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Vertebral collapse (VC) following osteoporotic vertebral compression fracture (OVCF) often requires 
aggressive treatment, necessitating an accurate prediction for early intervention. This study aimed 
to develop a predictive model leveraging deep neural networks to predict VC progression after OVCF 
using magnetic resonance imaging (MRI) and clinical data. Among 245 enrolled patients with acute 
OVCF, data from 200 patients were used for the development dataset, and data from 45 patients 
were used for the test dataset. To construct an accurate prediction model, we explored two backbone 
architectures: convolutional neural networks and vision transformers (ViTs), along with various pre-
trained weights and fine-tuning methods. Through extensive experiments, we built our model by 
performing parameter-efficient fine-tuning of a ViT model pre-trained on a large-scale biomedical 
dataset. Attention rollouts indicated that the contours and internal features of the compressed 
vertebral body were critical in predicting VC with this model. To further improve the prediction 
performance of our model, we applied the augmented prediction strategy, which uses multiple MRI 
frames and achieves a significantly higher area under the curve (AUC). Our findings suggest that 
employing a biomedical foundation model fine-tuned using a parameter-efficient method, along with 
augmented prediction, can significantly enhance medical decisions.
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Vertebral compression fractures frequently occur in osteoporotic spines1,2. Osteoporotic vertebral compression 
fractures (OVCFs) are common in older adults with decreased bone mineral density3,4. OVCFs with osteoporosis 
usually cause back pain and require conservative treatments, such as bed rest, painkillers, bracing, and 
osteoporosis medication. These treatments often lead to good functional recovery5,6. Although most vertebral 
fractures may heal within eight weeks, vertebral collapse (VC) progresses over time in 7–37% of the patients with 
vertebral compression fractures7. The progression of OVCFs can lead to VC, spinal deformity, chronic back pain, 
and neurological deficits due to spinal cord compression. Therefore, it is clinically valuable to predict whether 
OVCFs will progress into VC as early as possible6,8.

Although recent studies have identified many factors related to the progression of OVCFs, such as bone 
turnover markers, fracture shape, morphometric measurements, and magnetic resonance imaging (MRI) 
findings, predicting this progression at the time of diagnosis remains challenging5,6,9,10. Recently, machine 
learning (ML)-based prediction algorithms have been widely employed in medical applications. ML-based 
image analysis models such as convolutional neural networks (CNNs) have shown promising results in 
extracting robust and informative features from medical images. For instance, auto-segmentation models of 
vertebrae and detection of acute and chronic OVCFs using CNNs have been reported on computed tomography 
(CT) and MRI scans11,12. However, to the best of our knowledge, no studies using image analysis models have 
focused on predicting progressive VC after OVCF based on initial diagnostic MRIs and clinical information. The 
development of a predictive tool for assessing the progression of VC after OVCF can be used to guide the initial 
aggressive treatment and improve the functional outcomes for patients with OVCFs.

In the present study, we aimed to develop a predictive support tool and enhance its performance using 
ML-based image analysis models on a small dataset including initial MRI and clinical information. Based on 
recent advances in vision foundation models, which have been developed by pre-training vision transformer 
(ViT)-based models with large-scale data, we constructed our prediction model by fine-tuning a biomedical 
foundation model in a parameter-efficient manner. Additionally, we further enhanced our model’s prediction 
performance by applying the augmented prediction technique. We assessed the prediction performance and 
generalizability of ML-based image analysis models by conducting both internal and external evaluations of our 
model and other CNN and ViT-based baseline models.

Methods
Study population
This retrospective study collected data from patients with OVCFs from five institutions. The study protocol 
was approved by the Institutional Review Board (IRB) of Seoul National Boramae Medical Center (No 20-
2020-200) and conducted in accordance with the Declaration of Helsinki tenets for research involving human 
subjects. A waiver permission letter was obtained from IRB administrators before the data collection and since 
the patients with OVCFs were not directly involved in this study (the data were obtained from chart review), 
informed consent was not required, but the extracted data from the medical records were kept confidentially. 
The informed consent was waived by IRB. Two hundred forty-five patients (aged ≥ 50 years) with OVCF between 
January 2010 and December 2020 were enrolled in the study. The inclusion criteria for these patients were: (1) 
diagnosed with acute OVCF in the thoracic or lumbar spine by MRI, and (2) availability of follow-up X-ray 
or CT images for over six months after the initial diagnosis of acute OVCF. The exclusion criteria were the 
detection of spine infection, vertebroplasty, tumor, or spine implants at the time of MRI diagnosis and during 
the follow-up period. VC was defined as a compressed anterior or central vertebral body height of less than 
50% of the posterior height1. Patients with VC observed in X-ray or CT during the six-month follow-up period 
were assigned to the VC group, while others were assigned to the non-VC group. The proportion of VC and 
the number of included patients varied across institutions (Supplementary Table 1). To balance the proportion 
of VC in the development dataset while ensuring the test dataset was not too small, we assigned the data from 
three institutions (Seoul National Boramae Medical Center, Kangwon National University Hospital, Hallym 
University Dongtan Sacred Heart Hospital) into the development dataset for training and internal validation of 
the VC prediction models. Data from the remaining two institutions (Keimyung University Dongsan Hospital, 
Soon Chun Hyang University Hospital Bucheon) were assigned into the test dataset for external validation of 
the VC prediction models.

Image acquisition
In this study, vertebrae images were acquired using a 3T MRI scanner, which is commonly used in hospitals 
for high-resolution imaging. Specifically, we focused on T1- and T2-weighted sequence sagittal images, known 
for their excellent contrast between the different soft tissues. From these sequences, a single key frame image 
that prominently displayed vertebral fractures was selected by expert spine surgeons. The selection criteria for 
this image were based on the clarity and visibility of the fracture to ensure accurate annotation and analysis. To 
ensure reproducibility and to provide context for our image acquisition protocol, the following settings were 
typically used for our T1-weighted MRI scans: slices per group, 15; distance factor, 10%; position, isocenter; 
phase encoding direction, head to feet; phase oversampling, 50%; field of view, 200 ⋅ 200 mm; slice thickness, 
3.0 mm; repetition time (TR), 480.0 ms; echo time (TE) 7.10 ms; flip angle, 125°; average, 2; and concatenation, 
2.

Model development and additional techniques for accurate prediction
To develop ML-based image analysis models, we conducted image pre-processing to enhance consistency across 
the MRI scans. Initially, we applied N4 bias field correction13 using the SimpleITK14 library to correct non-
uniformities in the MRI intensities. Expert spine surgeons then identified landmarks for the most important 
vertebra within the key frame for analysis. The tight bounding box defined by the landmarks was expanded by 
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150% horizontally and vertically to ensure comprehensive coverage of the vertebral body and the surrounding 
structures, while minimizing unnecessary background regions. After cropping the image within the expanded 
bounding box, we applied quantile clipping between the 5th and 95th percentiles to handle outliers and 
performed min-max normalization to standardize the image intensities.

Using these pre-processed MRI scans, we explored various backbone architectures, pre-trained weights, 
and fine-tuning methods. For backbone architectures, we employed ResNet-1815 and ViT-B/1616. ResNet-18 
is a CNN architecture conventionally used in ML-based image analysis, while ViT-B/16 is a vision transformer 
model specialized in capturing intricate and wide-range dependencies across image features. For ResNet-18, we 
considered two initialization strategies: random initialization (scratch) and ImageNet pre-trained weights. For 
ViT-B/16, in addition to the scratch and ImageNet pre-trained settings, we used BiomedCLIP17 weights pre-
trained on PMC-15 M, which consists of 15 million biomedical image-text pairs.

When using the CNN and ViT backbones initialized with the pre-trained weights, we primarily employed 
full-parameter fine-tuning, which involves updating all weights in the model during the training process. 
However, for ViT-B/16, which has a large number of parameters, we also considered a parameter-efficient fine-
tuning method called Low-Rank Adaptation (LoRA)18. LoRA injects trainable low-rank matrices into weight 
matrices, allowing for efficient adaptation with fewer parameters and reducing the computational requirements 
while preventing overfitting.

After designing our ML-based image analysis model, we explored two additional techniques to enhance its 
robustness. First, we used the augmented prediction approach that incorporates multiple frames from each MRI 
scan. Specifically, we utilized not only the key frame selected by experts but also its two adjacent frames during 
both the training and inference phases. By training our model with the original key frames and their adjacent 
frames, the model assesses the risk of VC progression for each patient by evaluating the three frames and then 
averaging their prediction probabilities during inference. We expect that this augmented prediction strategy 
would improve robustness, especially when trained with small-scale data, resulting in more consistent and 
accurate predictions. Second, we provided clinical features as additional information to our image analysis model. 
These features included multiple variables: age, bone mineral density (BMD), gender, pre-fracture medication 
for osteoporosis, and post-fracture medication for osteoporosis. To effectively incorporate these features into the 
image model, we extracted deep features using a multi-layer perceptron (MLP) after standardization. The MLP 
features were then concatenated with the image features extracted from the image model.

In summary, we conducted MRI pre-processing, explored various backbone architectures with pre-trained 
weights, and applied a parameter-efficient fine-tuning method for model development. Additionally, we 
implemented the augmented prediction approach and incorporated clinical features to enhance prediction 
robustness. Our structured workflow is depicted in Fig. 1.

Fig. 1. Workflow of VC prediction model development. MRI pre-processing includes N4 bias field correction, 
cropping to the region of interest, and intensity normalization. Image model design highlights the Vision 
Transformer (ViT) architecture with BiomedCLIP pre-trained weights and parameter-efficient fine-tuning 
using Low-Rank Adaptation (LoRA). Additional techniques explored to further enhance the model’s 
performance include augmented prediction with adjacent MRI frames and addition of clinical features via 
a multi-layer perceptron (MLP). Model training and evaluation involve hyperparameter tuning, internal 
validation using 10 random splits, and external validation.
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Training details
We experimented with using T1-weighted MR images (T1WI), T2WI, and both T1 and T2WIs. From our 
analysis, it was found that using T1WI only led to the best performance and was simpler compared to using both 
T1 and T2WIs. Thus, we used T1WI only as the image input. The pre-processed T1WI frames were resized to 
224 ⋅ 224 pixels, and the grayscale frames were duplicated across three channels.

Data augmentation techniques included random shifts (–20% to + 20%), scaling (0.8⋅ to 1.2⋅), and rotations 
(–50° to + 50°), each applied with a 0.5 probability. Additionally, random brightness and contrast adjustments 
and random gamma adjustments were applied, each with a probability of 0.5. The images were normalized 
based on the mean and standard deviation values according to the pre-trained model specifications. We used the 
binary cross entropy19 loss function for training.

Hyperparameters for each model were determined through grid search, optimizing for the area under the 
curve (AUC). Detailed information on the hyperparameters can be found in Supplementary Table S2. We 
explored additional techniques, including augmented prediction with adjacent frames and the incorporation of 
clinical features, with the best-performing model.

All experiments were conducted using PyTorch 2.2.020 and four NVIDIA Tesla V100 GPUs with 32 GB of 
memory each.

Model evaluation
We used specific notations to indicate models developed with different backbones, pre-training datasets, and 
fine-tuned methods. The backbone architectures were CNNs and ViTs. The pre-training datasets included 
scratch, ImageNet, and PMC. The full fine-tuning or LoRA methods were used. We denoted each model by 
combining these terms, such as CNN-scratch-full to indicate a CNN model trained from scratch.

We compared six image models to identify the best-performing model: CNN-scratch-full, CNN-ImageNet-
full, ViT-scratch-full, ViT-ImageNet-full, ViT-PMC-full, and ViT-PMC-LoRA. We calculated the mean and 
standard deviation for AUC, specificity, and sensitivity. Optimal cutoff values for receiver operating characteristic 
analysis were determined from Youden’s J statistic21. Paired t-tests were employed to compare the AUC of the 
best-performing model with that of the other models, with the Bonferroni correction applied to account for 
multiple comparisons22.

After identifying the best-performing image model, we visualized gradient-weighted class activation 
mappings (Grad-CAMs23) and attention rollouts24 to gain insights into its decision-making process. Grad-CAM 
highlights the regions of the input image that are most important for making our model’s predictions. Attention 
rollout visualizes how our model distributes attention across different parts of the input image. We categorized 
both the Grad-CAMs and attention rollouts into true positive, true negative, false positive, and false negative for 
our post-hoc analysis.

To further enhance the prediction performance of our best-performing model, we investigated the efficacy 
of augmented prediction and incorporation of clinical features. We compared four configurations: without 
augmented prediction or clinical features, with augmented prediction only, with clinical features only, and with 
both augmented prediction and clinical features. The evaluation metrics and statistical analysis method were 
identical to those used for the comparison of image models.

Results
Patient characteristics
In this study, the patient characteristics between the non-VC group (n = 125, 51.0%) and the VC group 
(n = 120, 49.0%) showed no significant differences. Detailed information on these characteristics can be found 
in Supplementary Table S3. The development dataset comprised 200 patients (81.6%) sourced from three 
institutions, with 109, 55, and 36 patients, respectively, and was split into 10 distinct subsets for training and 
internal validation (80:20). The test dataset included 45 patients (18.4%), with 30 and 15 patients from two 
additional institutions, used for external validation. The proportion of VC was 51.0% in the development dataset 
and 40.0% in the test dataset, with no significant difference (p = 0.243). Aside from the T-score of the BMD 
being lower in the test dataset compared to the development dataset (–3.52 ± 1.16 vs. − 3.08 ± 1.04, p = 0.013), no 
significant differences were found in patient characteristics between these datasets. Further details on the patient 
characteristics in both datasets are summarized in Table 1.

Performance comparison of image models
In internal validation, the mean AUCs from the 10 distinct dataset splits were 0.7830, 0.7760, 0.8149, 0.8185, 
0.8269, and 0.8404 for CNN-scratch-full, CNN-ImageNet-full, ViT-scratch-full, ViT-ImageNet-full, ViT-PMC-
full, and ViT-PMC-LoRA, respectively (Table 2). The mean AUC of ViT-PMC-LoRA was significantly higher 
than that of CNN-ImageNet-full (P < 0.001). In external validation, the mean AUCs were 0.7097, 0.7772, 
0.7784, 0.7825, 0.8051, and 0.8113 for CNN-scratch-full, CNN-ImageNet-full, ViT-scratch-full, ViT-ImageNet-
full, ViT-PMC-full, and ViT-PMC-LoRA, respectively. The mean AUC of ViT-PMC-LoRA was significantly 
higher than that of CNN-scratch-full (P = 0.004). Notably, ViT-PMC-LoRA demonstrated the highest mean 
AUC and sensitivity among all models. Furthermore, ViT-PMC-LoRA shows consistently higher true positive 
rates at most false positive rates compared to CNN-ImageNet-full (Fig. 2). To address potential concerns about 
institution-specific biases, we also conducted two separate leave-one-institution-out validations. In both cases, 
ViT-PMC-LoRA achieved the highest mean AUC among all models in both internal and external validations 
(Supplementary Results). Thus, we chose ViT-PMC-LoRA as our finalized image model.
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Model interpretation
Grad-CAM demonstrated that the model highlights the cortex of the vertebrae for decision-making, with 
less emphasis on the trabecular areas. Attention rollout indicates that the model considers both the cortex 
and trabecular areas during inference (Fig. 3). In cases where predictions were correct, both Grad-CAM and 
attention rollout show that the model consistently focused on the cortex for decision-making. On the other 
hand, misclassified cases were typically associated with vertebral fractures exhibiting highly irregular shapes. 
For such cases, Grad-CAM continued to focus on the cortex of the vertebra, and attention rollout appeared to 
lose focus, spreading its attention across the entire vertebral body rather than concentrating on specific regions.

Impact of additional techniques on model performance
In internal validation, the mean AUCs from the 10 distinct dataset splits were 0.8307, 0.8404, 0.8502, and 0.8539 
for ViT-PMC-LoRA with clinical features only, without augmented prediction or clinical features, with both 
augmented prediction and clinical features, and with augmented prediction only, respectively (Table  3). In 
external validation, the mean AUCs were 0.8103, 0.8113, 0.8566, and 0.8656 for ViT-PMC-LoRA with clinical 
features only, without augmented prediction or clinical features, with both augmented prediction and clinical 
features, and with augmented prediction only, respectively. Only the mean AUC of ViT-PMC-LoRA with 
augmented prediction was significantly higher than that of with clinical features only (P < 0.001) and without 
augmented prediction or clinical features (P = 0.011). However, there was no significant difference compared to 

Params
AUC
mean (SD)

Specificity
mean (SD)

Sensitivity
mean (SD) p-value

Internal validation using the development dataset

 CNN-scratch-full 11 M 0.7830 (0.0862) 0.7844 (0.1332) 0.6699 (0.1698) 0.045

 CNN-ImageNet-full 11 M 0.7760 (0.0397) 0.7910 (0.1415) 0.6650 (0.1321) < 0.001*

 ViT-scratch-full 86 M 0.8149 (0.0460) 0.8585 (0.0856) 0.6595 (0.1097) 0.04

 ViT-ImageNet-full 86 M 0.8185 (0.0308) 0.8642 (0.0967) 0.6517 (0.1243) 0.07

 ViT-PMC-full 86 M 0.8269 (0.0353) 0.8057 (0.1104) 0.7306 (0.0761) 0.397

 ViT-PMC-LoRA 0.89 M 0.8404 (0.0312) 0.8557 (0.0953) 0.7012 (0.1154) -

External validation using the test dataset

 CNN-scratch-full 11 M 0.7097 (0.0623) 0.6963 (0.1770) 0.6611 (0.1469) 0.004*

 CNN-ImageNet-full 11 M 0.7772 (0.0247) 0.6778 (0.0941) 0.7889 (0.0820) 0.062

 ViT-scratch-full 86 M 0.7784 (0.0211) 0.7519 (0.0973) 0.6667 (0.1080) 0.107

 ViT-ImageNet-full 86 M 0.7825 (0.0248) 0.7333 (0.0969) 0.7333 (0.1041) 0.195

 ViT-PMC-full 86 M 0.8051 (0.0347) 0.7296 (0.1004) 0.7556 (0.1148) 0.768

 ViT-PMC-LoRA 0.89 M 0.8113 (0.0519) 0.6963 (0.1155) 0.8111 (0.0915) -

Table 2. Vertebral collapse (VC) prediction performances of image models with various backbone 
architectures, pre-train datasets, and fine-tune methods, along with the number of trainable parameters. Each 
model is compared against the best-performing model, ViT-PMC-LoRA. Bonferroni correction for multiple 
comparisons across 5 tests was applied for internal and external validation, respectively. Thus, p-values for area 
under the curve (AUC) are considered statistically significant if less than 0.010. Params number of trainable 
parameters, SD standard deviation, CNN convolutional neural network, ViT vision transformer, LoRA Low-
Rank Adaptation. *Indicates a statistically significant difference. The best value for each column is marked in 
bold.

 

Overall (n = 245)

p-value
Development dataset
(n = 200, 81.6%)

Test dataset
(n = 45, 18.4%)

VC, n (%) 102 (51.0) 18 (40.0) 0.243

Age, mean ± SD (years) 72.6 ± 9.56 73.7 ± 8.56 0.460

Female, n (%) 166 (83.0) 31 (68.9) 0.052

T-score of BMD, mean ± SD (Lumbar) -3.08 ± 1.04 -3.52 ± 1.16 0.013*

Lumbar Fracture, n (%) 134 (67.0) 29 (64.4) 0.878

History of medication for osteoporosis, n (%)

 Before OVCF Dx 42 (21.0) 8 (17.8) 0.780

 After OVCF Dx 153 (76.5) 36 (80.0) 0.758

Table 1. Patient characteristics in the development and test datasets. p-values less than 0.05 are considered 
statistically significant. VC Vertebral collapse, SD standard deviation, BMD bone mineral density, OVCF 
osteoporotic vertebral compression fracture, dx diagnosis *Indicates a statistically significant difference.
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the mean AUC with both augmented prediction and clinical features (P = 0.172). Notably, ViT-PMC-LoRA with 
augmented prediction only demonstrated the highest mean AUC, while ViT-PMC-LoRA with both augmented 
prediction and clinical features showed a comparable mean AUC and the highest sensitivity among all models. 
Furthermore, using augmented prediction consistently enhances the true positive rate of ViT-PMC-LoRA at 
most false positive rates (Fig. 2).

Discussion
The primary objective of this study was to develop an accurate predictive model for the progression of VC in 
OVCFs by extracting overall risk factors from a small dataset of MRI and clinical data. Our findings demonstrate 
that ViT-PMC-LoRA, the ViT model pre-trained on PMC-15  M and fine-tuned with LoRA, achieved the 
highest performance, surpassing other models with various backbone architectures, pre-trained weights, and 
fine-tuning methods. Furthermore, the use of the augmented prediction technique substantially improved the 
model’s prediction performance.

Deep neural networks have been extensively applied in vertebral fracture analysis, with CNNs becoming the 
standard approach across various tasks. These tasks range from segmenting vertebral structures to detecting 

Fig. 2. Performances of vertebral collapse (VC) prediction models in the test dataset. ViT-PMC-LoRA 
consistently outperforms CNN-ImageNet-full. Using augmented prediction (AP) further enhances the 
performance of ViT-PMC-LoRA.
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and classifying fractures in medical images. For instance, CNN-based models have been developed to enhance 
spine fracture segmentation using CT25–27 and MRI28 data, employed for predicting fracture risk with CT29, and 
detecting vertebral fractures with CT12,30 and MRI11,31. While CNNs have been the go-to approach, there has 
been a growing trend in medical image analysis to leverage large, pre-trained models, which are fine-tuned for 
downstream tasks, especially in scenarios with limited data. This shift towards parameter-efficient fine-tuning 
(PEFT) has shown significant potential in enhancing performance for small datasets, as highlighted in recent 
studies. PEFT has been proven effective in low-data scenarios, improving the transferability to discriminative 
medical tasks32. It has even been suggested that PEFT can outperform full fine-tuning in some medical 

AUC
mean (SD)

Specificity
mean (SD)

Sensitivity
mean (SD) p-value

Internal validation using the development dataset

 ViT-PMC-LoRA + CF 0.8307 (0.0372) 0.8016 (0.1033) 0.7418 (0.1229) 0.179

 ViT-PMC-LoRA 0.8404 (0.0312) 0.8557 (0.0953) 0.7012 (0.1154) 0.442

 ViT-PMC-LoRA + AP + CF 0.8502 (0.0297) 0.8234 (0.0720) 0.7773 (0.0594) 0.775

 ViT-PMC-LoRA + AP 0.8539 (0.0445) 0.8230 (0.0893) 0.7739 (0.0796) -

External validation using the test dataset

 ViT-PMC-LoRA + CF 0.8103 (0.0169) 0.6741 (0.0969) 0.8611 (0.0878) < 0.001*

 ViT-PMC-LoRA 0.8113 (0.0519) 0.6963 (0.1155) 0.8111 (0.0915) 0.011*

 ViT-PMC-LoRA + AP + CF 0.8566 (0.0246) 0.7630 (0.0804) 0.8167 (0.0695) 0.172

 ViT-PMC-LoRA + AP 0.8656 (0.0137) 0.8111 (0.1010) 0.7611 (0.1173) -

Table 3. Impact of augmented prediction and incorporation of clinical features on vertebral collapse (VC) 
prediction performance of ViT-PMC-LoRA. Each configuration is compared against the best-performing 
configuration, ViT-PMC-LoRA + AP. Bonferroni correction for multiple comparisons across 3 tests was 
applied for internal and external validation, respectively. Thus, p-values for area under the curve (AUC) 
are considered statistically significant if less than 0.017. AUC Area under the curve, SD standard deviation, 
CNN convolutional neural network, ViT vision transformer, LoRA Low-Rank Adaptation, AP, augmented 
prediction, CF, incorporation of clinical features. *Indicates a statistically significant difference. The best value 
for each column is marked in bold.

 

Fig. 3. Grad-CAMs and attention rollouts for representative cases predicted by ViT-PMC-LoRA. (A, B) are 
cases that were correctly predicted, and (C, D) are cases that were incorrectly predicted. (A) True Positive, (B) 
True Negative, (C) False Negative, (D) False Positive.
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applications33, demonstrating its suitability for situations where available data is sparse. Comparative studies 
between CNNs and ViTs in medical AI research have also emerged, showing that ViTs can outperform CNNs in 
some tasks. For example, ViTs have shown superior performance in coronary plaque diagnosis using computed 
tomography angiography34 and osteoporosis detection from X-ray images35. However, in the context of vertebral 
fractures, the use of large models like ViTs remains underexplored. Given this gap, our study aimed to develop 
and compare models using both CNN and ViT backbones, with a particular focus on MRI analysis and limited 
data, addressing the challenge of predicting vertebral collapse. Unlike detection tasks, which often involve 
signals for identifying current conditions, prediction tasks such as ours must capture weaker signals to foresee 
future disease progression.

In comparison with previous studies that primarily utilized CNNs for OVCF tasks, our approach using ViTs 
represents a novel and effective advancement in vertebral collapse prediction. The superior performance of ViT 
models, particularly those fine-tuned with domain-specific PMC-15 M pre-trained weights, demonstrates the 
importance of leveraging large, specialized datasets in medical AI applications36. A key challenge in vertebral 
collapse prediction lies in the weak signal present in MRI data and the limited size of the dataset. By utilizing a 
model pre-trained on large biomedical data, we were able to mitigate some of these challenges. The LoRA fine-
tuning method further enhanced the model’s capability by efficiently adapting the extensive parameters of the 
ViT model without overfitting, even with a relatively small dataset. This result aligns with previous research that 
highlighted the effectiveness of parameter-efficient fine-tuning approaches in small medical dataset scenarios32. 
Moreover, ViT-PMC-LoRA achieved the highest AUC and the highest sensitivity among all models, which is 
critical for accurately identifying patients at risk for VC. This high sensitivity, particularly in external validation, 
suggests that the model can aid in early clinical diagnosis and proactive treatment planning before vertebral 
collapse occurs. Thus, our study reinforces the hypothesis that sophisticated neural networks, when fine-tuned 
with parameter-efficient methods, can offer more accurate predictions in medical contexts, even when the 
available dataset is small.

The augmented prediction technique notably enhanced the model performance, reflecting the benefit of 
incorporating multiple frames from MRI scans to mitigate noise and anomalies. This approach resulted in 
more robust and consistent predictions, which is critical in clinical settings where precision is paramount. 
Interestingly, while the integration of clinical features did not significantly improve the model’s AUC, it did 
increase sensitivity. This suggests that the inclusion of clinical data, such as age, bone mineral density (BMD), 
and osteoporosis-related medication, helped to detect more positive cases, complementing the image-based 
model. However, this also indicates that the imaging model alone may be sufficiently powerful, suggesting that 
MRI-derived features can capture the essential information needed for accurate prediction. Additionally, with 
more optimized representation and integration of medical domain knowledge, the performance of the model 
combining both augmented prediction and clinical features could potentially be improved37.

The clinical implications of our predictive tool are profound. The early prediction of VC can significantly 
affect treatment decisions, allowing for timely and aggressive interventions that may improve patient outcomes. 
Given that our model was developed using a small dataset, it shows promise for use in medical fields where 
data-sharing is challenging38. Integrating this tool into clinical workflows could streamline decision-making 
processes and enhance the management of patients with OVCF, ultimately reducing the incidence of severe 
complications, such as chronic pain and neurological deficits. The broader application of AI in medical imaging 
and diagnostics is further supported by our study, highlighting that advanced AI models can augment traditional 
diagnostic methods and provide critical insights into disease progression. In future work, employing our model 
as an initial framework in a federated learning approach could help mitigate data insufficiency, potentially 
enhancing its performance and applicability39.

Model interpretability remains a crucial aspect of deploying AI in clinical practice. Our findings suggest that 
attention rollouts provide better interpretability by considering both cortical and trabecular regions compared 
to Grad-CAM, which focuses primarily on the cortex. However, both methods faced difficulties with certain 
misclassified cases, particularly in instances where vertebral fractures exhibited highly irregular shapes. In these 
cases, Grad-CAM tended to remain focused on the cortex, potentially overlooking significant details in other 
regions, while attention rollout dispersed its focus too broadly across the vertebral body, failing to concentrate 
on critical areas. This may be due to insufficient learning from the small dataset, indicating the need for further 
refinement and training, particularly when dealing with complex fracture morphologies. Future research 
should aim to improve the evaluation of trabecular areas, potentially by balancing the focus between cortical 
and trabecular regions, to enhance model performance in difficult scenarios. This approach could lead to more 
comprehensive and accurate interpretations, ultimately benefiting clinical decision-making.

While our study presents significant advancements, it also has limitations that need to be addressed. First, 
the retrospective design, while useful for initial model development, can introduce biases, such as selection 
bias, that may affect the generalizability of the findings40. Second, the relatively small dataset poses challenges 
to the robustness of the model41. We applied parameter-efficient fine-tuning through Low-Rank Adaptation 
(LoRA) to mitigate overfitting while maintaining model performance. We also incorporated data augmentation, 
including random slice selection, and weight regularization. Nonetheless, these strategies cannot completely 
eliminate the risk of overfitting. Furthermore, we acknowledge that the sample size used for external validation 
is limited for robust generalization. This is largely due to the clinical practice in OVCF cases, where patients 
frequently undergo surgical or invasive procedures, making it rare to find cases with more than six months of 
non-interventional follow-up. Despite gathering data from multiple institutions, the number of eligible cases 
remained low. Thus, future studies should aim to incorporate larger datasets to enhance model training and 
validation. Third, the reliance on multi-institution data enhances the model’s applicability across different 
settings but also adds variability in imaging protocols and quality, which could affect the model’s performance. 
A key challenge in dividing the data into development and test sets was ensuring a balanced proportion of VC 
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in the development set while avoiding an overly small test set. Class imbalance in the development set could 
result in model bias toward the majority class during training, potentially diminishing performance. Moreover, 
a small test set constrains the ability to reliably evaluate the model’s generalization capacity. To address this, 
we allocated data from three institutions to the development set, ensuring a balanced VC proportion, while 
assigning the remaining two institutions to the test set, which, although not large, represented a substantial 
portion of the total available data. In multi-institutional studies like ours, leave-one-institution-out cross-
validation is crucial since it involves training the model on data from multiple institutions while leaving out one 
institution’s data for testing, helping to identify any institution-specific biases and ensuring the model performs 
well across diverse clinical settings42. However, due to disparities in VC proportions and the number of included 
patients across institutions, implementing this as the primary validation strategy was infeasible. To overcome 
this limitation, we transferred a broad, adaptable feature space to our task by using a ViT model pre-trained on 
a large-scale, diverse biomedical dataset. This approach helps the model generalize better by learning from a 
variety of sources, reducing the likelihood of the model becoming biased toward specific data from any single 
institution. Furthermore, to address potential institution-specific biases, we performed two separate leave-one-
institution-out validations when finalizing our image model. Despite these efforts, the higher AUC for models 
using augmented prediction in external validation compared to internal validation, an unusual result, suggests 
potential variability across institutions. Therefore, in future research, we aim to enroll a larger cohort of multi-
institutional cases. This will allow us to further mitigate institutional biases and strengthen the robustness of the 
model through comprehensive leave-one-institution-out cross-validation. Ultimately, these efforts will support 
the establishment of clinical guidelines using our predictive model. Finally, our study used binary classification to 
predict VC based on a 50% collapse criterion, where VC was defined as a compressed anterior or central vertebral 
body height measuring less than 50% of the posterior height1. This threshold may limit the model’s capacity 
to capture more subtle variations in vertebral collapse. Future work could focus on developing continuous or 
multi-class predictions that account for varying degrees of collapse, providing a more detailed understanding of 
patient outcomes and enabling improved risk stratification to support clinical decision-making and personalized 
treatment strategies.

In conclusion, our study highlights the effectiveness of using a ViT model pre-trained on a domain-specific 
dataset, PMC-15 M, and fine-tuned with a parameter-efficient method, LoRA, in predicting the progression 
of VC in OVCFs. By employing the augmented prediction strategy, we further improved the prediction 
performance of our model.

Data availability
The data that support the plots within this paper and other findings including the code for the models are avail-
able from the corresponding author upon reasonable request.
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