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Skin cancer is a significant global health concern, with timely and accurate diagnosis playing a critical 
role in improving patient outcomes. In recent years, computer-aided diagnosis systems have emerged 
as powerful tools for automated skin cancer classification, revolutionizing the field of dermatology. 
This survey analyzes 107 research papers published over the last 18 years, providing a thorough 
evaluation of advancements in classification techniques, with a focus on the growing integration 
of computer vision and artificial intelligence (AI) in enhancing diagnostic accuracy and reliability. 
The paper begins by presenting an overview of the fundamental concepts of skin cancer, addressing 
underlying challenges in accurate classification, and highlighting the limitations of traditional 
diagnostic methods. Extensive examination is devoted to a range of datasets, including the HAM10000 
and the ISIC archive, among others, commonly employed by researchers. The exploration then delves 
into machine learning techniques coupled with handcrafted features, emphasizing their inherent 
limitations. Subsequent sections provide a comprehensive investigation into deep learning-based 
approaches, encompassing convolutional neural networks, transfer learning, attention mechanisms, 
ensemble techniques, generative adversarial networks, vision transformers, and segmentation-guided 
classification strategies, detailing various architectures, tailored for skin lesion analysis. The survey 
also sheds light on the various hybrid and multimodal techniques employed for classification. By 
critically analyzing each approach and highlighting its limitations, this survey provides researchers 
with valuable insights into the latest advancements, trends, and gaps in skin cancer classification. 
Moreover, it offers clinicians practical knowledge on the integration of AI tools to enhance diagnostic 
decision-making processes. This comprehensive analysis aims to bridge the gap between research and 
clinical practice, serving as a guide for the AI community to further advance the state-of-the-art in skin 
cancer classification systems.
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Cancer, as indicated by the World Health Organization (WHO), stands as a prominent global cause of mortality1. 
The WHO predicts that the total number of cancer diagnoses will be doubled over the next two decades2. Early 
detection of cancer plays a pivotal role in significantly mitigating mortality through effective treatment strategies. 
Skin cancer is one of the most common malignancies, with approximately 300,000 new cases diagnosed globally 
in 2018. According to the American Cancer Organization, over 132,000 cases of melanoma were reported in 
the United States in 2019 alone, with melanoma accounting for 4740 male and 2490 female deaths that year3. 
The American Cancer Organization further projected that in 2022, around 99,780 individuals in the United 
States would be diagnosed with melanoma, with an estimated 7650 succumbing to the disease4. More recent 
statistics from 2023 indicate that skin cancer represented 5.0% of all cancer diagnoses in the United States, with 
97,160 new cases and 7990 deaths, accounting for 1.3% of total cancer-related fatalities5. This data highlights the 
widespread incidence and serious health impact of skin cancer on a global scale.

The prevalence of skin cancer has witnessed a steady increase over time, largely attributed to increased 
exposure to detrimental ultraviolet (UV) radiation from the sun6. Frequent and intense sun exposure can 
lead to sunburns, elevating the likelihood of developing skin cancer. Age appears to be a factor influencing 
the incidence, with older individuals exhibiting a higher susceptibility to the disease. Public health initiatives 
have concentrated on promoting awareness regarding sun protection practices, emphasizing the importance 
of measures such as sunscreen application and wearing protective clothing to mitigate the risks associated with 
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excessive sun exposure. Additional significant causes include the presence of abnormal moles in the body and a 
family history of skin cancer7.

Skin cancer is broadly categorized into two main types: melanoma and non-melanoma8. Figure 1 illustrates 
the categorization of skin cancer into different types and Fig. 2 presents images for each of these types. While 
basal cell carcinoma and squamous cell carcinoma constitute the most prevalent forms, they are not as harmful 
as melanoma9. Non-melanoma types primarily impact the middle and upper layers of the epidermis and 
exhibit a lower likelihood of spreading to other parts of the body10. On the other hand, melanoma originates 
in cells known as melanocytes, with the development typically initiated when these normally healthy cells 
undergo uncontrolled growth, forming a cancerous tumor. Any region of the skin is susceptible to melanoma, 
but it commonly manifests in areas with extensive exposure to sunlight, including the face, hands, and neck. 
Melanoma poses a higher risk of metastasis and contributes significantly to mortality related to skin cancer11. 
Early diagnosis is crucial for the effective cure of melanoma, as it spreads rapidly and can lead to a distressing 
and fatal outcome for the affected individual12.

Challenges
The economic burden of skin cancer on healthcare systems is significant, given the expenses related to diagnosis, 
treatment, long-term care, and extensive medical training. In the United States alone, the financial impact is 
particularly striking, with treatment costs surpassing 8 billion dollars annually13. Traditional diagnosis of skin 
cancer primarily involves five methods: self-examination, visual inspection, mole mapping, dermoscopy, and 
skin biopsy. Accurate self-examination of skin cancer is highly challenging due to the striking resemblance 
between malignant and benign skin conditions. Individuals often struggle to distinguish between common skin 
irregularities and potential cancers, leading to missed diagnoses or unnecessary concerns. In clinical practice, 
dermatologists often rely on visual inspection to assess skin lesions based on the lesions’ structure and their 
evolving size or shape. However, this method is highly subjective and varies based on the experience and skill of 

Fig. 2.  Sample images of various types of skin cancer.

 

Fig. 1.  Types of skin cancer.
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the dermatologist. Additionally, relying solely on visual inspection can lead to unnecessary biopsies or missed 
diagnoses, especially for lesions with atypical features.

Mole mapping involves taking detailed photographs of a patient’s entire skin surface to track changes in 
moles or lesions over time14. Again, this relies on visual assessment and regular follow-up visits, which may 
delay diagnosis. Additionally, it may not capture changes in lesions that do not evolve in a predictable manner. 
Dermoscopy, a widely accepted imaging technique among dermatologists, involves magnifying the surface of 
a skin lesion for enhanced visibility during examination. However, its practice is limited to trained medical 
experts, relying heavily on their visual skills and experience15. The scarcity of well-trained professionals, 
attributed to the high costs and efforts involved in training, renders dermoscopy impractical for large-scale skin 
cancer detection. The gold standard for diagnosis, skin biopsy, involves surgically removing a sample of tissue 
from the suspected lesion for further analysis16. While highly accurate, biopsies are invasive, painful, and time-
consuming. Additionally, biopsies are costly, and performing them unnecessarily on benign lesions increases 
healthcare expenses and patient discomfort.

These challenges highlight the necessity for novel and innovative approaches in visualizing and diagnosing 
skin cancer. Consequently, computer-aided diagnosis (CAD) systems have emerged as an effective technique for 
melanoma diagnosis. The evolution of CAD systems in dermatology initially focused on automating basic visual 
tasks like detecting shapes and borders in skin lesions. These early systems relied on hand-crafted features and 
rule-based algorithms but were limited in their ability to accurately differentiate between benign and malignant 
conditions due to the simplicity of the methods and the lack of large datasets. As digital imaging and dermoscopy 
became more common, CAD systems advanced by incorporating various image processing algorithms designed 
to assist dermatologists in identifying suspicious lesions. However, significant improvements came in the 2000s 
with the rise of machine learning (ML) models such as support vector machines (SVMs) and decision trees 
(DTs), which enhanced classification accuracy using manually extracted features like color, shape, and texture. 
The real breakthrough occurred in the 2010s with the advent of deep learning (DL), particularly convolutional 
neural networks (CNNs), which could automatically learn complex features from dermoscopic images. This leap 
in technology allowed CAD systems to perform at levels comparable to expert dermatologists, transforming 
them into essential tools for early skin cancer detection.

Such a system can offer a user-friendly environment particularly beneficial for less experienced dermatologists. 
The automated CAD system can aid dermatologists by reducing time, costs, and effort17. Additionally, it can serve 
as a valuable second opinion for doctors when dealing with complex melanoma cases. The mentioned challenges 
have spurred the focus of the artificial intelligence (AI) community towards the accurate and timely detection 
of skin cancer. Classifying skin cancer presents a complex challenge owing to the diverse and intricate nature 
of skin lesions. Numerous challenges impede the accurate and reliable classification of these lesions, rendering 
it a crucial area of investigation in medical imaging. A primary challenge stems from the subtle variations and 
resemblances among different skin lesions. The visual characteristics, such as color, texture, shape, and pattern, 
may overlap between benign and malignant lesions, complicating the differentiation between harmless moles 
and potentially cancerous ones. This inter-class similarity poses a significant hurdle for CAD systems. Another 
challenge emerges from the intra-class variability, referring to variations within the same class of skin lesions. 
Even within malignant lesions, considerable differences in appearance may exist. For instance, melanomas can 
manifest a diverse range of colors, shapes, and patterns, making it arduous to delineate clear boundaries between 
different types of lesions18. Additional challenges include the typically large size of individual skin lesion images, 
with only a restricted relevant portion indicating infection. Moreover, a deficiency in reliable annotated images 
further complicates the task of classification.

Contributions
The main goal of this work is to review the progress made by researchers in the field of skin cancer classification 
using both ML and DL techniques. To the best of our knowledge, this survey includes most of the research papers 
published in this domain over the past 18 years. By consolidating the latest research, we seek to highlight both 
the potential and the challenges of integrating AI into clinical dermatology. This review is intended for a broad 
audience. For researchers in computer vision and medical imaging, this review acts as a valuable resource to 
understand the latest advancements, methodologies, and existing gaps in the field, helping shape future research 
directions. For clinicians, it offers insights into how AI tools can enhance their diagnostic processes, supporting 
early detection and improving decision-making. This survey can also be useful for healthcare policymakers 
aiming to understand the impact of AI-driven technologies in dermatology practices. Table 1 provides an 
overview of the contributions and limitations identified in some past survey papers. Additionally, our survey’s 
specific contributions are also outlined in this table.

Organization
The subsequent sections of this paper are structured as follows: In section “Trends in skin cancer classification”, 
we outline the general trends in research within the domain of skin cancer classification throughout the years. 
Moving to section “Datasets used for skin cancer classification”, we explore the various datasets predominantly 
utilized by researchers in this field. In section  “Strategies for skin cancer classification”, several computer 
vision-based strategies for skin cancer classification are discussed in detail. This section commences with an 
examination of the application of traditional ML techniques coupled with handcrafted features, followed by an 
in-depth overview of various DL strategies, including CNNs, generative adversarial networks (GANs), vision 
transformers (ViTs), and segmentation-guided classification methods. Hybrid and multimodal strategies for 
skin cancer classification have also been explored in this section. In sections “Performance metrics” and “Loss 
functions”, commonly used performance metrics and loss functions in the literature are discussed. Prevailing 
challenges in this field have been highlighted in section “Open challenges”, whereas, section “Future research 
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directions” proposes potential solutions as avenues for future research. Finally, we present our concluding 
thoughts in section “Conclusion”.

Trends in skin cancer classification
The methodologies employed for skin cancer classification have emerged as pivotal components within CAD 
systems used for detecting skin diseases. This survey is centred on categorizing research papers on skin cancer 
classification published in the last two decades, predominantly emphasizing machine learning and deep 
learning approaches. In Fig.  3a, we present the distribution illustrating the count of research papers across 
these methodologies over almost 18 years, totalling 95 identified papers. We have utilized the search engines of 
Google Scholar, IEEE Xplore, Springer and ScienceDirect. Notably, various renowned journals in the domain of 
medical imaging and biomedical informatics, including IEEE Transactions on Medical Imaging, IEEE Journal 
of Biomedical and Health Informatics, IEEE Access, Scientific Reports, Computers in Biology and Medicine, 
Computer Methods and Programs in Biomedicine, Expert Systems with Applications, among others, have been 
considered.

As evident from Fig. 3a, with the advent of deep neural networks, there has been an escalating trend in the 
number of research articles published over the years, with a notable surge observed in 2018. More recently, 
there has also been a rise in the number of papers incorporating strategies involving a combination of machine 
learning and deep learning. Figure 3b depicts a pie chart illustrating the proportions of research papers using 
different computer vision-based strategies, with deep learning methodologies forming a significant portion of 
this survey. These insights offer valuable perspectives on the prevailing trends and prominence of various skin 
cancer classification strategies in the research landscape.

Fig. 3.  (a) Bar graph illustrating the distribution of research papers published over the past 18 years that 
leverage ML, DL, hybrid, and multimodal approaches. Note that this is not an exhaustive collection, but a 
subset selected for this survey. (b) Pie chart illustrating the percentage distribution of papers based on ML, DL, 
hybrid, and multimodal approaches.

 

Authors Year Contributions Limitations

Naeem et 
al.19 2020 It covers a wide range of techniques like handcrafted methods, CNNs, pre-trained 

models and ensemble-based approaches
It lacks an in-depth discussion of the individual techniques and does 
not articulate any noteworthy observations from the covered papers

Takkidin 
et al.20 2021 It employs a search strategy to include most papers between 2009 and 2020. It 

categorizes the papers into shallow and deep techniques
The detailed analysis of the specific techniques and their performance 
is limited due to the review format of the paper

Dildar et 
al.21 2021 It provides a comprehensive review of many papers based on different DL models like 

ANNs, CNNs, GANs etc.
Although it includes many papers, it lacks a detailed discussion of 
the models. Also, it does not include ML-based papers and does not 
mention future research directions

Wu et 
al.22 2022 Apart from discussing CNN-based techniques in detail, it highlights many key 

challenges and also suggests potential research avenues to address the challenges
It only focuses on CNN models across different datasets, but offers no 
discussion on ensemble-based approaches, GANs, hybrid strategies etc.

Naqvi et 
al.23 2023 It offers ample emphasis on the deep architectures of the methods discussed and 

throws light on the hardware resources required for each method
It categorizes papers broadly under the umbrella of DL but does not 
delve into specific techniques such as CNN-based or GAN-based etc., 
which could facilitate enhanced learning and understanding

Hasan et 
al.24 2023 It covers both conventional ML strategies and recent DL techniques including 

transfer learning, attention mechanisms, ensemble-based approaches etc.
Limited focus on the approaches and also does not mention any 
challenges or potential research gaps

Riaz et 
al.25 2023

It extensively discusses conventional CNN-based approaches, along with an in-depth 
analysis of transfer learning and federated learning methods. It also highlights 
significant research gaps and future directions

Limited exploration of advanced DL techniques, particularly those 
utilizing attention mechanisms, transformers, and meta-learning 
approaches

Ours 2024
Provides an in-depth discussion of ML, DL, hybrid and multimodal techniques with 
an emphasis on individual architectures, commonly used datasets, performance 
metrics, loss functions, open challenges and future research directions

Some possible future avenues of this survey are discussed in 
section “Future research directions”

Table 1.  Comparison of existing survey papers with ours.
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Datasets used for skin cancer classification
Numerous computer vision-based systems aimed at diagnosing skin cancer have been proposed. However, 
effectively evaluating their diagnostic accuracy and validating predicted results necessitates a trustworthy 
compilation of dermoscopic images. Training neural networks for classifying skin lesions faces challenges due 
to the limited size and lack of diversity in existing datasets. Also, many researchers in the past have presented 
results based on their proprietary datasets, which might either lack public availability or fail to encompass real-
world scenarios. Hence, the importance of having a standardized and reliable collection of dermoscopic images 
becomes very essential. To provide readers with a reference, this section delves into the several commonly used 
real-world datasets used for assessing proposed techniques in skin cancer classification. Table 2 gives the details 
of such datasets.

HAM10000
The Human Against Machine dataset26, also known as HAM10000, is the latest publicly available skin lesions 
dataset comprising dermoscopic images sized at 450 × 600 pixels. It took two decades to assemble this dataset. 
These images primarily originated from Cliff Rosendahl’s skin cancer practice in Queensland, Australia, and the 
Dermatology Department of the Medical University of Vienna, Austria. Collected from diverse populations, 
various acquisition and cleaning methods were employed, along with the development of semi-automatic 
workflows, to address diversity issues. The dataset contains 10,015 images categorized into seven skin disease 
groups: 327 actinic keratosis and intraepithelial carcinoma images, 514 basal cell carcinoma images, 1099 benign 
keratosis images, 115 dermatofibroma images, 1113 melanoma images, 6705 melanocytic nevus images, and 142 
vascular malformation images.

ISIC archive
The ISIC archive27 is a collection of numerous skin cancer datasets. These datasets were introduced by the 
International Skin Imaging Collaboration (ISIC) at the International Symposium on Biomedical Imaging (ISBI) 
as individual challenges in order to improve melanoma diagnosis.

The ISIC 2016 challenge28 contains dermoscopic images segregated into training and testing subsets. The 
training set consists of 900 images, while the testing subset comprises 379 images. These images are categorized 
into two classes: malignant melanomas and benign nevi, with around 30.30% representing melanoma lesions 
and the rest belonging to benign nevi.

The ISIC 2017 challenge29 comprises 2750 images, belonging to three classes: melanoma, nevus and 
seborrheic keratosis. The dataset comprises 2000 training images, 150 validation images, and 600 testing images 
spanning all three classes. Notably, images in this dataset are captured by various imaging devices, leading to 
non-uniform resolutions. These images exhibit a range of resolutions, from smaller sizes like 300 × 200 pixels to 
larger resolutions such as 6000 × 4000 pixels. This diversity in image resolutions mirrors real-world scenarios, 
introducing complexity when analyzing images sourced from different devices.

The ISIC 2018 challenge30 contains 10,015 images belonging to seven skin disease categories for training, 
identical to the HAM10000 dataset. It contains 193 and 1512 additional images for validation and testing, 
respectively.

The ISIC 2019 challenge31 contains 25,331 images for training across eight skin lesion categories, including 
actinic keratosis, basal cell carcinoma, benign keratosis, dermatofibroma, melanoma, melanocytic nevus, 
vascular lesions and squamous cell carcinoma. The test dataset comprises 8239 images, including an outlier class 
not present in the training dataset. Additionally, the ISIC 2019 challenge provides metadata for images, such as 
patients’ sex, age, and affected area, necessitating new skin cancer diagnostic systems to identify and utilize these 
images. This dataset contains images with a range of sizes, from lower resolutions like 300 × 200 pixels to larger 
resolutions such as 6000 × 4000 pixels.

Name Year # Classes # Images Official split

HAM10000 2018 7 10,015 No

ISIC 2016 2016 2 1279 Yes (Train: 900, Test: 379)

ISIC 2017 2017 3 2750 Yes (Train: 2000, Valid: 150, Test-600)

ISIC 2018 2018 7 11,527 Yes (Train: 10015, Valid: 193, Test: 1512)

ISIC 2019 2019 8 33,569 Yes (Train: 25331, Test: 8238)

ISIC 2020 2020 2 44,108 Yes (Train: 33126, Test: 10982)

MED-NODE 2015 2 170 No

PH2 2013 3 200 No

DermIS – – 6588 No

DermQuest 1999 – 22,082 No

DermNet 1998 643 23,000 No

AtlasDerm 2000 7 1024 No

Dermofit 2014 10 1300 No

Table 2.  Commonly used skin cancer classification datasets.
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The ISIC 2020 challenge32 contains 33,126 and 10,982 dermoscopic images for training and testing, 
respectively. Each training image has a confirmed diagnosis (malignant or benign) and information about the 
patient’s age, sex, and lesion location. All diagnoses have been validated through histopathology for malignant 
cases, and for benign cases, confirmed via expert agreement, longitudinal follow-up, or histopathology.

MED-NODE
The MED-NODE dataset33 consists of 170 dermoscopic images of skin lesions, out of which 70 images belong 
to melanoma and 100 images belong to nevi. These images have been collected from the digital archive of the 
Department of Dermatology of the University Medical Center, Groningen (UMCG).

PH2
The PH2 database34 comprises a total of 200 dermoscopic images, consisting of 80 common nevi, 80 atypical 
nevi, and 40 melanomas. The images are sized at 768 × 560 pixels. Each image includes ground truth diagnosis, 
age, sex, and lesion location. This dataset is not publicly available due to privacy concerns and ethical restrictions. 
However, researchers can request access for research purposes through the Dermatology Service of Hospital 
Pedro Hispano, Matosinhos, Portugal.

DermIS
The Dermatology Information System, commonly referred to as DermIS35, was collaboratively established by 
the University of Erlangen’s Department of Dermatology and the University of Heidelberg’s Department of 
Clinical Social Medicine. Comprising 6588 images, this dataset has recently been segmented into two sections: 
the dermatology online image atlas (DOIA) and the pediatric dermatology online image atlas (PeDOIA). The 
DOIA contains 3000 lesion images, encompassing around 600 dermatological diagnoses. It offers comprehensive 
dermoscopic images along with differential and provisional diagnoses, case reports, and detailed information 
covering nearly all categories of skin diseases.

DermQuest
The publicly accessible DermQuest dataset36 comprised 22,082 dermoscopic images. Notably, among all 
dermoscopic datasets, only the DermQuest dataset included lesion tags for skin lesions, totalling 134 lesion tags 
for all images. The DermQuest dataset transitioned to Derm101 in 2018. However, this dataset was deactivated 
at the end of 2019.

DermNet
The DermNet Skin Disease Atlas dataset, commonly known as DermNet37, originated in 1998 under the 
guidance of Dr. Thomas Habif in Portsmouth, New Hampshire. Comprising over 23,000 dermoscopic images, 
this database encompasses images depicting 643 distinct types of skin diseases. These diseases are categorized 
biologically into a two-tiered taxonomy. At the lower level, there are over 600 skin diseases organized with fine 
granularity. The top-level taxonomy comprises 23 different classes of skin diseases, such as connective tissue 
disease, benign tumors, eczema, melanomas, moles, and nevi, among others.

AtlasDerm
The interactive Atlas of Dermoscopy dataset, known as AtlasDerm207, is a distinctive compilation combining a 
book and CD-ROM images featuring sample examples for training purposes. Initially developed as a diagnostic 
aid for physicians in identifying skin lesions and recognizing dermoscopic criteria linked to melanoma, the 
AtlasDerm dataset encompasses various cases of skin lesions, each accompanied by corresponding dermoscopic 
images. It comprises 5 images of actinic keratosis, 42 images of basal cell carcinoma, 70 images of benign 
keratosis, 20 images of dermatofibroma, 275 images of melanocytic nevus, 582 images of melanoma, and 30 
images of vascular skin lesions.

Dermofit image library
The Dermofit Image Library38 contains 1300 high-quality images of skin lesions captured under standardized 
color conditions, including internal color standards. It encompasses ten distinct classes of lesions: actinic 
keratosis, basal cell carcinoma, melanocytic nevus, seborrheic keratosis, squamous cell carcinoma, intraepithelial 
carcinoma, pyogenic granuloma, haemangioma, and dermatofibroma. Each image in this library possesses a gold 
standard diagnosis established through expert opinions, including dermatologists and dermatopathologists, 
ensuring precise labelling for algorithmic training purposes. Although not publicly available, researchers can 
access the Dermofit Image Library through Edinburgh Innovations, the technology transfer branch of the 
University of Edinburgh.

Strategies for skin cancer classification
In this section, we discuss in detail the various strategies based on computer vision that have been employed to 
classify skin cancer found within the literature. The taxonomy of the different strategies is shown in Fig. 4.

Machine learning-based techniques
Classification of skin cancer can be considered a supervised learning problem which can be tackled using 
ML-based systems. Such systems traditionally rely on handcrafted features. These features are meticulously 
designed through image processing and feature engineering methods, capturing specific characteristics and 
patterns within skin lesions that signify different types of skin cancer. These manually crafted features are then 
input into diverse classifiers, including SVMs, random forests (RFs), k-nearest neighbors (k-NNs), or artificial 
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neural networks (ANNs), facilitating the classification of skin cancer. Importantly, the process of extracting 
handcrafted features is less computationally demanding compared to training deep neural networks, rendering 
these techniques more adaptable to resource-constrained environments39. Nevertheless, a significant drawback 
of such systems is their dependence on the quality of manually crafted features and their generalizability across 
diverse datasets.

Traditional ML models often allow for greater interpretability, enabling clinicians to understand the reasoning 
behind predictions. This interpretability is crucial in clinical settings, as it fosters trust and facilitates informed 
decision-making based on model outputs. However, this interpretability comes at a cost. While traditional 
models like DTs offer clear insights into how predictions are made, they often struggle to capture the complex 
relationships inherent in the data, resulting in lower predictive performance compared to more sophisticated 
models, such as DL approaches. In contrast, DL models, although typically yielding higher accuracy, operate 
as “black boxes”, making it difficult to decipher the underlying rationale for their predictions. This lack of 
transparency can be problematic in medical contexts, where understanding the basis for a diagnosis is vital for 
patient care and compliance with ethical standards.

The challenge, therefore, lies in striking a balance between performance and interpretability. Clinicians may 
favor models that are easier to understand, even if they sacrifice some predictive power, while data scientists 
may lean towards models that offer higher accuracy but lack transparency. As highlighted in recent literature, 
addressing this trade-off is crucial for the successful integration of machine learning systems in healthcare, 
where both precision and trust are paramount. In this section, we offer an overview of the existing ML-based 
approaches outlined in the literature, summarizing their employed feature extraction techniques, classifiers, and 
performance outcomes across the datasets utilized.

Traditional machine learning classifier-based techniques
This segment delves into the different methodologies for skin cancer classification using handcrafted features in 
conjunction with ML classifiers. A comprehensive comparison of skin cancer classification methods using ML 
classifiers is discussed in Table 3.

Authors Type Dataset Results

Jørgensen et al.40, 2008 akiec/bcc 78 OCT images Acc-0.770

Zortea et al.41, 2010 Malignant/benign 217 images Sen-0.730, Spe-0.730

Ballerini et al.43, 2012 akiec/bcc/bkl/nv/scc 960 images Acc-0.740

Mhaske et al.45, 2013 Malignant/benign 104 images Acc-0.800 to 0.900

Maurya et al.47, 2014 akiec/bcc/mel/scc DermNet Acc-0.814

Choudhury et al.49, 2015 akiec/bcc/mel/scc DermNet Acc-0.942

Bareiro et al.52, 2016 Malignant/benign 104 images Acc-0.906

Waheed et al.58, 2017 mel/non-mel PH2 Acc-0.960

Ozkan et al.60, 2017 Normal/abnormal/mel PH2 Acc-0.925

Tan et al.61, 2019 Malignant/benign PH2, Dermofit Acc-0.978

Gautam et al.63, 2020 Malignant/benign ISIC archive (947 images) Acc-0.803

Javaid et al.66, 2021 mel/non-mel ISIC 2016 Acc-0.939

Table 3.  A comparative analysis of skin cancer classification methods using traditional ML classifiers.

 

Fig. 4.  Taxonomy of different skin cancer classification strategies used in this survey.
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Jørgensen et al.40 explored the collective utilization of various optical coherence tomography (OCT) features 
extracted from images of basal cell carcinoma and actinic keratosis. They evaluated the diagnostic accuracy of 
these combined features through an ML approach. The results of the ML analysis indicated that the use of a 
multitude of features led to an accuracy of 77%. Zortea et al.41 proposed a method aiming to capture local spatial 
information by utilizing local binary pattern histograms (LBPH)42 from the images. The extracted features 
underwent clustering through k-means clustering and were then input into an SVM for the classification of 
images as malignant or benign. Ballerini et al.43 introduced a skin cancer classification system that integrates 
both color and texture features. They employed a hierarchical k-NN classifier for the classification task. Color 
features were represented by the mean colors {µ = (µR, µG, µB)} of the lesion along with their covariance 
matrices. Texture features were extracted from generalized co-occurrence matrices (GCM)44. From each GCM, 
they derived 12 texture features, including energy, contrast, correlation, entropy, homogeneity, inverse difference 
moment, cluster shade, cluster prominence, max probability, autocorrelation, dissimilarity, and variance.

Mhaske et al.45 employed the 2D wavelet technique46 to generate 96 features from the images. Subsequently, 
these features were utilized by an SVM to classify the images as either malignant or benign. Maurya et al.47 
proposed a skin cancer classification system, employing the gray level co-occurrence matrix (GLCM)48 as a 
feature extraction technique. Initially, the RGB image underwent conversion into a grayscale image, serving 
as input for GLCM. The computation by GLCM focused on the frequency of specific gray levels reappearing at 
different positions in the image. Feature extraction via GLCM mapped probabilities of gray level co-occurrence 
at various angular positions, relying on spatial relationships between different pixel combinations. Features like 
autocorrelation, contrast, energy, entropy, and homogeneity were then extracted from the matrix. These features 
were subsequently fed into a multi-class SVM for the classification task.

Choudhury et al.49 introduced a method for classifying skin cancer images, employing a multilayer 
decomposition approach based on textural and color features. Initially, images underwent decomposition into 
a piecewise base layer and detail layer using the weighted least squares (WLS) framework for edge-preserving 
decomposition. From the enhanced layer, GLCM and histogram of oriented gradients (HOG)50 served as textural 
feature descriptors, while the color histogram51 obtained from the base or smoothened layer was considered 
as the color feature descriptor. These feature values were passed as input into a multiclass SVM and extreme 
learning machine (ELM) for classification. The achieved accuracy was 94.18% with SVM and 90.5% with ELM, 
respectively. Bareiro et al.52 introduced an automated system utilizing a set of handcrafted features and an 
ML classifier for the detection of benign and malignant skin cancer from dermoscopic images. The proposed 
system employed various feature extraction techniques, including the Otsu algorithm53, asymmetry, border, 
color, and diameter (ABCD) rules54, inpainting techniques55, median filter56, and contrast limited adaptive 
histogram equalization (CLAHE)57. The Otsu algorithm played a crucial role in automated image segmentation, 
facilitating the separation of the region of interest (ROI) from the background, specifically aiding in isolating 
the lesion area for subsequent analysis. The ABCD rules align with established clinical assessment guidelines 
for melanoma, potentially improving accuracy. Inpainting techniques and median filter were responsible for 
removing unwanted artifacts and noise from the images, while CLAHE was used to enhance the contrast of the 
images. The classification model utilized an SVM as the classifier. The evaluation of this model on a self-procured 
dataset, consisting of 104 dermoscopic images, resulted in a classification accuracy of 90.63%.

Waheed et al.58 proposed an effective ML model designed for the early diagnosis of skin cancer using 
dermoscopic images from patients. In this model, the feature extraction phase utilized the uniform HSV color 
space59 and the GLCM. For classification, an SVM was employed. The use of the HSV color space facilitated a 
focused analysis of color variations, crucial for identifying color-based characteristics associated with different 
skin lesions. GLCM was instrumental in understanding spatial relationships between pixel values, aiding in 
the extraction of texture features. The model underwent training and testing on 200 dermoscopic images from 
the PH2 dataset, achieving an impressive accuracy of 96% during experimentation and classification. The 
flowchart of this system is shown in Fig. 5a. Ozkan IA and Koklu60 presented an ML-based decision support 
system designed to assist doctors and radiologists. The feature extraction phase of this system utilized the ABCD 
rules-based technique, similar to Bareiro et al.’s work52. For classification, four different classifiers, namely ANN, 
SVM, k-NN, and DT, were employed. The system underwent evaluation on 200 dermoscopic images obtained 
from the PH2 dataset, achieving classification accuracies of 92.50%, 89.50%, 82%, and 90%, respectively, during 
experimentation.

Tan et al.61 proposed an automated ML system for skin cancer diagnosis using dermoscopic images. The 
model incorporated various feature extraction techniques, including gray-level run-length matrix (GLRLM) 
, ABCD rules, local binary patterns (LBP)42, and HOG, and used particle swarm optimization (PSO)62 for 
feature selection. The ABCD rules captured shape and color features, GLRLM focused on texture information, 
LBP captured local patterns, and HOG extracted gradient-based features. PSO optimized feature selection, 
enhancing the overall feature set. The integration of these diverse features aimed to provide a comprehensive 
representation of the underlying characteristics of skin lesions. These features were then combined with SVM 
and k-NN ensembles for classification. The model was evaluated on 1500 skin lesion images of patients taken 
from two datasets, PH2 and Dermofit, and produced classification accuracy of 97.79% and 97.54% under SVM 
and k-NN respectively.

Gautam et al.63 utilized LBP, uniform LBP64 and complete LBP (CLBP)65 as feature extraction methods. 
The features extracted from each of these methods were separately fed into DT, RF, SVM, and k-NN classifiers. 
The findings suggest that a combination of CLBP and RF yielded the best accuracy. Javaid et al.66 introduced a 
methodology that involved the integration of image processing and machine learning classifiers. The approach 
featured an innovative technique for contrast stretching of dermoscopic images, based on the mean values and 
standard deviation of pixels. Subsequently, the Otsu thresholding algorithm was employed to binarize the images. 
Then, features such as GLCM for texture identification, HOG for object identification, and color features were 
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extracted from the images. Dimensionality reduction on the extracted features was carried out using principal 
component analysis (PCA)67. The feature vector underwent standardization and scaling. Prior to employing 
classifiers, a distinct wrapper method for feature selection was proposed. The effectiveness of the proposed 
approach was assessed on the ISIC 2016 dataset, achieving a maximum accuracy of 93.89% with the RF classifier.

Observations: Handcrafted features in skin cancer classification are typically categorized into color, shape, 
and texture features, each of which plays a crucial role in characterizing skin lesions. Color features, such as mean 
color values and color histograms, were employed by43 and49, respectively, to capture the distribution of colors 
in lesions. Shape features, which focus on geometrical aspects and lesion edges, were extracted using methods 
like the Otsu algorithm by52,63. Texture features, which analyze the spatial arrangement of pixel intensities, were 
explored through various techniques. For instance, GCM was used by43, GLCM was widely used by47,49,58,63, 
while the GLRLM and LBP were employed by61 and61,63, respectively. LBPH and HOG were used by41 and49,61,63, 
respectively. Additionally, wavelet transform techniques, which provide multi-resolution analysis, have been 
utilized by45. ML-based systems incorporating handcrafted features are easy to implement, more interpretable, 
computationally efficient and often require less data for training compared to deep learning methods. However, 
handcrafted features are manually designed based on prior knowledge, which might not fully capture the intricate 
patterns and representations present in skin lesions. The effectiveness of these techniques heavily depends on the 
quality of the manually engineered features. Designing relevant features requires domain expertise and might be 
challenging due to the variability in lesion appearances.

References40,41,43,45,52 use a self-procured dataset for testing, limiting their comparison with other studies. 
While45,52,58,60 yield high accuracies, their evaluation on smaller datasets raises concerns about their robustness 
for real-world scenarios. The absence of experimental results on larger datasets questions the generalizability 
of these models.47,63 uses a larger dataset to test their method. Nevertheless, their method fails to achieve high 
accuracy. In contrast, the improved accuracy over a relatively larger number of images demonstrated in49,61,66 
indicates the effectiveness of the proposed schemes, surpassing other ML-based systems. This highlights their 
potential for robust skin cancer classification. However, it is important to note that computing features using 
a combination of multiple handcrafted feature extraction techniques like ABCD rules, GLCM, GLRLM, LBP, 
HOG etc. can lead to increased computational complexity. Therefore, the utilization of optimal feature selection 
techniques, as demonstrated in61,66, becomes essential.

Artificial neural network-based techniques
ANNs coupled with handcrafted features offer ease of implementation, interpretability, and computational 
efficiency. Skin cancer classification often involves complex patterns and non-linear relationships within imaging 
data. ANNs, with their inherent non-linearity, excel at automatically learning relevant features from raw pixel 
data. This is advantageous in skin cancer classification tasks where manual feature engineering techniques may 
not capture the diverse and subtle characteristics of lesions68. Additionally, ANNs have demonstrated strong 
generalization capabilities using large labelled datasets. In skin cancer classification, where diverse cases are 
encountered, ANNs can generalize well to new, unseen examples. A comprehensive comparison of skin cancer 
classification methods using ANNs is discussed in Table 4.

Ercal et al.69 investigated the efficacy of ANNs in analyzing tumor shape and relative tumor color to 
differentiate between benign and malignant skin lesions. The study involved the development and assessment 
of neural network models trained on color images of skin lesions to precisely classify them as malignant or 
benign, contributing to improved diagnostic accuracy in melanoma detection. Bayot et al.70 underscored the 
significance of identifying malignancy in individuals at risk of basal cell carcinoma through the integration of 

Fig. 5.  (a) Flowchart of the skin cancer classification system proposed by Waheed et al.58; (b) Structure of the 
hybrid GA-ANN classifier proposed by Aswin et al.85.
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image processing techniques and ANNs. The image processing approach incorporated histogram equalization71 
to enhance the contrast of the images. Lau et al.72 also employed histogram equalization to enhance the 
images, with the resulting enhanced grayscale image serving as the model input. They utilized the 2D wavelet 
decomposition technique to extract relevant cancer-related features from the images, avoiding dependence on 
clinical knowledge. These features were then passed as input into a backpropagation neural network comprising 
3 layers, and an auto-associative neural network. The achieved accuracies were 89.90% and 80.80%, respectively. 
Mahmoud et al.73 conducted a study centred on automatically identifying melanoma through the utilization of 
wavelet74 and curvelet75 analyses. This led to the advancement of the exploration of sophisticated image analysis 
techniques combined with neural networks for more accurate and early identification of melanoma.

Jaleel et al.76 introduced an automated skin cancer diagnostic system utilizing an ANN based on 
backpropagation. The model they proposed utilized a 2D wavelet transform technique for feature extraction, 
allowing for the representation of both spatial and frequency information, enabling a more comprehensive 
analysis of texture and structural patterns in dermoscopy images. This system was designed to categorize all 
input images into two classes: cancerous and non-cancerous. Subsequently, Jaleel et al.77 also employed the 
GLCM technique for feature extraction and fed the extracted features into an ANN with backpropagation. 
Similar to the approach by Jaleel et al.77, Mabrouk et al.78 also utilized GLCM for extracting texture features. They 
extracted a total of 23 GLCM features, and, following Fisher’s scoring method79, 11 features were selected, which 
subsequently formed the input to an ANN. Masood et al.80 introduced an automated skin cancer diagnostic 
system based on ANNs. The study delved into the effectiveness of three ANN learning algorithms: Levenberg-
Marquardt (LM)81, resilient backpropagation (RBP)82, and scaled conjugate gradient (SCG)83. The comparative 
analysis revealed that the LM algorithm achieved the highest specificity score at 95.10%. It was particularly 
efficient in classifying benign lesions. The LM algorithm is known for its fast convergence and it tends to perform 
well when dealing with small to medium-sized datasets, which is often the case in skin cancer classification 
tasks. Additionally, it was observed that increasing the number of epochs led to improved results with the SCG 
learning algorithm, achieving a sensitivity value of 92.60%.

Choudhari et al.84 proposed an ANN-based diagnostic system involving lesion isolation using a maximum 
entropy thresholding measure. Then they utilized GLCM to extract distinctive features from the segmented 
images. Subsequently, a feed-forward ANN classified the input images into either a malignant or benign stage 
of skin cancer, achieving an accuracy of 86.66%. Aswin et al.85 developed a novel skin cancer detection method 
that incorporated genetic algorithms (GA)86 and ANNs. Their model included hair removal as a preprocessing 
step, executed through the medical imaging software, DullRazor87. Additionally, the ROI was isolated using 
the Otsu thresholding method. Unique features of skin lesions were then extracted using the GLCM technique 
followed by optimal feature selection using GAs. Ultimately, the proposed model utilized an ANN to classify 
images into cancerous and non-cancerous categories and achieved an overall accuracy score of 92.30%. The 
structure of the hybrid GA-ANN classifier is shown in Fig. 5b. Xie et al.88 introduced a skin lesion classification 
system designed to categorize lesions primarily into malignant and benign classes. The system operated through 
three key stages. Initially, a self-generating neural network was employed for lesion extraction from images. 
Following this features related to tumor border, color, and texture details were extracted, totalling 57 features, 
with 7 novel features specifically focused on lesion borders. PCA was then applied for dimensionality reduction 
to identify the most optimal feature set. In the final stage, classification was carried out using an ensemble 
neural network model that combined backward propagation neural networks and fuzzy neural networks. The 
model’s classification performance was compared with other classifiers such as SVM, k-NN, RF, and AdaBoost. 
The proposed model exhibited approximately 7.50% higher sensitivity compared to alternative classifiers and 
achieved an impressive accuracy rate of 91.11%.

In the research conducted by Kanimozhi et al.89, the ABCD rules were employed for extracting features from 
lesion images. Their study focused on leveraging ANN with suitable backpropagation algorithms to assist in the 
accurate and automated detection of melanoma, contributing to improving diagnostic capabilities specifically for 

Authors Type Dataset Results

Ercal et al.69, 1994 Malignant/benign 326 images Acc-0.800

Bayot et al.70, 2007 bcc/non-bcc 180 images Acc-0.933

Lau et al.72, 2009 Malignant/benign 448 images Acc-0.899

Mahmoud et al.73, 2011 Malignant/benign 448 images Acc-0.704

Jaleel et al.76, 2012 Malignant/benign 31 images Acc-0.867

Jaleel et al.77, 2013 Malignant/benign 50 images Acc-0.880

Mabrouk et al.78, 2013 mel/nv 140 images Acc-0.910

Masood et al.80, 2014 mel/non-mel 135 images Acc-0.951

Choudhari et al.84, 2014 mel/non-mel 90 images Acc-0.867

Aswin et al.85, 2014 Malignant/benign 30 images Acc-0.923

Xie et al.88, 2016 Malignant/benign Caucasian race and Xanthous race Acc-0.911, Sen-0.950, Spe-0.938

Kanimozhi et al.89, 2016 mel/non-mel 31 images Acc-0.969

Cueva et al.90, 2017 Common mole/uncommon mole/mel 200 images Acc-0.975

Table 4.  A comparative analysis of skin cancer classification methods using ANNs.
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this type of skin cancer. The paper by Cueva et al.90 introduced a mole classification system designed for the early 
diagnosis of melanoma skin cancer. This system extracted features based on the ABCD rules of lesions, focusing 
on asymmetry, borders, color, and diameter of moles. Asymmetry was determined using the Mumford-Shah 
algorithm91, while the Harris–Stephens algorithm92 extracted mole borders. Moles with colors other than black, 
cinnamon, or brown were considered potential indicators of melanoma. Additionally, melanoma moles typically 
have a diameter exceeding 6 mm, which serves as a threshold for their detection. The proposed system utilized a 
feed-forward backpropagation ANN to classify moles into common mole, uncommon mole, or melanoma mole 
categories, achieving an accuracy of 97.51%.

Observations: Like ML classifier-based techniques, ANNs also utilize handcrafted features. GLCM was 
employed by77,78,84,85. Wavelet and curvelet techniques were used by72,76 and73, respectively. The Otsu algorithm 
was employed by85. While the combination of ANNs with handcrafted features has proven effective in capturing 
non-linear relationships within image features, these systems share many limitations with ML-based approaches. 
The manual choice and design of features can be a subjective process, varying among researchers. This subjectivity 
introduces bias and inconsistency in feature extraction, potentially reducing classification accuracy in real-world 
scenarios.

References69,70,72,73,76–78,80,84,85,88–90 all utilize proprietary datasets for testing their methods, limiting 
comparisons with other methods. While69,70,73,80 produce fairly decent results, they do not emphasize the creation 
of an effective set of image features for utilization by their ANN models. On the other hand, Refs.72,76,77,84,89,90 
incorporate sophisticated image processing techniques to capture features but do not focus on optimal feature 
selection, potentially leading to computational inefficiency due to increased features. In contrast, Refs.85,88 
employ GA and PCA-based techniques for feature selection and feature reduction, respectively, resulting in 
improved results. Mabrouk et al.78 also emphasizes the importance of optimal feature selection through the 
application of Fisher’s scoring technique. However, it is important to note that handcrafted features struggle 
to capture intricate and complex patterns present in skin lesions, especially when dealing with subtle or non-
obvious visual cues. This limitation can impact the model’s capacity to accurately distinguish between malignant 
and benign lesions, and it becomes even more pronounced in the context of multi-class classification of skin 
cancer, despite careful feature selection.

Kohonen network-based techniques
Kohonen networks93 offer an alternative to ANNs and traditional ML classifiers when incorporating handcrafted 
features for classification tasks. Renowned for their ability to preserve the topology of input data, Kohonen 
networks prove advantageous in skin cancer classification by maintaining spatial relationships and structures 
within the feature space, potentially capturing essential contextual information. In contrast to ANNs and ML 
classifiers, Kohonen networks inherently perform dimensionality reduction as they map high-dimensional input 
data to a lower-dimensional grid. Moreover, these networks naturally cluster similar patterns together on the 
map, providing an intuitive means to visualize the distribution of different lesion types. This clustering feature 
aids in identifying distinct groups and patterns within the dataset. A comprehensive comparison of skin cancer 
classification methods utilizing Kohonen networks is discussed in Table 5.

In their research, Lenhardt et al.94 presented a skin cancer detection system centred around Kohonen networks. 
The study involved the utilization of synchronous fluorescence spectra from melanoma, nevus, and normal skin 
samples for training the network. To capture the fluorescence spectra of these samples, obtained from human 
patients immediately post-surgery, a fluorescence spectrophotometer was employed. The dimensionality of the 
measured spectra was reduced through PCA. Following this, both Kohonen networks and ANNs underwent 
training using this dataset. Kohonen networks demonstrated superior performance compared to ANNs, 
exhibiting lower classification errors. Mengistu et al.95 introduced a skin cancer detection system that integrated 
Kohonen networks and radial basis function (RBF) neural networks. The input for this system consisted of color 
information, along with features derived from GLCM analysis and morphological characteristics extracted from 
lesion images. The performance of the proposed system was then compared to other classifiers, including k-NN, 
ANN, and Naive Bayes classifier. The results showcased that the amalgamation of the Kohonen network and RBF 
neural network achieved an impressive accuracy of 93.15% and outperformed the other classifiers.

In their work, Sajid et al.96 introduced a skin cancer diagnostic system leveraging Kohonen networks. The 
authors implemented a median filter to efficiently eliminate noise from the images. For image segmentation, 
a region growing and merging algorithm97 was employed on the filtered images. The system utilized a 
combination of textual and statistical features for classification, with statistical features extracted from lesion 
images and textual features extracted from the curvelet domain. The primary goal was to categorize input images 
into malignant and benign classes. The proposed model demonstrated an exceptional accuracy of 98.30%. In 
evaluating the system’s performance, it was compared with other classifiers, including SVM, a backpropagation 
neural network, and a 3-layered neural network. The results indicated that SVM achieved an accuracy of 91.10%, 
the neural network with backpropagation reached 90.40% accuracy, and the 3-layered neural network attained 

Authors Type Dataset Results

Lenhardt et al.94, 2013 Normal/mel/nv 50 images Acc-0.960

Mengistu et al.95, 2015 bcc/mel/scc DermQuest, DermNet Acc-0.932

Sajid et al.96, 2018 Malignant/benign 500 images Acc-0.983

Table 5.  A comparative analysis of skin cancer classification methods using Kohonen networks.
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90.50% accuracy. Notably, these accuracies were considerably lower than the accuracy achieved by the proposed 
system.

Observations: While the ability of Kohonen networks to preserve intricate spatial relationships and perform 
feature reduction is advantageous for skin cancer classification, they also come with certain drawbacks. Their 
reliance on feature engineering and their inability to capture hierarchical relationships stand out as primary 
limitations98. Besides, unlike ANNs, Kohonen networks lack inherent support for end-to-end learning, limiting 
their adaptability to more complex data relationships.

References94,96 incorporate simplistic feature engineering methods for feature extraction and evaluate their 
models on self-procured datasets, limiting fair comparisons with other research. On the other hand, Mengistu 
and Alemayehu95 demonstrates high accuracy and superior performance of Kohonen networks over ANNs and 
traditional ML classifiers. Nevertheless, with the rise of deep CNNs, Kohonen networks have gradually lost their 
relevance.

Deep learning-based techniques
The emergence of DL, a specialized subset of ML, has yielded rapid growth in the fields of pattern learning, image 
classification and recognition. DL models are trained on input data and not programmed explicitly. After the 
training phase, these models act as experts in the domain in which they were trained. Deep neural networks play 
an important role in the classification of skin cancer. In this section, we discuss various types of DL techniques 
that have been trained to classify images and distinguish between different types of skin cancer. Figure  6a 
presents a pie chart illustrating the proportions of research papers based on various DL models. Notably, papers 
utilizing CNNs constitute over 70% of the surveyed literature.

Convolutional neural network-based techniques
In the field of medical imaging, CNNs have demonstrated exceptional performance in tasks involving detection, 
segmentation, and classification. For an in-depth understanding of CNNs’ automated feature extraction abilities, 
readers may refer to key studies in99. CNNs play a significant role in skin cancer classification due to their 
ability to automatically learn intricate patterns and features from images. Unlike traditional methods that rely 
on handcrafted features, these neural networks are adept at capturing hierarchical features within the numerous 
lesion images, recognizing patterns at various levels of abstraction100. Initially, CNNs detect simple features like 
edges and textures, and as the network deepens, they capture more complex structures, such as irregularities 
in symmetry, borders, textures, and other visual cues crucial for distinguishing between different types of skin 
lesions. By stacking convolutional and pooling layers, CNNs gradually refine their feature detection, allowing 
them to identify subtle differences in lesion appearance that might not be apparent to the naked eye. This ability 
enables more accurate diagnosis and can significantly assist dermatologists in identifying early signs of skin 
cancer. In this section, we present a comprehensive discussion of the several CNN-based methods extensively 
used for skin cancer classification. Figure 6b presents a pie chart illustrating the proportions of papers using 
various CNN-based techniques.

Conventional CNN-based techniques  This section outlines the various custom CNN architectures devised by 
researchers for skin cancer classification. Nasr-Esfahani et al.101 developed a CNN with the aim of enhancing the 
accuracy and efficiency of detecting melanoma through automated analysis of clinical images. The CNN consist-
ed of 2 convolutional layers to capture patterns from the images, 2 max-pooling layers to reduce the size of the 
feature maps, a fully connected layer and a final output layer containing 2 neurons, representing the categories 
of malignant and benign. Sabouri et al.’s work102 involved the development and training of CNNs to accurately 
identify and outline lesion borders within medical imaging data. The main objective of this work was to improve 
the precision and automation of lesion border detection, contributing to enhanced medical image analysis tech-
niques for diagnosing and understanding various medical conditions. Ali et al.103 developed LightNet, a CNN 
with fewer parameters and suitable for mobile applications. The study utilized a conventional CNN architecture 
featuring 5 convolutional layers, 3 max-pooling layers, and 2 fully connected layers. To limit the parameters, they 

Fig. 6.  (a) Pie chart illustrating the percentage distribution of papers based on different DL models. (b) Pie 
chart illustrating the percentage distribution of papers based on various CNN-based techniques.
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maintained a moderate number of filters in the convolutional layers. Batch normalization was applied after each 
convolutional layer to expedite convergence and impose regularization. Additionally, dropout was implemented 
in the fully connected layers to mitigate overfitting.

Esteva et al.104 employed a combination of convolutional layers, pooling layers, Inception modules, and 
residual connections allowing the network to learn powerful features from skin lesion images and to achieve 
high accuracy in skin cancer classification. The Inception modules helped to combine convolutional filters in 
parallel for multi-scale feature extraction. Also, they used global average pooling instead of fully connected 
layers to reduce the network’s complexity and avoid overfitting. Ayan et al.105 designed a CNN comprising 11 
layers and emphasized the significance of data augmentation for constructing a robust skin cancer classifier. 
They applied various image augmentation techniques, including random transformations, rotations at different 
angles, shifting, zooming, and flipping. The classifier achieved an accuracy of 78% on the original dataset and an 
accuracy of 81% on the augmented dataset. Mandache et al.106 developed a CNN with a series of convolutional 
layers with varying filter sizes and non-linear activation functions to extract relevant features from 40 full field 
OCT (FF-OCT) images. These features capture various aspects of the basal cell carcinoma morphology such as 
loss of normal skin layering, presence of cystic spaces and retraction of the epidermal-dermal junction.

Along with the conventional convolutional and pooling layers, Namozov et al.107 utilized a parameterized 
activation function called the adaptive piecewise linear unit (APLU). APLU consists of adjustable parameters 
which allows the model to learn more complex and nuanced decision boundaries, potentially leading to 
improved feature discrimination and classification accuracy. In a study conducted by Ahmed et al.108, a standard 
CNN featuring multiple convolutional and pooling layers was utilized to classify lesion images sourced from the 
ISIC archive. The researchers also conducted experiments with Naive Bayes, SVM, k-NN classifiers, with CNNs 
demonstrating superior performance. Mridha et al.109 introduced a customized CNN architecture comprising 
two blocks for the feature extraction phase. In block 1, there were 2 convolutional layers with a kernel size of 
3, accompanied by a pooling layer with a stride of 1, and a dropout layer. Block 2 included two convolutional 
layers with a kernel size of 3, a pooling layer with a stride of 2, and a dropout layer. The output from block 2 was 
flattened and subsequently passed through a final dense layer.

SkinNet-8, designed by Fahad et al.110, is a relatively simple yet computationally efficient CNN with 10 layers, 
including 5 convolutional layers, 3 pooling layers, and 2 dense layers. All these layers have been organized into 3 
blocks. The model begins with an input image of fixed size, processed through the first block, which consists of a 
single convolutional layer followed by a max-pooling layer. The output from the first block feeds into block two 
and block three, each composed of two convolutional layers and a max-pooling layer. The resulting feature maps 
from the last block are flattened into a 1D vector, which is connected to dense layers. Finally, a softmax activation 
function is utilized to perform binary classification. It achieved a remarkable test accuracy of 98.81% on the 
imbalanced ISIC 2020 dataset. Figure 7 shows the architecture of SkinNet-8. Rastegar et al.111 proposed a deep 
CNN with 69 layers, aiming to extract detailed and discriminative features from skin lesion images. The network 
consists of multiple convolutional layers with different filter sizes, 3 × 3, 5 × 5, 7 × 7, and depths. The network 
also contains residual layers, Inception modules and pooling layers accompanied by a final fully connected 
classification layer. A comprehensive comparison of skin cancer classification methods using conventional 
CNNs is discussed in Table 6.

Observations: While conventional CNNs have shown promise in skin cancer classification, they often operate 
with fixed-size convolutional filters, making it challenging to capture long-range dependencies or understand 
the global structure of large images. Additionally, the pooling layers employed in CNNs decrease the spatial 
resolution of feature maps, resulting in information loss. This decrease in spatial resolution might discard crucial 
fine-grained details necessary for precise skin cancer classification.

References101,102,106 make use of proprietary datasets for testing their CNN architectures, limiting comparative 
analysis with other models. While Ali and Al-Marzouqi103 might prove useful for mobile applications, it renders 
low accuracy due to less number of filters in the convolutional layers. Although Ayan and Ünver105 does not 
achieve high accuracy, attributed to the simplistic CNN architecture employed, it still demonstrates satisfactory 
results, emphasizing the crucial role of data augmentation in this domain. The integration of Inception modules 
into CNNs, as demonstrated by104, stands as a crucial advancement, adopted in subsequent research. Namozov 
and Im Cho107 yields good results on the challenging ISIC 2018 dataset. However, they do not consider the 
underrepresented class of benign keratosis. References108,110,111 produce impressive binary classification results 
through relatively simple architectures. Moreover, the study conducted in108 indicates the superior performance 
of DL-based CNN models over traditional ML classifiers. However, they do not evaluate their methods for 
multi-class classification scenarios. With a simple CNN architecture, Mridha et al.109 yields low accuracy for 

Fig. 7.  Architecture of the SkinNet-8 model proposed by Fahad et al.110.

 

Scientific Reports |        (2024) 14:30542 13| https://doi.org/10.1038/s41598-024-81961-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


multi-class classification. This underscores the limitation of simple conventional CNNs in effectively classifying 
diverse categories of skin lesions.

Transfer learning-based techniques  Transfer learning (TL) plays a pivotal role in skin cancer classification by 
leveraging knowledge learned from pre-trained models on large, diverse datasets to improve the performance of 
models trained on smaller skin cancer datasets. This approach is particularly beneficial due to the limited avail-
ability of skin cancer-related data. TL also leads to faster training times112. However, it is important to recognize 
that pre-trained models are typically trained on datasets like ImageNet, which consists of everyday objects, 
scenes, and animals. In contrast, medical images, especially dermoscopic skin lesion images, are highly special-
ized and characterized by unique patterns, textures, and color variations that are tied to biological factors. This 
difference leads to a domain shift between natural and medical images, making it challenging for pre-trained 
models to generalize effectively. If this domain shift is not addressed, models trained on natural images may fail 
to capture essential diagnostic features in medical images, resulting in poor classification performance.

To mitigate this, fine-tuning the pre-trained models on skin lesion datasets is an effective strategy. By gradually 
updating the model’s weights, the model can adapt to the new domain while retaining useful knowledge from 
the original one. A common technique is to freeze the lower layers of the pre-trained model, responsible for 
capturing general features like edges and textures, and only fine-tune the higher layers that learn task-specific 
features. This approach helps prevent overfitting on the small medical dataset while enabling the model to better 
align with the new domain. A comparative analysis of various skin cancer classification methods based on TL is 
presented in Table 7.

A pre-trained deep CNN architecture, VGG16 with the last 3 fine-tuned layers and 5 convolutional blocks was 
proposed by Kalouche et al.113. For fine-tuning, they employed a stochastic gradient descent (SGD) optimizer 
with a low learning rate. This model built on VGG16 produced 78% accuracy for melanoma classification. De 
Vries and Ramachandram114 introduced a multi-scale CNN utilizing the InceptionV3 architecture. They fine-
tuned the pre-trained InceptionV3 model on two distinct resolution scales of input lesion images: a coarse scale 
and a finer scale. The multi-scale network is established by initially processing both the low-resolution image and 
the high-resolution image using the same InceptionV3 feature extractor. The resulting feature vectors from each 
image are combined to form a singular 4096 element vector. This combined vector then undergoes processing 

Authors Type Dataset Results

Kalouche et al.113, 2016 Malignant/benign ISIC database (1280 images) Acc-0.780

De Vries et al.114, 2017 bkl/mel/nv ISIC 2017 Acc-0.903, AUC-0.943

Lopez et al.115, 2017 Malignant/benign ISIC 2016 Acc-0.813, Sen-0.786, Spe-0.840

Mendes et al.116, 2018 bcc/mel MED-NODE, Dermofit AUC (mel: 0.960, bcc: 0.910)

Hosny et al.117, 2018 mel/common nv/atypical nv PH2 Acc-0.986, Pre-0.977, Sen-0.983, Spe-0.989

Rezvantalab et al.118, 2018 akiec/bcc/bkl/df/mel/ nv/atypical nv/vasc HAM10000 Pre-0.890, AUC-0.979

Emara et al.119, 2019 akiec/bcc/bkl/df/mel/ nv/vasc ISIC 2018 Acc-0.947, Sen-0.717, Spe-0.958, AUC-0.838

Gulati et al.120, 2019 mel/non-mel PH2 Acc-0.975, Sen-1.000, Spe-0.969

Le et al.121, 2020 akiec/bcc/bkl/df/mel/ nv/vasc HAM10000 Acc-0.900, Pre-0.810, Sen-0.800, F1 score-0.800

Sagar et al.122, 2020 mel/non-mel ISIC database (3600 images) Acc-0.935, Pre-0.940, Sen-0.770, F1 score-0.850

Shen et al.123, 2022 akiec/bcc/bkl/df/mel/ nv/vasc HAM10000 Acc-0.853

Naeem et al.124, 2022 bcc/bkl/mel/nv ISIC 2019 Acc-0.970, Pre-0.922, Sen-0.922, F1 score-0.922

Table 7.  A comparative analysis of skin cancer classification methods using TL.

 

Authors Type Dataset Results

Nasr-Esfahani et al.101, 2016 Malignant/benign 170 images Acc-0.810, Sen-0.810, Spe-0.800

Sabouri et al.102, 2016 mel/non-mel 1730 images Acc-0.867

Ali et al.103, 2017 Malignant/benign ISIC 2016 Acc-0.816, Sen-0.149, Spe-0.980

Esteva et al.104, 2017 Malignant/benign, bkl/benign ISIC archive Acc-0.721

Ayan et al.105, 2018 malignant/benign ISIC dataset (1000 images) Acc-0.810

Mandache et al.106, 2018 bcc/benign 40 images Acc-0.959, Sen-0.952, Spe-0.965

Namozov et al.107, 2018 akiec/bcc/df/mel/nv/vasc ISIC 2018 Acc-0.959, Pre-0.955, Sen-0.955, Spe-0.955, AUC-0.98

Ahmed et al.108, 2023 Malignant/benign ISIC archive (2635 images) AUC-0.995

Mridha et al.109, 2023 akiec/bcc/df/mel/nv/vasc HAM10000 Acc-0.820

Fahad et al.110, 2023 Malignant/benign ISIC 2020 Acc-0.988, Pre-0.988, Sen-0.988, Spe-0.988, F1 score-0.988

Rastegar et al.111, 2023 Malignant/benign ISIC 2016, ISIC 2017, PH2 ISIC 2016: Acc-0.952, ISIC 2017: Acc-0.994, PH2: Acc-0.972

Table 6.  A comparative analysis of skin cancer classification methods using conventional CNN-based 
techniques.
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through a fully connected layer. Ultimately, a three-way softmax function is applied to generate probability 
predictions for the three classes: melanoma, seborrheic keratosis, and nevus.

Like Kalouche et al.’s approach113, Lopez et al.115 proposed a deep CNN built on the VGG16 architecture. 
This pre-trained model was then fine-tuned by replacing the last 2 fully connected layers with new layers 
specific to the binary classification task. Additionally, they replaced the activation function in the modified 
layer from softmax to sigmoidal. Mendes and da Silva116 proposed a deep CNN architecture based on pre-
trained ResNet152 to classify 12 different kinds of skin lesions. Initially, the proposed model was trained on 3797 
lesion images collected from the MED-NODE, Dermofit, and AtlasDerm datasets. Later, 29 times augmentation 
was applied depending on lighting positions and scale transformations. Hosny et al.117 utilized the pre-trained 
AlexNet architecture for feature extraction while developing their classification model. Here, the first few layers 
of AlexNet are kept frozen (not further trained), while the last layers are replaced with a new softmax layer. This 
new layer combines the extracted features to classify melanoma, common nevus and atypical nevus lesions.

Rezvantalab et al.118 employed 4 deep CNNs, namely, InceptionV3, InceptionResNetV2, ResNet152, and 
DenseNet201. Each network underwent fine-tuning across all layers, with the top layers replaced by a global 
average pooling layer and a softmax layer. DenseNet201 demonstrated superior performance with an AUC score 
of 0.979. The study also compared these networks’ performance with highly trained dermatologists, revealing 
that the networks outperformed dermatologists by at least 11%. Emara et al.119 employed the InceptionV4 
backbone and introduced modifications by incorporating feature reuse through a residual connection. This 
connection played a crucial role in merging features extracted from earlier layers with those from high-level 
layers, contributing to an enhancement in the classification performance of the model on the challenging ISIC 
2018 dataset. Gulati et al.120 explored two ways of using pre-trained models. Similar to Hosny et al.’s work117, they 
used fine-tuned AlexNet. They also used VGG16 as a feature extractor. Here, instead of fine-tuning, the features 
extracted by the layers of VGG16 are fed into a new fully connected layer trained specifically for melanoma 
classification. The modified VGG16 network outperformed AlexNet and achieved an accuracy of 97.50% on the 
PH2 dataset.

Le et al.121 utilized the ResNet50 backbone with additional modifications for the classification of 7 types of skin 
cancer. Their adaptations included the use of global average pooling instead of simple average pooling and the 
introduction of a dropout layer between the last 2 fully connected layers. Furthermore, they used a combination 
of weighted loss and focal loss to optimize their model. Sagar et al.122 employed several pre-trained models for 
the binary classification of melanoma. They performed experiments using InceptionV3, InceptionResNetV2, 
ResNet50, MobileNet and DenseNet169, out of which ResNet50 emerged with superior performance. Shen et 
al.123 leveraged a low cost and high performance data augmentation strategy along with TL for automatic skin 
cancer screening in rural communities. Their network, built on EfficientNetB7 architecture, achieved a multi-
class classification accuracy of 85.30% on the HAM10000 dataset. Naeem et al.124 proposed an architecture based 
on the VGG16 model, enhancing its depth by adding two additional convolutional blocks. This modification was 
aimed at enabling the network to learn fine-grained features more effectively, thereby improving its capacity for 
detailed feature extraction for skin cancer classification.

Observations: While TL significantly contributes to skin cancer classification by harnessing the knowledge 
acquired from pre-trained models, sometimes, these pre-trained models might have been trained on datasets 
that do not align perfectly with the target task or have different classes. In such cases, pre-trained models might 
not adapt well to these differences and the relevance of the pre-trained features to the skin cancer classification 
task might be limited. Therefore, it becomes crucial to fine-tune the model appropriately. Inadequate fine-tuning 
choices could lead to a model that struggles to generalize effectively to the target dataset.

While emphasizing the significance of data augmentation, Mendes and da Silva116 does not assess their 
network’s performance on larger datasets, giving rise to concerns regarding its generalizability. Although 
Refs.117,120 achieve impressive results on the small PH2 dataset, like116, their networks are not tested on larger 
datasets, restricting broader evaluation. References113,122,124 demonstrate promising outcomes, but they evaluate 
their models on a subset of images rather than the entire dataset, making direct comparisons challenging. 
Although Refs.113,115 use the same network, Lopez et al.115 yields enhanced results over Kalouche et al.113 
demonstrating the importance of suitable fine-tuning. The study conducted in118 demonstrates that TL-based 
networks surpassed dermatologists in achieving precise classification, thereby underscoring the significance of 
incorporating such models in a clinical setting. While Emara et al.119 presents a new perspective by introducing 
a modified Inception architecture along with residual connections, it is noteworthy that the sensitivity score of 
their model is relatively low. This poses a significant limitation, as misclassifying an individual with cancer as not 
having the condition carries a higher risk than the opposite scenario. Le et al.121 introduces a hybrid loss approach 
to tackle class imbalance. However, like Emara et al.119, the sensitivity score of their model is also observed to 
be low. DeVries and Ramachandram114 introduces an innovative multi-scale network that not only delivers 
impressive outcomes but also opens new pathways for models using feature fusion. The underwhelming multi-
class classification outcomes observed on the challenging HAM10000 dataset in123 underscore the necessity for 
more effective strategies beyond vanilla TL-based approaches.

Attention-based techniques  Incorporating attention mechanisms within CNNs for skin cancer classification 
enhances models’ ability to concentrate on crucial features within the skin lesions by assigning weights to the 
feature maps according to their relevance to the lesions. This integration also helps suppress image artifacts, like 
portions of uninfected skin, hair, and veins, contributing to more accurate and precise diagnostic outcomes. A 
comparative analysis of various skin cancer classification methods based on attention mechanisms is presented 
in Table 8.

Zhang et al.125 proposed an attention residual learning CNN (ARL-CNN) model for the classification of skin 
lesions. This model comprised multiple ARL blocks, a global average pooling layer, and a classification layer. Each 
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ARL block employed both residual learning and a unique attention learning mechanism to improve its capacity 
for capturing discriminative representations. The attention learning mechanism, rather than introducing extra 
learnable layers, aimed to leverage the inherent self-attention ability of deep CNNs. Specifically, it utilized feature 
maps learned by a higher layer to generate the attention map for a lower layer. Wu et al.126 introduced the ARDT-
DenseNet, a densely connected convolutional network with attention and residual learning, for skin lesion 
classification. The ARDT block comprised dense blocks, transition blocks, and attention and residual modules. 
In comparison to a residual network with an equivalent number of convolutional layers, the parameter size of 
the proposed densely connected network was halved. The enhanced densely connected network incorporated 
an attention mechanism and residual learning after each dense block and transition block, providing additional 
functionality without introducing extra parameters.

Xue et al.127 introduced a novel network designed to differentiate between visually similar skin lesions, a 
challenging task for conventional neural networks. They utilized ResNet50 as the backbone network for 
extracting features from dermoscopic images. In addition to this, they developed a novel distinct region proposal 
module (DRPM), which is enhanced by the sequential computation of channel and spatial attention mechanisms. 
These attention mechanisms are crucial for focusing on critical areas within the lesions, allowing the model to 
identify and extract features from distinct regions that are particularly indicative of specific lesion types. Features 
extracted from these regions are then combined with those previously derived from the original dermoscopic 
images. This concatenated feature set forms the comprehensive input for the final classification task, aiming to 
accurately categorize skin lesions based on their subtle differences.

Ding et al.128 proposed the Deep Attention Branch Network (DABN) model, incorporating attention 
branches to enhance traditional deep CNNs. In the training stage, the attention branch was crafted to acquire 
the class activation maps, subsequently serving as attention maps directing the network’s focus to discriminative 
regions in skin lesions. DABN demonstrated applicability across diverse deep CNN structures and underwent 
end-to-end training. The DABN model incorporated 2 attention branches into the baseline architecture, which 
consisted of 4 dense blocks, 3 transition layers, and a classification layer. The dense block utilized the outputs 
of all preceding layers as input for each layer, promoting feature reuse and including multiple 1 × 1 and 3 × 3 
convolutional layers. The transition layer incorporated a 1 × 1 convolutional layer and 2 × 2 average pooling to 
reduce the channel and size of the feature map. Finally, the classification layer employed global average pooling 
and 2 fully connected layers to generate the probability score for each category.

Following Xu et al.’s work129, Datta et al.130 proposed a skin cancer classification model using InceptionResNetV2 
as backbone, aided with a soft attention unit. Here, the soft attention unit consists of two phases, a bilinear 
attention layer and a step to compute the weighted feature maps. Based on Eq. (1), the weighted feature maps are 
calculated by passing the feature tensor t ∈ Rh×w×d to a 3D convolution layer with weights Wk ∈ Rh×w×d×K

, where K represents the number of 3D weights. Following this, a softmax function is applied to normalize each 
of the K attention maps. These normalized maps are then aggregated to create a composite attention map, which 
acts as a weighting function denoted as α. This α value is used to scale the input tensor t, further adjusted by 
a trainable scalar γ. Ultimately, the scaled attentive features fsa are combined with the input tensor t. Figure 8 
depicts the overview of this soft attention unit.

	
fsa = γt

((
K∑

k=1

softmax(Wk ∗ t)

))
� (1)

Similar to Datta et al.’s work130, Alhudhaif et al.131 proposed an attention module, where they analyzed the 
feature maps and assigned weights based on their relevance to the lesion, highlighting important areas for 
further processing. They built their classification model by first employing two convolutional layers to extract 
basic features from the input images. Then, they added their attention block followed by four more convolutional 
layers. Finally, they used a multi-class prediction layer to obtain the output probabilities. They were able to 
achieve an impressive accuracy of 95.90% on the challenging HAM10000 dataset.

Authors Type Dataset Results

Zhang et al.125, 2019 bkl/mel/nv ISIC 2017 Sen-0.770, AUC-0.920

Wu et al.126, 2020 Malignant/benign ISIC 2016, ISIC 2017 ISIC 2016 (Acc-0.857, AUC-0.837), ISIC 2017 
(AUC-0.918)

Xue et al.127, 2020 bkl/mel ISIC 2017 Sen-0.750, Spe-0.934, AUC-0.932

Ding et al.128, 2021 bkl/mel ISIC 2016, ISIC 2017 ISIC 2016 (Pre-0.719), ISIC 2017 (AUC-0.922)

Datta et al.130, 2021 HAM10000 (akiec/bcc/bkl /df/mel/nv/vasc), 
ISIC 2017 (bkl/nv) HAM10000,ISIC 2017

HAM10000 (Acc-0.934, Pre-0.937, AUC-
0.984), ISIC 2017 (Acc-0.904, Sen-0.916, Spe-
0.833, AUC-0.959)

Alhudhaif et al.131, 2023 akiec/bcc/bkl/df/ mel/nv/vasc HAM10000 Acc-0.959

Roy et al.132, 2024 akiec/bcc/bkl/df/ mel/nv/vasc HAM10000 Acc-0.908, Pre-0.908, Sen-0.908, F1 score-0.912

Table 8.  A comparative analysis of skin cancer classification methods using attention-based CNN models.
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Roy et al.132 used the wavelet transform technique, a soft attention module, and their novel Symmetry-aware 
Feature Attention (SaFA) module for skin cancer classification. The SaFA module was designed to extract 
symmetry-related information from the lesions and detect semantic variations. This module consists of two 
key components: the Feature Difference-aware Block (FDaB) and the Symmetry-aware Block (SaB). The 
FDaB processes an input feature map with dimensions H × W × C  and reduces it to H × W × 1 using 
three separable convolution layers. The resulting feature map is reshaped into two feature maps of dimensions 
H × W  and W × H  respectively, which are fed into two long short-term memory (LSTM) layers to capture 
semantic changes across spatial dimensions H  and W . The outputs from these LSTM layers are reshaped 
back to H × W × 1 and concatenated to produce FLST M . The SaB takes this FLST M  as its input to generate 
Fsymmetry , by calculating pixel-wise feature similarity between FLST M  and its transpose. This represents the 
symmetry-aware features. They first used a gradient-based fusion technique to fuse the features extracted by 
wavelet transform and soft attention and then concatenated it with the symmetry-aware features.

Observations: Attention mechanisms are indeed an effective way to detect skin cancer and contribute 
to improved classification performance. However, they come with potential disadvantages. One significant 
challenge is the increased computational complexity introduced by attention mechanisms, leading to higher 
resource requirements during both training and inference. Additionally, attention-based models may be more 
susceptible to overfitting, particularly when dealing with limited datasets. The intricate nature of attention 
mechanisms can result in capturing noise and anomalies as if they were specific patterns, potentially impacting 
the model’s performance on unseen data133.

While the approaches demonstrated in125,126 are innovative, attention mechanisms that assign weights to 
relevant lesion areas have been shown to yield better results. Although Xue et al.127 proposes a novel approach, 
the sequential application of channel and spatial attention mechanisms may cause one to overshadow the 
other. Combining the attention maps first and then applying them to the features would ensure a balanced 
and simultaneous influence on feature refinement. While Ding et al.128 produce effective results using their 
novel DABN model, they do not provide results for multi-class classification. Notably, Refs.130–132 demonstrate 
exceptional effectiveness but face challenges in classifying cancer types with fewer samples. To address this 
issue, one possible mitigation approach can involve employing a combination of transfer learning with few-
shot learning or zero-shot learning. Another potential solution can involve generating synthetic samples of the 
underrepresented classes using GAN-based models, providing a more sophisticated alternative to simple data 
augmentation techniques. Also, the combination of wavelet transform, soft attention, and SaFA module, in132, 
can be computationally intensive. Moreover, although attention mechanisms offer a degree of interpretability 
by emphasizing crucial parts of the input images, the specific interpretation of attention weights can sometimes 
be confusing. Comprehending the exact reasoning behind the model’s attention-based decisions may pose 
challenges.

Ensemble-based techniques  Ensemble techniques within DL consolidate predictions from multiple individual 
base models to generate more reliable predictions. By aggregating the knowledge from diverse models, ensemble 
methods commonly showcase enhanced adaptability to new data by diminishing errors in bias and variance. In 
the context of skin cancer, where lesion appearance can vary widely, ensemble techniques enable the system to 
recognize a broader range of features associated with different types of skin lesions. A comprehensive study of 
different methods for skin cancer classification using ensemble techniques is provided in Table 9. To facilitate a 
better generalization for the readers, we have adopted a broader interpretation of ensemble techniques, encom-
passing any combination of models, including strategies such as feature concatenation, fusion, and stacking, in 
addition to traditional ensemble approaches.

Harangi et al.’s study134 involved using various deep CNN architectures like AlexNet, VGGNet, and 
GoogLeNet. The final prediction was determined through a weighted majority vote, with each CNN’s vote being 
weighted by its confidence as indicated by the softmax output. Shahin et al.135 utilized two pre-trained deep 
CNN architectures, ResNet50 and InceptionV3, as distinct models in their ensemble. Instead of simply averaging 
the predictions from these individual models, the features extracted from both CNNs were concatenated and 

Fig. 8.  Overview of the soft attention unit proposed by Datta et al.130.
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passed through a fully connected layer. Subsequently, the output of the fully connected layer was directed to 
a final layer equipped with a softmax activation function. Serte et al.136 introduced a Gabor wavelet137 based 
deep CNN. The approach involved decomposing input images into seven directional sub-bands. These seven 
sub-band images, in conjunction with the input image, acted as inputs for eight parallel CNNs, producing eight 
probabilistic predictions. The classification of skin lesions was accomplished through decision fusion using the 
sum rule. The Gabor-based strategy facilitated directional decomposition, allowing each sub-band to contribute 
isolated decisions that could be fused to enhance overall performance.

Aldwgeri et al.138 proposed an ensemble approach using multiple pre-trained CNN architectures like VGG16, 
ResNet50, InceptionV3, Xception, and DenseNet121. The predicted probabilities of each CNN for 7 different 
types of skin lesions were weighted and averaged to generate the final ensemble prediction. El-Katib et al.139 
leveraged three pre-trained CNNs, GoogLeNet, ResNet101, and NasNetLarge for skin cancer classification. They 
combined the results from all the individual models into a global decision system based on a weighted approach, 
where each model’s weight was determined according to their individual accuracies. Bajwa et al.140 employed 
four deep CNN architectures, ResNet152, DenseNet161, SEResNeXt101 and NASNet to capture features from 
the skin lesion images focusing on aspects like color, texture, and borders. Predictions from the individual deep 
CNNs were not simply averaged. Instead, an ensemble learning approach was used to boost the accuracy and 
robustness of the model.

Gessert et al.141 utilized an ensemble of EfficientNet models for the classification of skin cancer on the 
imbalanced ISIC 2019 dataset. To address the challenge of class imbalance, they employed a loss balancing 
approach. This involved implementing a weighted cross-entropy loss function, where the weights assigned to 
classes were determined by their frequency in the training set. Imran et al.142 used an ensemble of three separate 
models, VGGNet, ResNet, and CapsNet. Here, predictions from each model were combined using majority 
voting, where the most frequent prediction becomes the final output. Hasan et al.143 introduced a hybrid CNN 
model comprising three distinct feature extractor modules, which are integrated to enhance the depth of feature 
maps for skin lesions. The fused feature maps undergo classification using separate fully connected layers, and 
their predictions are then ensembled to determine the lesion class. In the model’s architecture, FMG-1, FMG-2, 
and FMG-3 represent the three feature map generator modules. In the first level of ensembling, feature fusion 
is conducted through both channel averaging and channel concatenation. Ultimately, the output probability is 
determined by averaging the outputs of the fully connected layers, referred to as second level ensembling.

Ichim et al.144 examined two ensemble models. The first model consisted of three neural networks, MobileNet, 
DenseNet121, and DenseNet169, with an ensemble of individual decisions determined by the weights associated 
with each individual network. The second model incorporated two networks, MobileNet and DenseNet169, 
and followed a horizontal voting approach, where the ensembling was determined by the voting from the best 
models associated with the considered number of epochs. The second ensemble strategy was observed to deliver 
superior results compared to the first. Sarkar and Ray145 employed three deep CNN architectures, ResNet50, 
InceptionResNetV2, and DenseNet201, each of which was aided with an attention module. Subsequently, their 
prediction scores were combined using a novel classifier combination method based on Dempster–Shafer 
theory146. Ayesha et al.147 employed three pre-trained CNN models, VGG16, VGG19, and ResNet50, as feature 
extractors. The extracted features were concatenated into a composite feature vector, which was subsequently 
passed through a final dense layer for classification. Mandal et al.148 introduced a unique feature fusion method, 
combining the outcomes of two deep learning models. Their approach utilized Xception and Google’s Big 
Transfer (BiT-M) model as base learners, complemented by a squeeze and excitation attention module149 to 
improve the fused feature maps. This feature fusion network achieved an impressive accuracy of 79.50% on the 
challenging ISIC 2017 dataset.

Authors Type Dataset Results

Harangi et al.134, 2018 bkl/mel/nv ISIC 2017 Acc-0.838, AUC-0.848

Shahin et al.135, 2018 akiec/bcc/bkl/df/mel/nv/vasc ISIC 2018 Acc-0.899, Pre-0.862, Sen-0.796

Serte et al.136, 2019 bkl/mel/nv ISIC 2017 AUC-0.910

Aldwgeri et al.138, 2019 akiec/bcc/bkl/df/mel/nv/vasc ISIC 2018 Acc-0.970, Sen-0.800, Spe-0.981

El-Khatib et al.139, 2020 mel/common nv PH2 Acc-0.933, Sen-0.923, Spe-0.941

Gessert et al.141, 2020 akiec/bcc/bkl/df/mel/nv/vasc/scc ISIC 2019 Acc-0.926

Bajwa et al.140, 2020 23 classes DermNet Pre-0.798, Sen-0.799, Spe-0.984

Imran et al.142, 2022 Malignant/benign ISIC dataset Acc-0.935, Pre-0.94, Sen-0.87, Spe-0.84, F1 score-0.92

Hasan et al.143, 2022 ISIC 2016 (mel/ nv), ISIC 2017 (bkl/mel/nv), ISIC 
2018(akiec /bcc/bkl/df/ mel/nv/vasc)

ISIC 2016, ISIC 2017, 
ISIC 2018

ISIC 2016 (AUC-0.960), ISIC 2017 (AUC-0.950), 
ISIC 2018 (AUC-0.970)

Ichim et al.144, 2023 mel/non-mel HAM10000 Acc-0.941, Pre-0.940, Sen-0.940, F1 score-0.940

Sarkar et al.145, 2023 akiec/bcc/bkl/df/mel/nv/vasc HAM10000 Acc-0.932, Pre-0.931, Sen-0.932, F1 score-0.931

Ayesha et al.147, 2023 akiec/bcc/bkl/df/mel/nv/vasc ISIC dataset Acc-0.976, Pre-0.970, Sen-0.960, F1 score-0.960

Mandal et al.148, 2024 bkl/mel/nv ISIC 2017 Acc-0.795, Pre-0.791, Sen-0.795, F1 score-0.792

Gairola et al.150, 2024 akiec/bcc/bkl/df/mel/nv/vasc HAM10000 Acc-0.920, Pre-0.690, Sen-0.920, F1 score-0.730

Naeem et al.151, 2024 akiec/bcc/bkl/df/mel/nv/vasc/scc 10,284 images Acc-0.982, Pre-0.983, Sen-0.984, F1 score-0.984, 
AUC-0.993

Table 9.  A comparative analysis of skin cancer classification methods using ensemble techniques.
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Gairola et al.150 developed a deep network that leverages feature fusion to enhance skin cancer classification 
performance. The network features two main components: an improved single block (ISB) and an improved 
fusion block (IFB). The ISB increases the efficiency of a single CNN by enlarging the skin lesion feature map 
using zero padding, a convolutional layer, and ReLU activation. The IFB enhances the network’s capability by 
capturing extensive contextual information and global features through multi-dimensional exploration. They 
applied the ISB to enhance ResNet50 and ResNet101V2 architectures, combined their outputs, and utilized the 
IFB for the fusion and classification task. Naeem et al.151 employed borderline synthetic minority oversampling 
technique (SMOTE) to address class imbalance in skin cancer datasets. For feature extraction, they utilized both 
the Xception and ResNet101 models. The extracted features were then concatenated and passed through an 
additional convolutional layer. Afterwards, the feature map was flattened and used for classification to predict 
the skin cancer types.

Observations: Ensemble methods involve training multiple models, and various strategies can be employed 
to combine their prediction scores, creating robust models without the need to repeatedly train individual base 
learners. However, this approach may introduce increased computational constraints and resource requirements 
as the number of base learners grows, potentially impacting deployment on real-time applications. Moreover, 
building and managing an ensemble also demands careful consideration of model selection, training, and 
integration, adding complexity and time consumption to the process.

Although Refs.134,136,138–140,142,144 produce impressive results, they employ simple majority voting, sum rule 
or weighted average based algorithms to combine the predictions from base learners. The implementation 
of more sophisticated combination algorithms for handling uncertain classes could potentially improve 
predictions. Additionally, in136, the Gabor wavelets employ parameters such as frequency and orientation that 
require meticulous tuning to achieve optimal performance. Gessert et al.141 introduces an innovative load 
balancing approach to address the class imbalance issue. Nonetheless, an enhanced ensembling strategy can 
further improve overall performance. References135,143,148,150 leverage the feature fusion strategy to produce 
enhanced feature maps with discriminative information, resulting in impressive test results. Optimizing feature 
selection before passing feature maps to the classification layer may further enhance performance. Sarkar et al.145 
boasts remarkable results on the challenging HAM1000 dataset. However, the Dempster–Shafer theory-based 
combination introduces computational intensity, with complexity scaling up as the number of base learners 
increases. Ayesha et al.147 achieved promising results on the ISIC dataset; but, the authors did not evaluate their 
model on additional datasets, leaving its generalizability untested. Naeem and Anees151 demonstrates impressive 
results; however, the use of a proprietary dataset limits the ability to directly compare their findings with other 
studies.

Generative adversarial network-based techniques
The main utility of a GAN-based model lies in its capacity to generate synthetic samples that closely resemble 
real ones, preserving the same underlying data distribution152. Although GANs are not conventionally used 
directly for classification tasks such as skin cancer classification, they can indirectly contribute by addressing the 
imbalanced skin cancer datasets. GANs have the potential to generate synthetic images for underrepresented 
classes, thereby alleviating class imbalances and augmenting the dataset153. Table 10 presents a comprehensive 
overview of GAN-based techniques applied to skin cancer classification, detailing the diagnosed skin cancer 
types, datasets used and the achieved results.

Rashid et al.154 introduced a skin lesion classification system based on GANs. In their approach, they 
performed data augmentation on a training set of images by incorporating synthetic skin lesion images 
generated using a GAN. The generator module in their system employed a deconvolutional network, while 
the discriminator module used a CNN as the classifier. The CNN was trained to classify skin lesions into seven 
different categories. The proposed GAN-based approach outperformed both ResNet50 and DenseNet, achieving 
an accuracy of 86.10% for skin lesion classification. Bisla et al.155 introduced an approach that combines DL 
for data refinement and GANs for data augmentation. In their proposed framework, the initial step involved 
data purification using conventional image processing methods, followed by lesion segmentation utilizing a 
U-Net architecture. Subsequently, they employed decoupled deep convolutional GANs (DCGANs) to generate 
additional data. This refined and augmented dataset was then used to fine-tune a pre-trained ResNet50 model 
for the classification task, categorizing dermoscopic images into 3 types. Figure 9a,b depict the block diagram of 
this system and the architecture of the DCGAN model, respectively.

Chen et al.156 proposed a novel data augmentation approach for skin lesions employing a Self-Attention 
Progressive Generative Adversarial Network (PGAN) in their study. They employed stabilization techniques to 
enhance this generative model, resulting in an accuracy of 70.10%. Cheng et al.208 introduced a GAN architecture 
featuring multiple convolutional layers and upsampling in the generator module. Their discriminator module 
consisted of a CNN and a gradient penalty function, aimed at improving image quality and preventing artifacts.

Authors Type Dataset Results

Rashid et al.154, 2019 akiec/bcc/bkl/df/mel/nv/vasc ISIC 2018 Acc-0.861

Bisla et al.155, 2019 bkl/mel/nv ISIC 2017 Acc-0.861, AUC-0.915

Chen et al.156, 2022 akiec/bcc/bkl/df/mel/nv/vasc ISIC 2018 Acc-0.700

Cheng et al.208, 2022 Malignant/benign ISIC 2020 AUC-0.899

Table 10.  A comparative analysis of GAN-based skin cancer classification methods.
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Observations: GAN-based models focus on creating synthetic data that mirrors the characteristics of a 
specified dataset. This principle holds significant promise in medical imaging, particularly in addressing the 
prevalent issue of limited data availability. However, in the context of skin cancer classification, the usefulness of 
GANs can be limited, as they often fail to address several domain-specific challenges. Skin lesions vary widely 
in size, shape, color, and texture, making it challenging for GANs to capture the subtle differences between 
benign and malignant lesions. These models often struggle with generating fine-grained details, such as irregular 
borders, asymmetry, and pigmentation variations, which are crucial for accurate diagnosis. GAN-generated 
images may appear blurry or overly smooth and lack the diagnostic precision needed. Additionally, the synthetic 
images might exhibit limited diversity and struggle to generalize effectively to new data, potentially causing 
overfitting. The training process for GANs can be computationally demanding and time-consuming, posing 
further challenges for their practical implementation in real-time clinical applications.

The outcomes of Refs.154,156,208 appear unsatisfactory, indicating the necessity for greater emphasis on 
enhancing the generator module’s effectiveness. Bisla et al.155 yields impressive results despite being a heavy 
network. They employed two separate DCGAN models to generate synthetic images for the underrepresented 
classes of melanoma and seborrheic keratosis in the ISIC 2017 dataset. Exploring the application of conditional 
deep convolutional GANs can help reduce computational constraints157.

Vision transformer-based techniques
ViTs have shown immense promise in various medical image analysis tasks, including skin cancer classification158. 
Their role in skin cancer classification involves leveraging their ability to learn representations from images 
broken down into patches and capture intricate patterns and features that distinguish among different types of 
skin lesions. Moreover, ViTs provide attention maps, highlighting areas, where the model focuses its attention159. 
In skin cancer classification, this can aid dermatologists in understanding which regions or features the model 
uses to make its predictions, contributing to interpretability. Table 11 provides a comprehensive list of ViT-based 
skin cancer classification techniques, highlighting the diagnosed skin cancer type, dataset, and the obtained 
results.

Aladhadh et al.160 designed a two-tier framework to classify skin cancer. In the first stage, they applied 
various data augmentation techniques to tackle class imbalance in the HAM10000 dataset. In the second stage, 
they employed a medical ViT, where the lesion images of size 72 × 72 were fed as input and each image was 
split into nine patches. Their transformer comprised three layers: an embedding layer, an encoder layer and a 
classifier layer. In the embedding layer, the transformer processed each patch as an individual token and then 
mapped it to a specific dimension with a learnable linear projection. The encoder layer contained self-attention 
and concatenation layers. The classifier layer predicted the final classification decision. Arshed et al.161, in their 
study, compared a fine-tuned ViT with various pre-trained CNN models of the ResNet, DenseNet and VGG 
families. According to their experiments, the ViT model outperformed all the other TL-based CNN models with 
an accuracy of 92.14%.

A four-block approach was proposed by Yang et al.162.It refers to the four-block architecture devised by 
their team. In the first block, seven different classes of cancer were balanced using various data augmentation 
methods. The image restructuring block formed the second block, which was responsible for splitting a 2D 
input image into a sequence of patches of the same size. These patches underwent flattening into tokens with 
consistent dimensions, followed by positional embedding to retain spatial information. The resulting output 
served as the input for the subsequent transformer encoder block. The third block comprised the transformer 
encoder block, featuring N repeated layers. Each layer contained a multi-head self-attention layer and a fully 

Authors Type Dataset Results

Aladhadh et al.160, 2022 akiec/bcc/bkl/df/mel/nv/vasc HAM10000 Acc-0.961, Pre-0.960, Sen-0.965, F1 score-0.970

Arshed et al.161, 2023 akiec/bcc/bkl/df/mel/nv/vasc HAM10000 Acc-0.921, Pre-0.926, Sen-0.921, F1 score-0.922

Yang et al.162, 2023 akiec/bcc/bkl/df/mel/nv/vasc HAM10000, Dermofit HAM10000 (Acc-0.941), Dermofit (Acc-0.805)

Krishna et al.163, 2023 akiec/bcc/bkl/df/mel/nv/vasc HAM10000 Acc-0.974

Table 11.  A comparative analysis of ViT-based skin cancer classification methods.

 

Fig. 9.  (a) Block diagram of the GAN-based model proposed by Bisla et al.155; (b) Architecture of the DCGAN 
proposed by Bisla et al.155.
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connected feed-forward network. The features derived from this encoder were employed for cancer classification 
in the final classification block. This block included a flatten layer, two normalization layers, a dense layer, and a 
softmax layer. This approach demonstrated promising results, surpassing other attention-based methods with an 
impressive classification accuracy of 94.10%. Krishna et al.163 leveraged ViT-based GANs (ViTGANs) to generate 
synthetic images as a solution to address the issue of class imbalance. Subsequently, they utilized a ViT consisting 
of identical layers of multi-head self-attention blocks and multi-layer perceptron (MLP) blocks to extract image 
features. These extracted features were then forwarded to a classifier for the estimation of class labels.

Observations: ViTs, due to their built-in self-attention mechanisms, are experts in capturing global 
relationships among different parts of an image without the constraint of localized receptive fields. However, 
they are computationally intensive and consume high memory, especially as the image resolution increases. Since 
ViTs rely on understanding relationships between image patches, they benefit from large and varied datasets and 
may not generalize well if the images are limited or lack diversity. Moreover, ViTs process images in a sequence 
of non-overlapping patches, potentially losing detailed spatial information, crucial for precise lesion analysis164.

References160–163 demonstrate impressive results underscoring the efficiency of ViTs. Moreover, Yang et al.162 
retains the spatial information by injecting additional positional embeddings into the tokens, allowing the model 
to learn and distinguish the position of tokens in the sequence. However, Krishna et al.163 demands substantial 
computational resources since they employ ViTGANs for image generation as well as ViTs for classification. 
Also, neither of these papers test their method on smaller datasets to validate the results.

Segmentation-guided classification techniques
In the context of skin cancer classification, segmentation-guided classification techniques serve to be extremely 
powerful. It helps isolate the lesion from the surrounding skin and other artifacts in the image. This reduction 
in noise and background interference leads to a cleaner input for the classification model, potentially improving 
its performance. These techniques enhance the extraction of features specifically from the identified ROI. This 
results in a more precise representation of the skin lesion, allowing the classification model to focus solely 
on relevant information. Table 12 provides a comprehensive list of various segmentation-guided skin cancer 
classification techniques.

Yu et al.165 introduced a two-stage framework for melanoma detection. The first stage involved lesion 
segmentation, where a fully convolutional residual network (FCRN) with 16 residual blocks was employed 
to accurately delineate the skin lesion from the surrounding healthy skin. This ensured that the subsequent 
classification focused specifically on the relevant region. In the second stage, a distinct ResNet architecture was 
utilized to classify the segmented lesion as either melanoma or non-melanoma. The melanoma classification 
achieved an accuracy of 85.50% with segmentation and 82.80% without segmentation on the ISIC 2016 dataset. 
The framework proposed by Al-masni et al.166 integrated two key stages: a skin lesion boundary segmentation 
stage and a multiple skin lesion classification stage. Initially, skin lesion boundaries were segmented from 
dermoscopy images using a full resolution convolutional network (FrCN). Subsequently, various deep CNNs, 
including Inceptionv3, ResNet50, InceptionResNetv2, and DenseNet201, were employed for the classification of 
the segmented skin lesions. The first stage, accomplished by FrCN, was crucial as it extracted prominent features 
essential for diagnosing various types of skin lesions. The selection of a promising classifier was determined 
through thorough testing of various CNNs.

Hasan et al.167 proposed the Dermo-DOCTOR system, utilizing end-to-end dual encoders for both 
segmentation and classification tasks. The model incorporated two distinct encoders, each specialized in 
extracting different features from input images. Encoder 1 focused on global features, capturing the overall 
structure and shape of the lesion, while encoder 2 concentrated on local features, extracting fine-grained details 
within the lesion. These encoders were seamlessly integrated into a single, end-to-end trainable architecture, 
enabling simultaneous detection and recognition. The features extracted from both encoders were fused and 
directed into two separate branches: the detection branch, responsible for localizing the precise boundaries of 
the lesion within the image, and the recognition branch, which classified the lesion into different categories. 
Gerges et al.168 employed a segmentation strategy, utilizing the k-means clustering algorithm, with a k-value 
of 2, for ROI extraction. The resultant segmented images were then passed as input to a CNN consisting of 2 
convolutional layers, each succeeded by a pooling layer, and concluded with 2 fully connected output layers.

Authors Type Dataset Results

Yu et al.165, 2016 mel/non-mel ISIC 2016 Acc-0.855

Al-masni et al.166, 2020 ISIC 2016 (mel/nv), ISIC 2017 (bkl/mel/nv), ISIC 2018 
(akiec/bcc/bkl/df/mel/nv/vasc)

ISIC 2016, ISIC 2017, 
ISIC 2018

ISIC 2016 (Acc-0.818, Sen-0.818, F1 score-0.826), 
ISIC 2017 (Acc-0.816, Sen-0.753, F1 score-0.756), 
ISIC 2018 (Acc-0.893, Sen-0.810, F1 score-0.813)

Hasan et al.167, 2021 bkl/mel/nv ISIC 2017 Acc-0.780, Pre-0.790, Sen-0.780

Gerges et al.168, 2021 Malignant/benign MED-NODE Acc-0.970

Sai Charan et al.169, 2022 akiec/bcc/bkl/df/mel/nv/ vasc/scc ISIC 2019 Acc-0.886

Gururaj et al.170, 2023 akiec/bcc/bkl/df/mel/nv/ vasc HAM10000 Acc-0.912, F1 score-0.917

Khan et al.171, 2024 akiec/bcc/bkl/df/mel/nv/ vasc HAM10000 Acc-0.870, Sen-0.869

Naeem et al.172, 2024 akiec/bcc/bkl/df/mel/nv/ vasc/scc ISIC 2019 Acc-0.983, Pre-0.982, Sen-0.982, F1 score-0.982

Table 12.  A comparative analysis of segmentation-guided skin cancer classification methods.

 

Scientific Reports |        (2024) 14:30542 21| https://doi.org/10.1038/s41598-024-81961-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Sai Charan et al.169 employed a two-path CNN model, incorporating two separate deep CNNs. One CNN 
received original images as input, while the other received images segmented using the U-Net architecture. Deep 
features from both CNNs were combined and utilized by the dense layers for the classification process. Gururaj 
et al.170 employed an encoder-decoder architecture for image segmentation, incorporating convolutions and 
max pooling in the encoder, and upsampling along with convolutions in the decoder. The encoder’s role was to 
identify and capture pertinent patterns, textures, and structures within skin lesions, with deeper layers gradually 
learning more intricate representations. Meanwhile, the decoder played a critical role in precisely localizing and 
delineating lesion boundaries, refining the features extracted by the encoder and generating a detailed and pixel-
wise segmentation map. For the classification task, the study utilized two deep CNNs, namely DenseNet169 and 
ResNet50. In this task, DenseNet169 outperformed ResNet50, achieving an impressive accuracy of 91.20% on 
the HAM10000 dataset.

Khan et al.171 proposed a framework consisting of two main blocks: one for segmentation and localization 
and another for classification. For the lesion segmentation task, they employed two separate CNNs. The original 
images were fed into one CNN, while contrast-enhanced images were fed into the other. The outputs from these 
CNNs were then fused using the joint probability distribution and marginal distribution function to create a 
refined segmented image. This refined image was subsequently used as input for a 30-layer CNN architecture, 
which included 2 fully connected layers. Features extracted from these layers were combined using summation 
discriminant correlation analysis. To prevent feature redundancy, the regula falsi method was utilized for 
dimensionality reduction. Finally, the selected features were classified using an ELM classifier.

Similar to the approach of Gerges et al.168, Naeem et al.172 applied the k-means clustering algorithm with 
two clusters to segment the ROI from lesion images. Their methodology first employed anisotropic diffusion to 
denoise the images, followed by the application of SMOTE-Tomek to address the class imbalance problem in 
the ISIC 2019 dataset. After pre-processing, segmentation was performed, and feature extraction was conducted 
using both VGG19 and HOG. The extracted features were then serially fused, and maximum entropy-based 
feature selection was applied to retain the most informative features. Finally, the selected feature vector was fed 
into a classification head to generate predictions for skin cancer classification.

Observations: Segmentation provides information about the spatial extent and boundaries of the skin lesions. 
This can be valuable for especially understanding the localized characteristics of the skin condition, aiding in 
more accurate classification. While segmentation-guided classification techniques are immensely promising, 
they also come with certain limitations. The need for precise segmentation may lead to increased resource 
requirements, making the techniques computationally intensive. Additionally, errors in the segmentation 
process can propagate into the subsequent classification stage, affecting the overall accuracy of the system.

While Refs.165–167,169–171 demonstrate impressive results, the utilization of separate networks for segmentation 
and classification introduces increased model complexity, making training and optimization more challenging. 
Additionally, comprehending the contributions of features from each encoder in167 and their impact on final 
decisions may pose challenges. The FrCN block presented in166, is adept at pixel-wise classification and can 
generate precise segmentation masks. However, its computational cost is high, primarily attributed to pixel-
level computations. The framework described in171 relies on image quality, including contrast enhancement. 
As a result, it may be sensitive to variations in image acquisition conditions, such as differences in lighting and 
resolution. References168,172 utilize a rather simple and computationally efficient segmentation strategy based on 
the k-means clustering algorithm. However, they do not provide an explicit justification for choosing a k-value 
of 2. Furthermore, the reliance of Gerges and Shih168 on the small MED-NODE dataset for testing prompts 
inquiries about the model’s generalizability to larger datasets. Although Naeem and Anees172 demonstrates 
impressive performance on the ISIC 2019 dataset, their model’s dependence on manually designed feature 
extraction methods may limit its adaptability in real-world settings, especially when compared to fully end-to-
end DL approaches.

Hybrid techniques
The combination of DL and ML techniques (hybrid approaches) holds significant importance for image 
classification tasks. DL methods, especially pre-trained CNN models, excel in feature extraction from images. 
When coupled with traditional ML algorithms like SVM or RF, these hybrid models can leverage the strengths 
of both approaches, potentially leading to improved classification accuracy. Moreover, DL models often demand 
abundant labelled data for training. Hybrid strategies can alleviate this requirement by leveraging pre-trained 
DL models for feature extraction, followed by employing ML techniques on these extracted features173. In the 
realm of skin cancer classification, these hybrid techniques prove highly beneficial. DL models are adept at 
learning hierarchical representations from raw data, which can be beneficial for capturing intricate patterns 
from skin lesion images. By integrating ML algorithms, the hybrid models can utilize these patterns as input 
features, facilitating accurate classification, even in scenarios of limited data, a common challenge in skin cancer 
applications. Additionally, combining features extracted by DL models with handcrafted features can enhance 
the robustness of the classification process. This approach leverages the complementary strengths of both feature 
types; while DL models capture complex patterns, handcrafted features can provide contextual or domain-
specific insights that may improve classification performance. By incorporating both types of features, hybrid 
models can create a more comprehensive representation of the data, ultimately leading to improved diagnostic 
accuracy and reliability in clinical settings. A comprehensive list of various skin cancer classification systems 
based on hybrid techniques is listed in Table 13.

Shoieb et al.174 developed a standard CNN for feature extraction. The CNN consisted of convolution, 
pooling, non-linear and fully connected layers. Initially, the first convolutional layer was dedicated to capturing 
rudimentary features such as edges and corners, while subsequent convolutional layers focused on extracting 
more intricate patterns. The pooling layers condensed the representations of these features. The extracted features 
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were then trained on a linear SVM, which executed classification by determining the hyperplane that maximized 
the margin between the two classes (melanoma and non-melanoma). Dorj et al.175 employed a pre-trained 
AlexNet model for feature extraction from dermoscopic images and fine-tuned the final layers of the model. 
Then, they leveraged an error-correcting output codes (ECOC) SVM classifier176 for the classification task. 
ECOC method converts a problem of classifying among multiple classes into a series of two-class classification 
problems (one-vs-all approach).

Khan et al.177 utilized pre-trained ResNet50 and ResNet101 to extract diverse features from the dermoscopic 
lesion images, focusing on textures and borders. These extracted features from both the deep CNNs were fused 
to create a comprehensive lesion representation. Then, they employed the kurtosis controlled PCA (KcPCA)178 
method to select discriminative features based on high kurtosis from the fused representation. Finally, an SVM 
with an RBF kernel was used to classify the selected features into distinct skin lesion categories. This work aimed 
to enhance classification accuracy by leveraging distinct feature extraction, fusion, selection, and classification 
techniques. Mahbod et al.179 introduced a methodology for extracting deep features using pre-trained CNNs, 
including AlexNet, ResNet18, and VGG16, for skin lesion classification. These pre-trained networks served 
as deep-feature generators, and the extracted features were used to train a multi-class SVM classifier. The 
classification results from the SVM were then combined for the final classification.

Mahbod et al.180 also employed 3 sets of CNNs with different architectures. Set 1 consisted of two identical 
ResNet50 networks, set 2 consisted of two identical EfficientNetB0 networks, and set 3 consisted of two identical 
EfficientNetB1 networks. Each set of CNNs shared the same architecture, but different fine-tuning strategies 
were applied to each set. The CNNs within each set extracted features from the images, resulting in multiple 
sets of feature vectors. These feature vectors were concatenated to create a comprehensive feature representation 
for each image. The fused feature vectors were then input into different SVMs, each trained for a specific 
lesion category. This approach allowed for separate classifiers targeting different lesions, potentially enhancing 
performance. Each SVM produced a class probability vector, and these vectors were averaged to generate the 
final ensemble prediction probabilities. Kassem et al.181 utilized GoogLeNet for feature extraction from the 
lesion images. They opted to remove only the last two layers, retaining the original fully connected layers within 
the GoogLeNet architecture for feature extraction. The extracted features were then employed in a multi-class 
SVM for classification.

Benyahia et al.182 employed 17 pre-trained CNN architectures as feature extractors to capture different 
aspects of the lesion like textures, borders, and color patterns. Subsequently, they utilized various ML classifiers 
to classify the lesion images. In their work, a combination of DenseNet201 and k-NN yielded the best results 
on the challenging ISIC 2019 dataset. 8 pre-trained CNN architectures, VGG16, VGG19, ResNet50, ResNet101, 
InceptionV3, DenseNet121, MobileNet, and Xception were used to extract deep features from dermoscopic 
lesion images by Gajera et al.183. They used SVM as a classifier to train the extracted features from all the deep 
CNNs, out of which DenseNet121 yielded the highest accuracy for melanoma detection.

Tembhurne et al.184 proposed a multi-branch approach by combining ML and DL techniques for skin lesion 
classification. In the DL branch, they employed a pre-trained VGG16 network to extract high-level features 
and perform image classification. In the ML branch, they leveraged the contourlet transform technique185 and 
LBPH to extract texture and color features from the image. These features were then concatenated, subjected to 
dimensionality reduction via PCA, and fed into two ML models-logistic regression and linear SVM. The final 
classification was determined by combining the outcomes from both branches through a voting mechanism, 
resulting in the categorization of images as malignant or benign. Figure 10 depicts the overview of this model. 
Keerthana et al.186 utilized a hybrid CNN architecture of DenseNet201 and MobileNet to capture both low-
level features like textures and edges and high-level features like lesion patterns and shapes. Then, they applied 
PCA to reduce the dimensionality of the extracted features and improve computational efficiency. Finally, they 
leveraged an SVM classifier trained on the set of features with reduced dimensionality. Similar to the approach 
by Tembhurne et al.184, Naeem et al.187 also employed two branches that integrated both ML and DL techniques 
for feature extraction. In the ML branch, they utilized histograms for extracting color features, the GLCM for 

Authors Type Dataset Results

Shoieb et al.174, 2016 mel/non-mel DermIS, DermQuest DermIS (Acc-0.938), DermQuest (Acc-0.941)

Dorj et al.175, 2018 akiec/bcc/mel/scc 3753 images Acc-0.960

Khan et al.177, 2019 Malignant/benign HAM10000, ISIC 2016, ISIC 2017 HAM1000 (Acc-0.898), ISIC 2016 (Acc-0.902), ISIC 2017 (Acc-0.956)

Mahbod et al.179, 2019 bkl/mel ISIC 2017 AUC (bkl: 0.976, mel: 0.838)

Mahbod et al.180, 2019 bkl/mel ISIC 2017 AUC (bkl: 0.956, mel: 0.873)

Kassem et al.181, 2020 akiec/bcc/bkl/df/ mel/nv/vasc/scc ISIC 2019 Acc-0.942, Pre-0.736, Sen-0.745, Spe-0.965, F1 score-0.740

Benyahia et al.182, 2022 ISIC 2019 (akiec/ bkl/bcc/df/nv/ 
mel/vasc/scc), PH2 (mel/non-mel) ISIC 2019, PH2 ISIC 2019 (Acc-0.923), PH2 (Acc-0.990)

Gajera et al.183, 2023 mel/non-mel HAM10000, ISIC 2016, ISIC 
2017, PH2

HAM10000 (Acc-0.810), ISIC 2016 (Acc-0.805), ISIC 2017 (Acc-
0.812), PH2 (Acc-0.983)

Tembhurne et al.184, 2023 Maligant/benign ISIC archive Acc-0.930, Sen (malignant: 0.860, benign: 0.997)

Keerthana et al.186, 2023 mel/non-mel ISIC 2016 Acc-0.880

Naeem et al.187, 2024 akiec/bcc/bkl/df/ mel/nv/vasc/scc ISIC 2019 Acc-0.978, Pre-0.983, Sen-0.979, F1 score-0.981, AUC-0.997

Table 13.  A comparative analysis of skin cancer classification methods using hybrid techniques.
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capturing global textural information, the features from accelerated segment test (FAST) and rotated binary 
robust independent elementary features (BRIEF) descriptors188 for local textural information, and Zernike 
moments189 to extract shape features. In the DL branch, they used the InceptionV3 model as the feature 
extractor. The features from both branches were then fused using an entropy-based fusion method, similar to 
the technique described in172, and the fused features were passed through the final dense layers for classification.

Observations: Hybrid approaches are beneficial since they eliminate the need for manual feature engineering, 
as they automatically learn relevant representations, spatial relationships and local structures from the data using 
DL models, reducing human bias and effort. Additionally, this approach proves advantageous, particularly in 
scenarios with limited labelled data, reducing computational demands without compromising performance. 
Furthermore, computational efficiency can be enhanced by reducing the dimensionality of features extracted 
by DL models before feeding them into ML classifiers. However, this reduction may result in the loss of crucial 
information. Therefore, maintaining a balance between dimensionality reduction and information preservation 
is vital. Consequently, optimal feature selection becomes imperative before inputting these extracted features 
into the ML classifier. This step aids in identifying the most relevant and discriminative features, improving 
classification performance and reducing the risk of overfitting.

The simple network by Shoieb et al.174 achieves fairly decent results on older datasets but its performance 
remains untested on newer, more complex datasets. Dorj et al.175 relies on a proprietary dataset for testing, 
limiting comparative studies with other models. References179,180 do not report overall accuracy scores 
making it difficult for comparison with other related methodologies. While the approach demonstrated in180 
is robust, the use of separate SVMs for each class may not fully exploit potential correlations between classes. 
References177,183,184 showcase fairly decent results on challenging datasets. However, they do not perform multi-
class classification, which could have been more relevant in real-world scenarios. Leveraging PCA to reduce the 
dimensionality of features, Keerthana et al.186 demonstrates computational efficiency without compromising 
classification accuracy. The extensive experiments performed by Benyahia et al.182 highlight the superiority of 
combining DenseNet201 and k-NN over using only DenseNet201. Similarly, in Kassem et al.181, the results 
indicate that a combination of GoogLeNet and SVM surpasses the performance of using only GoogLeNet. 
Naeem et al.187 highlights the significance of integrating both ML and DL techniques for feature extraction. 
However, the evaluation of their model is limited to a subset of the ISIC 2019 dataset, rather than the full dataset, 
which may restrict the comprehensiveness of their findings. These studies further validate the significance of 
using hybrid approaches in skin cancer classification.

Multimodal techniques
Multimodal techniques in skin cancer classification combine varied data streams, including images, clinical 
data, and pathology reports, providing a comprehensive and robust diagnostic solution. These approaches 
enhance generalization and improve diagnostic confidence by capturing multifaceted patterns. Integrating 
complementary information enhances interpretability, fostering a nuanced comprehension of skin lesions. A 
comprehensive study of different methods for skin cancer classification using such approaches is provided in 
Table 14.

Yap et al.190 introduced a multimodal fusion model which combined information from three modalities: 
macroscopic image, dermoscopic image, and patient metadata. The macroscopic images are analyzed by a 

Fig. 10.  Overview of the hybrid model proposed by Tembhurne et al.184.

 

Scientific Reports |        (2024) 14:30542 24| https://doi.org/10.1038/s41598-024-81961-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


CNN for spatial features and the dermoscopic images are analyzed by a different CNN for finer details. Patient 
metadata is encoded with a separate network using an embedding layer. The extracted features are fused and 
fed into a final neural network classifier to categorize the lesion images into malignant and benign. Ou et al.191 
developed a DL model employing 2 encoders to extract information from image data and metadata. The image 
encoder utilized a deep CNN for feature extraction from the images, while the meta encoder processed textual 
metadata, including patients’ attributes and lesion characteristics, using an MLP. Subsequently, a multimodal 
fusion module with intra-modality self-attention and inter-modality cross-attention was employed to highlight 
crucial regions within each modality and capture interactions between image and metadata features respectively. 
The final classification layer predicted 6 distinct types of lesions.

Tajjour et al.192 introduced a multimodal network using an ensemble of CNN and MLP. They used a CNN 
to analyze the original RGB image to extract high-level features related to lesion shape, texture, and borders 
and used an MLP to process patients’ metadata and features, extracted from different color spaces, to capture 
additional information on color distribution, illumination, and energy within the lesion. These features were 
fused and classified using a final classification layer. The results revealed a top-1 accuracy of 86% and a top-2 
accuracy of 95% for the seven classes. Omeroglu et al.193 introduced a multi-branch structure for multi-label 
skin lesion classification. They used two branches in their feature extraction phase, a dermoscopy branch and a 
clinical branch. A modified Xception architecture was used to extract visual features in the dermoscopy branch, 
whereas, they processed clinical data into numerical representations in the clinical branch. They also employed 
a soft attention module to analyze feature maps from both branches and assign weights based on their relevance 
to specific lesions. Subsequently, they designed a hyperbranched fusion block to combine weighted feature 
maps from different scales within each branch and across branches, creating a richer and more comprehensive 
representation of the lesion. Finally, they used a multi-label classification layer to compute output probabilities 
for each possible skin lesion label.

SM et al.194 employed EfficientNetB6 as the backbone of their model to extract features related to melanoma 
and non-melanoma lesions. They also designed a simple neural network to train the contextual information 
given in the ISIC 2020 dataset. The extracted features from both networks were concatenated and trained 
using a light gradient boosting machine (LGBM) classifier. In addition to this, they also utilized the Ranger 
optimizer195 to improve the model’s generalizability and overall performance. Kumar et al.196 introduced a 
multimodal network that utilizes handcrafted features derived from different domains of lesion images: spatial, 
frequency, and cepstrum. Initially, the RGB images are converted to grayscale. For the frequency domain, 
spectrograms are calculated, while for the cepstrum domain, cepstral coefficients are computed. The grayscale 
images, spectrograms, and cepstral coefficients are then transformed from 2-D to 1-D features. These features 
are concatenated and passed as input into a 1-D multi-headed CNN comprising three heads. The outputs from 
these heads are then concatenated for the classification task.

Sahoo et al.197 introduced an innovative multimodal framework for skin cancer classification by integrating 
deep features with wavelet features. They utilized a pre-trained ResNet50 model to extract deep features from 
lesion images. These images were then transformed into the wavelet domain using the lifting wavelet transform 
(LWT)198, specifically utilizing the level-2 approximation component as the wavelet features. The deep and 
wavelet features were combined and then subjected to the neighborhood component analysis (NCA) algorithm199 
to select a reduced subset of the fused features. This reduced feature set was finally classified using an MLP.

Observations: While multimodal approaches enhance overall reliability and generalizability, such approaches 
introduce complexities due to potential challenges in aligning diverse data sources. Additionally, data collection 
for multiple modalities can be more resource-intensive and expensive.

Multimodal strategies demonstrated in190–194,196,197, offer new perspectives. However, Yap et al.190 falls short 
of achieving high performance, and Tajjour et al.192 does not report overall accuracy, limiting comparative 
analyses with other work. Ou et al.191 introduces an innovative multimodal fusion strategy but uses a self-
procured dataset for testing instead of standard datasets. SM et al.194 demonstrates impressive results on the 
demanding ISIC 2020 dataset. Nevertheless, it falls short by not addressing multi-class classification, which 
could be more pertinent in real-world scenarios. Although Omeroglu et al.193 introduces a novel multi-branch 
structure, its multi-label classification approach limits direct comparisons with similar work. This method can 
be investigated further on more recent datasets for multi-class classification. Kumar et al.196 yields impressive 
results on challenging datasets but relies on manually engineered features from different domains of lesion 
images. They neither explicitly mention why they have specifically used the frequency and cepstrum domains, in 

Authors Type Dataset Results

Yap et al.190, 2018 mel/non-mel ISIC 2017 AUC-0.858

Ou et al.191, 2022 akiec/bcc/bkl/mel/nv/scc 2298 cases AUC-0.947

Tajjour et al.192, 2023 akiec/bcc/bkl/df/mel/nv/vasc HAM10000 Top-1 acc-0.86, Top-2 acc-0.95, Pre-0.870, Sen-0.860, F1 score-0.860, AUC-0.960

Omeroglu et al.193, 2023 multi-label ISIC 2016 Acc-0.830

SM et al.194, 2023 mel/non-mel ISIC 2020 AUC-0.968

Kumar et al.196, 2024 HAM10000 (akiec/bcc/bkl/df/mel/nv/vasc), 
DermNet (akiec/ep/mel/nf/bkl/uh/vasc)

HAM10000, 
DermNet

HAM10000 (Acc-0.897, Pre-0.890, Sen-0.892, Spe-0.927, F1 score-0.891, AUC-0.934), 
DermNet (Acc-0.886, Pre-0.888, Sen-0.883, Spe-0.911, F1 score-0.880, AUC-0.930)

Sahoo et al.197, 2024 mel/non-mel ISIC 2016, 
PH2

ISIC 2016 (Acc-0.781, Sen-0.780, Spe-0.750, AUC-0.806), PH2 (Acc-0.980, Sen-1.000, 
Spe-0.969, AUC-0.996)

Table 14.  A comparative analysis of skin cancer classification methods using multimodal techniques.
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addition to the spatial domain, nor how the features extracted from these domains could help boost classification 
performance. While Sahoo et al.197 demonstrates exceptional results on older datasets, it does not provide results 
on newer, more complex datasets.

Performance metrics
Performance metrics play a critical role in gauging the effectiveness and utility of a model. These metrics are 
instrumental in determining a model’s ability to accurately predict the appropriate type or label for an input 
in classification tasks. In this section, we explore the commonly employed evaluation metrics utilized for 
skin cancer classification tasks. Before delving into the discussion on these metrics, it’s essential to familiarize 
ourselves with the subsequent terms:

•	 True positive (TP): This refers to the number of instances that are actually positive and are correctly predict-
ed as positive by the model. In a medical context, it would be when the model correctly identifies a patient as 
having a particular condition or disease.

•	 False positive (FP): This refers to the number of instances that are actually negative but are incorrectly clas-
sified as positive by the model. In a medical scenario, it would mean the model falsely indicates a patient as 
having a condition when they don’t.

•	 False negative (FN): This refers to the number of instances that are actually positive but are incorrectly pre-
dicted as negative by the model. In a medical context, it would mean the model fails to identify a patient who 
actually has a condition, falsely indicating them as healthy.

•	 True negative (TN): This refers to the number of instances that are actually negative and are correctly pre-
dicted as negative by the model. In a medical setting, it would mean the model correctly identifies a healthy 
individual as not having a particular condition.

Accuracy (Acc)
Accuracy200 computes the proportion of accurately predicted samples, encompassing both true positives and 
true negatives (T P + T N ), relative to the total sample size. It assesses the overall correctness of the model’s 
predictions. Equation (2) denotes the formula for accuracy.

	
Acc = T P + T N

T P + F P + F N + T N
� (2)

Precision (Pre)
Precision200 quantifies the proportion of accurately predicted positive observations (TP) relative to all predicted 
positive instances (T P + F P ). It measures the accuracy of positive predictions, indicating the relevance of 
selected items within the predictions. Equation (3) denotes the formula for precision.

	
P re = T P

T P + F P
� (3)

Sensitivity (Sen)
Sensitivity200, also known as recall, measures the ratio of correctly predicted positive observations (TP) 
concerning all actual positive instances (T P + F N ). This metric signifies the model’s capability to recognize all 
relevant instances, assessing its completeness in identification. Equation (4) denotes the formula for sensitivity.

	
Sen = T P

T P + F N
� (4)

Specificity (Spe)
Specificity200 computes the proportion of accurately predicted negative observations (TN) in relation to all actual 
negative instances (T N + F P ). This metric evaluates the model’s capability to accurately recognize negative 
instances. Equation (5) denotes the formula for specificity.

	
Spe = T N

T N + F P
� (5)

F1 score
F1 score200 represents the harmonic mean of precision and recall, amalgamating both metrics into a unified 
measure. By striking a balance between precision and recall, it offers a singular score that comprehensively 
considers both false positives and false negatives. Equation (6) denotes the formula for F1 score.

	
F 1 score = 2 × (P recision × Recall)

(P recision + Recall) � (6)

Receiver operating characteristic (ROC) curve
The ROC curve201 graphically depicts how well a classification model performs across a range of thresholds. 
By plotting the true positive rate (sensitivity) against the false positive rate (1 − specificity) across various 
thresholds, each point on the curve reflects a sensitivity/specificity pair linked to a specific threshold setting. 
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A superior model showcases a ROC curve closer to the top-left corner, signalling increased sensitivity and 
specificity across different threshold values.

Area under the curve (AUC)
The AUC201 metric measures the total area enclosed by the ROC curve, summarizing a classification model’s 
performance across all feasible thresholds. A higher AUC value, closer to 1, signifies the model’s enhanced ability 
to differentiate between classes. An AUC of 0.5 indicates random chance, while an AUC of 1 represents a perfect 
classifier.

Loss functions
Loss functions serve a pivotal role in optimizing the parameters and monitoring the training progress of 
supervised models. This segment explores commonly employed loss functions in the classification of skin cancer 
as found in the literature.

Binary cross-entropy loss
Binary cross-entropy loss202, also known as log loss, is a commonly applied loss function in binary classification 
tasks, such as in skin cancer classification, aiming to distinguish between two classes (e.g., benign and malignant 
lesions). It penalizes the model based on the difference between predicted probabilities and actual binary labels. 
As the predicted probability diverges from the true label, the loss increases significantly. During training, the goal 
is to minimize the average binary cross-entropy loss across the entire dataset by adjusting the model’s parameters 
(weights and biases). Equation (7) denotes the formula for binary cross-entropy, where N represents the number 
of samples, yi denotes the true binary label for sample i, and pi is the predicted probability for sample i.

	
LBCE = − 1

N

N∑
i=1

[yi · log(pi) + (1 − yi) · log(1 − pi)]� (7)

Categorical cross-entropy loss
Categorical cross-entropy loss serves as a prevalent loss function applied in scenarios involving the identification 
of multiple classes of skin lesions, as seen in multi-class classification tasks. This function determines loss by 
contrasting the predicted probabilities associated with each class against the actual labels for each sample within 
the dataset. The magnitude of penalization escalates to substantial disparities between the predicted and true 
probabilities. It penalizes the model more for larger differences between the predicted and true probabilities. 
During model training, the objective is to minimize the average categorical cross-entropy loss across all classes, 
optimizing the model’s parameters to improve classification accuracy. Equation (8) represents the formula for 
categorical cross-entropy, where N represents the number of samples, C is the number of classes, yij  and pij  
denote the true label (0 or 1) and the predicted probability, respectively for sample i and class j.

	
LCCE = − 1

N

N∑
i=1

C∑
j=1

yij · log(pij)� (8)

Weighted loss
Weighted loss functions203 are modifications applied to standard loss functions, such as cross-entropy loss. In 
skin cancer classification, certain rare types of lesions might have fewer samples compared to others. These 
weighted loss functions aim to rectify this imbalance by assigning weights to each class based on their frequency 
or significance. Higher weightage is given to less frequent or critical classes while reducing the emphasis on 
more common classes. By incorporating these weights into the standard loss function, the model accentuates its 
attention on classes that are underrepresented during the training phase. This adjustment in the contribution of 
each class to the overall loss enables the model to prioritize learning from the less represented classes, thereby 
refining its comprehension of these infrequent lesion types. In the context of cross-entropy loss for multi-class 
classification, the weighted loss can be represented as Equation (9), where wj  stands for the weight assigned 
to class j. Another example of a weighted loss function is the margin-aware adaptive-weighted (MAAW) loss, 
introduced by Debasmit et al.204. In this method, the weight adjusts dynamically for each minibatch, relying on 
the inverse class frequencies.

	
Lweighted = − 1

N

N∑
i=1

C∑
j=1

wj · yij · log(pij)� (9)

Focal loss
Focal loss205 is a specialized loss function primarily designed to address the issue of class imbalance in image 
classification tasks. In skin cancer classification, datasets often exhibit an imbalance, where one class might be 
significantly smaller in quantity compared to others. Focal loss aims to mitigate the influence of predominant 
classes by reducing the impact of well-classified instances and placing greater emphasis on challenging samples. 
Focal loss introduces an adjustment factor that diminishes the contribution of easily classified examples to the 
loss function while emphasizing the misclassified or challenging samples. Equation (10) signifies the formula for 
focal loss, where N represents the number of samples, pti denotes the predicted probability for the true class label 
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of sample i, and γ is the tunable focusing parameter, which can be adjusted to control the degree of emphasis on 
difficult samples versus easy ones during training. The term (1 − pti)γ  dynamically adapts the loss contribution, 
placing greater emphasis on challenging examples by diminishing the effect of well-classified instances.

	
Lfocal = − 1

N

N∑
i=1

[(1 − pti)γ · log(pti)]� (10)

Triplet loss
Triplet loss206 is a specialized loss function extensively used in tasks focused on learning embeddings or 
conducting similarity-based comparisons. Triplet loss is used to learn embeddings, where similar samples are 
positioned closer together and dissimilar ones are pushed farther apart in an embedding space. In skin cancer 
classification, embedding learning via triplet loss could facilitate grouping similar lesions closer and pushing 
dissimilar ones apart in an embedding space. This process assists in conducting similarity-based analyses, 
potentially enhancing the model’s proficiency in understanding and classifying skin lesions based on their 
resemblance. Triplet loss operates by utilizing sets of three data points: an anchor, a positive example (similar 
class as the anchor), and a negative example (dissimilar class from the anchor). This loss function encourages 
the model to minimize the distance between the anchor and the positive example, concurrently maximizing the 
separation between the anchor and the negative example by a predetermined margin. Equation (11) denotes the 
formula for triplet loss, where N represents the number of triplets and f denotes the embedding function. f(x) 
takes x as input and xa, xp and xn denote the anchor, positive and negative images, respectively for the ith 
triplet. α is the bias which acts as a threshold value.

	
Ltriplet =

N∑
i=1

[
∥f(xa

i ) − f(xp
i )∥2

2 − ∥f(xa
i ) − f(xn

i )∥2
2 + α

]
� (11)

Hybrid loss
Hybrid loss functions involve the integration of multiple individual loss components to create a comprehensive 
objective function. These hybrid approaches seek to capitalize on the advantages offered by different loss 
functions, fostering improved model training and performance. For skin cancer classification, various hybrid 
loss functions have been proposed, designed to tackle distinct challenges, including issues related to class 
imbalance and feature learning. Le et al.121 employed a hybrid loss function, incorporating both weighted loss 
and focal loss, to evaluate the performance of their skin cancer classification model. Also, Mandal et al.148 utilized 
a hybrid loss function comprising categorical cross-entropy loss and triplet loss to assess the performance of 
their classification model. Equation (12) represents the hybrid loss function proposed by Mandal et al.148, with 
the scalar weight w determining the relative contribution of the two distinct types of loss functions.

	 Lhybrid = w × LCCE + (1 − w) × Ltriplet� (12)

Open challenges
The numerous research methodologies and articles, discussed in this survey, have been successful in addressing 
many challenges regarding skin cancer classification. Despite promising outcomes, the current methodologies 
fall short in delivering consistently strong performance within real-world settings. This section outlines the 
unresolved issues and open challenges that necessitate further attention and exploration by researchers. 

	1.	� Limited data and imbalanced datasets: DL models require a large amount of labelled data for effective 
training. However, obtaining a diverse and comprehensive dataset for skin cancer images, with different 
types, stages, and demographics, can be challenging. Additionally, imbalances in class distribution can lead 
to biased models that perform poorly on underrepresented classes, thereby hindering the accurate classifica-
tion of less common types of skin cancer, potentially leading to misdiagnosis or overlooking of critical cases.

	2.	� Limited annotated data: Annotating and labelling skin lesion images by experts is time-consuming, expen-
sive, and prone to human error. Developing efficient and reliable methods for annotating data is crucial to 
facilitate model training.

	3.	� Inter-class similarity and intra-class variability: A crucial challenge lies in distinguishing between different 
skin lesions due to their subtle variations and similarities. Both benign and malignant lesions often share 
visual characteristics, such as color, texture, shape, and patterns, blurring the distinction between harmless 
moles and potentially cancerous growths. This similarity between different lesion types (inter-class similar-
ity) presents a significant hurdle for automated classification systems. Moreover, another challenge stems 
from the variability within the same class of skin lesions (intra-class variability). Even among malignant 
lesions, there exists considerable diversity in appearance. For example, melanomas can display a broad spec-
trum of colors, shapes, and patterns, complicating the establishment of clear boundaries between various 
types of lesions. This intra-class variability adds an additional layer of complexity to the classification process, 
demanding models to capture and comprehend the subtle differences within each lesion category.

	4.	� Small lesion detection: Detecting small and subtle skin lesions, especially in high-resolution images, is an 
uphill challenge. DL models may fail to identify tiny lesions or produce false negatives due to their size and 
the presence of various imaging artifacts.
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	5.	� Robustness to variations: Skin cancer images can exhibit variations due to inconsistent lighting conditions, 
background noise, camera and image quality. Models need to be robust to such variations to ensure accurate 
and consistent performance.

	6.	� Generalization to diverse population: Models developed on data from specific demographics may lack 
generalizability across diverse skin colors, ethnicities, ages, or geographical regions. This is particularly im-
portant in skin cancer classification where the model should be able to perform accurately on various skin 
types. Developing models that perform consistently across diverse populations is a significant challenge.

	7.	� Interpretability and explainability: Skin cancer classification requires accurate and interpretable predic-
tions to aid medical professionals in making informed decisions. While DL models can achieve high accu-
racy, they often lack transparency, making it challenging to explain their decisions to clinicians and patients. 
Interpretability is extremely crucial for trust and acceptance, especially in medical applications. Clinicians 
need to understand why a model arrived at a particular diagnosis to trust and validate its recommendations. 
In contrast, traditional ML models offer greater interpretability, allowing clinicians to grasp the underlying 
decision-making processes more easily. However, these models typically sacrifice accuracy compared to their 
DL counterparts. Consequently, the challenge lies in striking a balance between performance and interpret-
ability. Clinicians may prefer models that are easier to understand, even at the expense of some predictive 
power, while data scientists may favor models that deliver higher accuracy but lack transparency. Addressing 
this trade-off is vital for the successful integration of computer vision-based systems in healthcare, where 
both precision and trust are paramount.

	8.	� Computational constraints for real-time diagnosis: Deploying computer vision-based models for re-
al-time diagnosis of skin cancer in clinical settings requires rapid and accurate assessments, which may be 
constrained by computational limitations. Delayed or inaccurate diagnosis due to computational constraints 
can hinder the timely treatment of skin cancer.

	9.	� Lack of standardization: While research in skin cancer classification using computer vision is progressing, a 
notable issue identified during the preparation of this survey is the widespread tendency among researchers 
to not utilize complete sets of sample images for a particular class, or even entire classes, within their respec-
tive datasets. This leads to biased and incomplete evaluations giving rise to unfair comparisons in perfor-
mance among various existing methods. This lack of a standardized evaluation protocol further complicates 
the understanding of genuine advancements in state-of-the-art methods.

Future research directions
Advancements in healthcare, particularly associated with skin cancer classification, could be greatly propelled by 
addressing the research gaps mentioned in the previous section. Improving the accuracy and robustness of skin 
cancer classification holds the potential to elevate clinical decision-making, treatment planning, and ultimately, 
patient outcomes in the field of dermatology. Careful consideration of validation procedures, ethical concerns, 
and the mitigation of potential biases becomes imperative when introducing novel methods or datasets in the 
realm of skin cancer classification within the medical community. This section aims to elucidate forthcoming 
research paths in this domain. 

	1.	� Synthetic data augmentation: Oversampling techniques or advanced data augmentation techniques that 
generate realistic variations in lighting, skin tones, and image quality can help alleviate the issues of lack of 
data and data imbalance. Additionally, GANs can be used to create synthetic skin lesion images, helping to 
mitigate data scarcity. However, it is essential that these synthetic images not only appear visually plausi-
ble but also capture medically significant features. Despite their benefits, using synthetic images in medical 
diagnosis raises concerns about data authenticity. Healthcare professionals may question the reliability of 
diagnoses based on artificial images rather than real patient data. To mitigate this, synthetic images should 
be clearly labelled by medical experts and used alongside real images for validation. It is crucial to emphasize 
that synthetic images are used with the sole purpose of augmenting limited datasets in order to better model 
training, not to replace authentic diagnostic data.

	2.	� Few-shot learning and self-supervised approaches: Combining transfer learning with few-shot learning 
or zero-shot learning can help models adapt to new skin lesion categories with limited samples or recognize 
instances not encountered during training. This approach can leverage knowledge from similar categories 
while learning quickly from a limited amount of data. Addressing the scarcity of annotated data can also 
be tackled by employing self-supervised techniques, such as contrastive learning. This approach allows the 
model to discern the intrinsic structure of features within images. Additionally, achieving a deeper compre-
hension of meaningful feature representations and continually learning from a data stream can be facilitated 
through the application of representation learning and continual learning techniques respectively. These 
strategies contribute to the development of more generalized models capable of adapting to a variety of data 
scenarios.

	3.	� Ensemble techniques and deep feature fusion: Ensemble methods offer a solution to address both in-
ter-class similarity and intra-class variability challenges. Employing diverse CNN architectures within en-
sembles can mitigate bias and variance errors, consequently enhancing overall accuracy. Meanwhile, deep 
feature fusion amalgamates multi-level and multi-scale features derived from various layers of base learners, 
resulting in enriched representations containing diverse information and enhanced discriminative capabili-
ties.

	4.	� Attention mechanisms: Attention mechanisms elevate the model’s capability to concentrate on particular 
image regions, enabling the network to prioritize crucial features while suppressing less significant ones. 
This selective emphasis contributes to enhanced performance. Additionally, in conjunction with attention 
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mechanisms, feature selection methods can be employed to choose a subset of pertinent features to build 
more efficient models.

	5.	� Creation of larger datasets: Skin cancer classification datasets typically exhibit a limited number of images. 
Collecting more images and creating larger datasets can facilitate the training of more resilient models capa-
ble of generalizing across inconsistent lighting conditions, noise levels, and diverse skin colors, ethnicities, 
ages, or geographical regions.

	6.	� Inclusion of diverse images in datasets: All the standard skin-cancer datasets contain images of fair-skinned 
people mostly from the USA. To develop a more generalised model with respect to skin color, we need to 
incorporate images from diverse ethnic groups, varying skin tones and different geographical regions in the 
datasets which can be used for training purposes.

	7.	� Explainable AI (XAI): Developing models that offer explanations for their decisions can enhance trans-
parency and trust. Techniques such as attention maps, saliency maps, and gradient-based attribution can 
highlight infected regions, aiding in explaining model decisions, and thereby enhancing interpretability.

	8.	� Real-time diagnosis: Optimizing models for efficiency, using edge computing, or developing specialized 
hardware can facilitate real-time diagnosis without compromising accuracy. Edge computing brings com-
putation closer to where the data is generated, allowing for quicker analysis and decision-making, especially 
beneficial in time-sensitive scenarios such as medical diagnoses.

	9.	� Collaborative efforts: Collaboration among researchers, industry experts, radiologists, and dermatologists 
is crucial. Establishing standardized benchmarks, sharing datasets, and cultivating best practices are key col-
laborative efforts. Domain-specific insights from medical professionals can validate classification accuracy, 
offer valuable feedback, and contribute to refining the overall classification process. These collaborations 
foster the development of more resilient and reliable models.Undoubtedly, the field of skin cancer classifi-
cation is poised for substantial evolution in the upcoming years. Enhancing the classification accuracy and 
clinical applicability hinges on amalgamating state-of-the-art technologies, collaborative efforts, and inven-
tive methodologies. The horizon of this research domain presents an intriguing frontier with the prospect of 
enhancing medical diagnostics as researchers strive to address existing challenges and delve into uncharted 
territories.

Conclusion
Skin cancer classification stands as a pivotal research area, due to its significant impact on global mortality rates. 
Recent strides in the field showcase the potential of CAD systems for early detection and precise dermatological 
diagnoses. This review not only presents researchers with insights into the latest developments and gaps in 
the field, but also offers clinicians practical knowledge on the integration of AI tools for improved diagnostic 
decision-making. This survey reviews the progression of research trends over the past 18 years, alongside the 
datasets that have been instrumental in driving these advancements. It encompasses a wide array of computer 
vision-based studies, ranging from traditional ML techniques paired with handcrafted features to state-of-the-
art DL models like CNNs, GANs, and ViTs. Additionally, the survey explores hybrid and multimodal approaches 
that integrate multiple techniques and data modalities to enhance classification performance. Each paper 
included in the review is critically analyzed, with notable observations and limitations highlighted to provide a 
well-rounded understanding of the current state of the field.

Common performance metrics and loss functions used in the literature have been discussed, providing a 
foundation for evaluating the effectiveness of these models. Key challenges such as data scarcity, subtle variations 
between benign and malignant lesions, and issues related to model interpretability, have been highlighted. 
Emerging techniques like attention mechanisms, ensemble learning, few-shot learning, and self-supervised 
learning hold promise for improving model performance and are outlined as future avenues for research. 
Addressing the limitations posed by dataset availability, feature complexity, and trust in AI models is crucial 
for the successful adoption of these systems in clinical settings. The future of skin cancer classification research 
promises innovation through novel methodologies, domain-specific insights, and interdisciplinary collaboration. 
As the field progresses, bridging the gap between computer vision-driven CAD systems and clinical practice will 
be essential, ultimately aiming to improve diagnostic results, treatment planning, and overall patient outcomes 
in dermatology.

Data availability
The datasets analysed in this study are available from the following sources: HAM10000 ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​n​a​t​u​r​e​.​c​
o​m​/​a​r​t​i​c​l​e​s​/​s​d​a​t​a​2​0​1​8​1​6​1​​​​​)​, ISIC Archive (https://www.isic-archive.com/), ISIC 2016 challenge ​(​​​h​t​t​p​s​:​/​/​c​h​a​l​l​e​n​g​
e​.​i​s​i​c​-​a​r​c​h​i​v​e​.​c​o​m​/​d​a​t​a​/​#​2​0​1​6​​​​​)​, ISIC 2017 challenge (https://challenge.isic-archive.com/data/#2017), ISIC 2018 
challenge (https://challenge.isic-archive.com/data/#2018), ISIC 2019 challenge ​(​​​h​t​t​p​s​:​/​/​c​h​a​l​l​e​n​g​e​.​i​s​i​c​-​a​r​c​h​i​v​e​.​
c​o​m​/​d​a​t​a​/​#​2​0​1​9​​​​​)​, ISIC 2020 challenge (https://challenge.isic-archive.com/data/#2020), MED-NODE (https://
www.​sciencedirec​t.com/scienc​e/article/a​bs/pii/S0957417415002705), PH2 ​(​​​h​t​t​p​s​:​/​/​i​e​e​e​x​p​l​o​r​e​.​i​e​e​e​.​o​r​g​/​d​o​c​u​m​e​
n​t​/​6​6​1​0​7​7​9​​​​​)​, DermIS (https://www.​dermis.net/d​ermisroot/en​/home/index​.htm), DermQuest ​(​​​h​t​t​p​​s​:​/​/​t​s​​p​a​c​e​.​l​​i​
b​r​a​r​y​​.​u​t​o​r​o​n​t​o​.​c​a​/​b​i​t​s​t​r​e​a​m​/​1​8​0​7​/​4​7​8​9​6​/​1​/​d​v​0​7​0​4​8​.​p​d​f​​​​​)​, Dermnet (https://dermnet.com/), Dermofit Image Li-
brary (https://lice​nsing.edinbu​rgh-innovati​ons.ed.ac.u​k/product/dermofit-image-library).
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