCDI in the clinic, a clinical prediction score was created to achieve further performance 
boost based on a nomogram model. Supplementary Fig.  S10 listed the clinical and pathologic factors that 
were significant on univariate and multivariate stepwise Cox proportional hazards regression analysis. Higher 
PCDI, therefore, should be regarded as an independent risk factor for mortality that should be integrated into 
comprehensive clinical decision making in four HCC cohorts (TCGA cohort: HR: 1.270, 95%CI: 1.138–1.418, 
P < 0.001; GEO cohort: HR: 1.586, 95%CI: 1.171–2.148, P = 0.003; ICGC cohort: HR: 1.477, 95%CI: 1.135–1.921, 
P = 0.004; Proteome cohort: HR: 1.543, 95%CI: 1.301–1.830, P < 0.001). According to the results, we developed 
a nomogram based on PCDI (risk score), stage, and virus infection status in the TCGA cohort, corrected by age 
and gender (Fig. 11A). Subsequently, we performed a comparative analysis of the AUC values for the nomogram, 
PCDI, integrated clinical model, clinical and pathological characteristics at various time intervals to assess the 
predictive accuracy of different models. The nomogram achieved desirable predictive accuracies than other 
models (Fig. 11B). Additionally, a comparison was made between the overall survival probabilities of individuals 
with high and low nomogram scores. As depicted in Fig. 11C, it was observed that patients with high score 
experienced a significantly shorter OS compared to their counterparts in the TCGA cohort. The calibration 
curve demonstrated good agreement between the predictions made by the nomogram and the actual outcomes 
in the TCGA cohort (Fig. 11D). The graphical representation provided by DCA effectively demonstrated that 
Nomogram yielded greater net benefits in terms of overall survival compared to other parameters at four specific 
time intervals (Fig.  11E). The Nomogram performed well on internal and independent external validation 
cohorts further highlighted its potential usefulness (Fig. 11F).
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Fig. 9.  scRNA-seq transcriptomic landscape of multicellular ecosystem in primary HCC and normal liver 
tissues. (A) Single cell transcriptome batch correction for different patient using the Harmony algorithm. (B) 
The distribution of specific cell populations across patients, samples, tissues, sites, viral infection status, and 
tumor stage. (C) The t-SNE plot of 37 cell clusters from the multicellular ecosystem of HCC patients. (D) Dot 
plot showing the canonical marker signatures of 8 major cell types in 37 cell clusters. (E) t-SNE plot of all cells 
with cell-type annotations. (F,G) t-SNE plot and stacked barplots showing the percentages of major cell types 
in each tumor site.
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Verification of expression levels of key gene signatures related to PCDI
Among the five PCDI signatures incorporated in the risk model, HTRA2, SLC2A1, FTL, G6PD, and DLAT 
presented a continuous elevation in the high-risk group, compared to the low-risk group and normal liver 
tissue, which were consistent in three RNA-seq cohorts (Supplementary Fig. S11A). KM analysis also showed a 
significantly shorter OS (Supplementary Fig. S11B) and RFS (Supplementary Fig. S11C) of HCC patients with 

Fig. 10.  Heterogeneity of PCD patterns at the single-cell level. (A) Heatmap of the average score of 16 PCD 
patterns in different cell subtypes based on scGSVA analysis. (B,C) T-SNE and violin plot of the relative PCD 
score between different cell types.
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high expression of these four signatures (HTRA2, SLC2A1, G6PD, and DLAT) compared to the low expression 
level. It is well recognized that DNA methylation is one of the important epigenetic regulation mechanisms for 
controlling gene expression. We future analyzed the methylation status of a series of promoters corresponding to 
five signatures in different HCC and paracancer tissues. Our analysis revealed distinct differences in the levelof 

Fig. 11.  Evaluation and validation of nomogram prediction model. (A) A hierarchical nomogram was 
developed to predict the prognosis of HCC patients. (B) The time-dependent AUC curves revealed that the 
Nomogram performed better than the other models. The level of the dotted line is 0.70 (C) KM analysis 
revealed prognostic differences in different subgroups based on nomogram score. (D) The calibration curve 
indicated the predictive probability of the nomogram at each time node. The calibration of the Nomogram 
predicted probabilities (solid line) were in close proximity compared to a perfectly calibrated model along the 
diagonal of the plot (dashed line). (E) Decision curve analysis (DCA) of the Nomogram predicts the net benefit 
in the mortality risk of HCC at 1, 2, 3, and 5 years. (F) The time-dependent AUC confirmed the robustness of 
the Nomogram in three externally independent validation cohorts.
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differential methylation observed for HCC and normal liver tissues (Supplementary Fig. S12A-B). Regression 
analysis was performed to test the association of gene expression with methylation levels in HTRA2, SLC2A1, 
FTL, G6PD, and DLAT genes (Supplementary Fig.  S12C). These findings underscore the critical roles that 
specific methylation states play in oncogenesis. Further, we analyzed RNA expression of five gene signatures 
in 81 HCC cell lines including 22 in the CCLE dataset30. The heatmap illustrated the expression patterns in 81 
HCC cell lines for five gene signatures (Supplementary Fig. S12D). Gene expression patterns that are specific 
to certain cell lines can help us to better understand multiple biological contexts in future studies. DLAT, 
also known as dihydrolipoamide s-acetyltransferase, played a crucial role in encoding component E2 of the 
pyruvate dehydrogenase complex (PDC), a multi-enzyme system involved in the metabolic pathway responsible 
for converting pyruvate to acetyl-CoA. Extensive research has demonstrated its oncogenic properties and 
association with copper metabolism disorders and cuproptosis, thus establishing DLAT as a novel gene signature 
in these contexts. Indeed, qRT-PCR and western blot showed consistent results that DLAT mRNA (Fig. 12A) 
and protein (Fig. 12B) levels were significantly increased in a panel of paired HCC tissues compared to those 
in normal liver tissues. An additional analysis was performed to verify the protein expression levels of DLAT 
available from the HPA (Human Protein Atlas) database. The findings of this study validated the cumulative 
expression of DLAT at the genetic levee within HCC tissues, in comparison to normal tissues (Fig. 12C). We 
next performed IHC analysis on DLAT protein levels and observed strong immunostaining intensity located 
in cytoplasmic and membranous in HCC tissues (Fig. 12D). These observations highlighted a potential role 
for DLAT in HCC pathogenesis. Furthermore, subcellular localization analysis indicated that the DLAT 
protein predominantly localizes to mitochondria, as evidenced by green immunofluorescence from the HPA 
database, indicating an important role in celluar metabolism (Supplementary Fig. S13A). Specifically, we have 
demonstrated an association between metabolism and PCD in previous studies, and further single-gene GSEA 
analysis revealed that high levels of DLAT, a key regulator in cuproptosis, are also associated with activation 
of other PCD patterns, including autophagy, ferroptosis, and lysosome-dependent cell death (LDCD). This 
further reveals that the crosstalk between different programmed cell death is a complex and dynamic process 
(Supplementary Fig.  S13B). GSEA analysis showed that the high expression of DLAT was closely related to 
TCA cycle, glucose metabolism, lipid metabolism and pentose phosphate pathway (Supplementary Fig. 13C). 
Additionally, DLAT may be involved in the proliferation and metastasis of HCC (Supplementary Fig. S13C).

PCDI-associated signatures in Pan-cancer
Based on the expression data in 33 cancer types presented in the TCGA database, our analysis revealed a 
prevailing elevation in the expression levels of these five gene signatures across the majority of cancers, surpassing 
their corresponding normal tissue counterparts (Supplementary Fig.  S14). Forest plots based on univariate 
Cox regression showed that, the dysregulation of DLAT exhibited a significant correlation with the prognostic 
outcomes of four distinct tumor types, including adrenocortical carcinoma (ACC, HR = 2.266, P = 0.039), breast 
invasive carcinoma (BRCA, HR = 1.457, P = 0.023), colon adenocarcinoma (COAD, HR = 0.622, P = 0.019), 
kidney renal clear cell carcinoma (KIRC, HR = 0.519, P < 0.001), brain lower grade glioma (LGG, HR = 1.696, 
P = 0.005), liver hepatocellular carcinoma (LIHC, HR = 1.721, P = 0.002), pancreatic adenocarcinoma(PAAD, 
HR = 1.760, P = 0.008), and rectum adenocarcinoma (READ, HR = 0.326, P = 0.012). In addition, other 
signatures have also shown prognostic value in a variety of tumors (Supplementary Fig.  S15). These results 
indicated that these PCDI signatures might be involved in tumorigenesis and tumor development.

Discussion
The limitations of the current tumor-node-metastasis (TNM) classification and Barcelona Clinic Liver Cancer 
(BCLC) staging classification system of the International Union Against Cancer (7th Edition) impede the 
application to offer individual management to HCC patients. While the TNM/ BCLC stratified strategies 
described the extent of disease, staging in HCC is of limited prognostic value, as the clinical management 
of HCC is primarily determined by disease histology, while not molecular biological characteristics31,32. A 
robust risk stratification strategy is promising for personalized medicine or precision medicine, and further 
improves chances for favorable outcome benefited from the intrinsic and interpatient phenotypic or prognostic 
heterogeneity. Since several novel regulatory mechanisms have been reported as involved in the PCD biological 
process, PCD in mammals has been implicated in several disease states including cancer, autoimmune disease, 
neurodegenerative disease and aging. Considering the cross-talk between different PCD patterns or pathways 
can be activated, inhibited or altered, resulting in distinct clinical outcome and response to treatments. However, 
it is important to recognize that the role and the regulation of PCD in HCC or pan-cancer is very redundant and 
complex, which partly contributed to the disappointing outcome of clinical application.

Recent studies have highlighted several PCD patterns, such as cuproptosis, ferroptosis, pyroptosis and 
necroptosis, which are closely involved in progression of liver disease including HCC, alcoholic fatty liver disease, 
and non-alcoholic fatty liver disease, and represents a potential target for HCC diagnosis and treatment33–35. 
Numerous predictive gene expression-based models have been adopted based on various ML approaches, in 
response to the increasing advancements in high-throughput sequencing techniques and computational biology 
algorithms36–38. Benefiting from the integration of multiple feature selection algorithms, we developed and 
validated a PCDI model using the optimal subset (HTRA2, SLC2A1, FTL, G6PD, and DLAT), which was stably 
associated with prognosis in four independent HCC cohorts, and offered an available resource for developing 
disease biomarkers and therapy targets. Our study systematically revealed links between PCD index and HCC 
prognosis, and benefits from PCDI-based strategy classification. The index identified different subgroups of 
patients with low and high risk of mortality, providing an individualized risk assessment beyond the existing 
clinical and pathological parameters. The further findings suggested that the integration of tumor genomics 
and clinicopathologic features improved the C-statistic and metrics of risk reclassification. Whether such a 
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molecule-based classifier, when combined with conventional clinicopathological characteristics and other 
previously reported index, will help to provide refinement for patient stratification strategies remains to be fully 
demonstrated in prospective clinical trials and independent cohorts. Moreover, through both large-scale survival 
analysis and a real-world cohort, we indicated that high DLAT expression in HCC tissues, which predicted an 
unfavorable prognosis and may therefore serve as a progression indicator in HCC.

Moreover, our study has provided evidence indicating a strong correlation between PCDI and a repressive 
TME as well as dysregulated metabolic processes. Specifically, higher PCDI indicated that increased infiltration 
of M2 macrophages and regulatory T cells (Tregs), which display diminished functionality in all metabolic 

Fig. 12.  DLAT was highly expressed in HCC tissues. (A-B) qRT-PCR and WB confirmed high expression level 
of DLAT in HCC tissues. (C) Representative images of IHC analyses showing upregulation of DLAT in HCC 
compared with normal liver tissues in HPA database (C) and real-world cohort (D). (top: × 100 magnification, 
scale bar, 200 μm; bottom: × 400 magnification, scale bar, 50 μm).
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pathways except those related to nucleotides. Notably, previous research has consistently reported a significant 
association between various PCD patterns and both TME and metabolic dysregulation. Metabolism and 
programmed cell death (PCD) are interrelated structures and processes that play critical roles in maintaining 
normal cellular functions and tissue integrity. Mitochondrial metabolism plays a crucial role in generating ATP, 
the primary energy source for the cell39. Metabolic pathways such as glycolysis, fatty acid oxidation, and the 
tricarboxylic acid (TCA) cycle also produce intermediate molecules that can be used for biosynthesis and cell 
signaling40. Recent studies have identified several links between PCD and metabolism. For instance, metabolic 
dysfunction or dysregulation can trigger PCD by different mechanisms, including the generation of reactive 
oxygen species (ROS), mitochondrial dysfunction, or the activation of death receptors41,42. Conversely, PCD can 
also induce metabolic changes by affecting key signaling pathways, such as mTOR, AMPK, or HIF-1α43,44. Several 
types of research have demonstrated that reprogramming metabolic pathways can control PCD. For example, 
inhibiting glycolysis and increasing mitochondrial metabolism attenuates cell death by apoptosis or necrosis45. 
Also, autophagy-triggering agents, such as rapamycin, activate cellular metabolism to enhance ATP generation 
and promote cell survival46. Indeed, all of the PCD patterns integrate metabolic processes to enable precise 
regulation of cell death during development, tissue remodeling, and defense against infections and diseases. A 
shared characteristic among these cell death pathways is their initiation by disruptions in cellular metabolism, 
which arise from either the depletion or excess of various metals or nutrients. This highlights the complex 
interaction between cellular metabolism and the regulation of diverse cell death modalities. Future research may 
elucidate further mechanistic similarities and distinctions among these pathways of cellular demise.

Apoptosis, the best-characterized form of PCD, involves a series of metabolic modifications in the 
mitochondria, and endoplasmic reticulum that lead to the activation of proteases, cleavage of structural proteins, 
and fragmentation of DNA40. During apoptosis, mitochondrial metabolism is altered, leading to decreased ATP 
production, enhanced vicious cycle of mitochondrial ROS (excessive reactive oxygen species) augmentation 
and autophagy flux, and a permeability increase of the inner mitochondrial membrane. Changes in metabolic 
fluxes and ROS levels modulate the expression or activity of pro-apoptotic and anti-apoptotic proteins, which 
transduce signals downstream of apoptotic receptors and activate caspases47,48.

Necroptosis, a type of programmed necrosis, entails the activation of receptor-interacting protein kinase 1 
(RIPK1) and RIPK3 and the formation of necrosomes that initiate the assembly of membrane pores and the 
subsequent release of damage-associated molecular patterns (DAMPs)49. Metabolites such as glucose, amino 
acids, and fatty acids can regulate necroptosis by affecting the accumulation of reactive oxygen species (ROS), 
which can lead to oxidative damage and mitochondrial dysfunction50,51. Autophagy is another form of PCD that 
involves the lysosomal degradation of cytosolic components, proteins, and organelles. Autophagy is dependent 
on the cellular metabolic status, and nutrient-sensing pathways such as mTOR, AMPK, and SIRT1 modulate the 
initiation and progression of autophagic flux52. During nutrient deprivation or hypoxia, cells induce autophagy 
to recycle amino acids, fatty acids, and nucleotides as substrates for ATP generation and cell survival53. Finally, 
pyroptosis is an inflammatory form of PCD that results from the activation of caspase-1 and the formation 
of inflammasomes. Pyroptosis relies on the activation of glycolysis and mitochondrial respiration to fuel the 
production of interleukins and cytokines that amplify the immune response to infections and inflammation54. 
In conclusion, metabolism is closely related to PCD, and metabolic reprogramming can affect cell death decision 
and fate. A better understanding of the metabolic regulation of PCD can have significant impacts on pathological 
conditions, including cancer, neurodegenerative diseases, and autoimmune disorders, where dysregulated PCD 
contributes to disease progression.

Crosstalk between different programmed cell death (PCD) patterns or pathways is a complex mechanism 
that plays a central role in the pathogenesis and progression of many tumor types, including HCC47,55. The 
crosstalk between PCD patterns in HCC can be either synergistic or antagonistic and can impact different 
aspects of tumor growth and treatment response10,56. Autophagy can promote apoptosis by removing damaged 
proteins and organelles, thereby reducing the anti-apoptotic effects of these molecules. Moreover, therapeutic 
agents that inhibit autophagy can enhance the effect of apoptosis-inducing chemotherapy in HCC. Under stress 
sufficiency, autophagy activation can be processed as a protective mechanism under, such as hypoxia, and can 
prevent the progression of necrosis11,57. In contrast, necrosis can trigger the release of intracellular contents, 
including danger-associated molecular patterns (DAMPs), that stimulate autophagy and promote tumor 
growth58. Significantly, in certain circumstances, such as the loss, inhibition, or mutation of elements within 
the canonical pathway, a transition occurs where one cell death pathway is substituted by another. Overall, 
the crosstalk between different PCD pathways in HCC is a complex interplay between tumor cells and their 
microenvironment. A better understanding of the molecular mechanisms underlying PCD pattern crosstalk 
in HCC could lead to a better exploration of the pathogenesis of HCC and thereby the development of novel 
therapeutic approaches to the disease.

Further, we revealed that a higher frequency of TP53 mutations was associated with a higher PCDI, 
which was considered to be an important regulator of PCD in HCC. GSEA analysis showed that the mutant 
status of TP53 was associated with high glycolytic activity and disturbed lipid metabolism. TP53/p53 plays 
a transcription-dependent and -independent role in the regulation of apoptosis, autophagy, ferroptosis, 
metabolism, cellular oxidative-redox status, and other PCD patterns59–62. Furthermore, the deletion or mutation 
of TP53 has a significant impact on the recruitment and functionality of T cells, thereby creating an inhibitory 
immune microenvironment that ultimately facilitates the evasion of tumor cells from immune surveillance63,64. 
In conclusion, the interplay interactions between programmed cell death, mutation, and metabolism was 
complex and bidirectional. For example, mutations in metabolic genes can lead to metabolic reprogramming 
that promotes cell survival and suppresses PCD pathways. Conversely, the dysregulation of PCD pathways can 
lead to the accumulation of abnormal cells with mutations that promote tumor development and progression.

Scientific Reports |        (2024) 14:27529 20| https://doi.org/10.1038/s41598-024-78911-4

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Understanding the complex interactions and regulatory mechanisms between PCD, mutation, and metabolism 
is critical to developing effective therapies for HCC and other diseases. By targeting the key regulatory pathways 
involved in PCD and metabolism, new and more effective treatments can be developed that can selectively 
promote cancer cell death while preserving normal cells.

Conclusion
In conclusion, our study recognized the comprehensive landscape of PCD-associated molecular subtypes. A 
PCD-based risk stratification strategy was presented, which was applied to predict the long-term outcome, 
profile the clinicopathological features distribution, characterize the TME and reveal the heterogeneity and 
signatures of multi-omics panoramic landscapes, to extend previous classification strategies for subtyping HCC 
patients. Understanding the complex regulation network rather than a linear cascade of PCD in HCC could lead 
to the improvements in the treatment of patients relying on the identification of novel predictive markers and 
treatment targets for support of individualized clinical decisions and targeted treatment strategies.

Data availability
Materials generated in this study can be provided upon reasonable requests by contacting the corresponding 
author.
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