
Graph Geometric Algebra networks
for graph representation learning
Jianqi Zhong1,2,3 & Wenming Cao1,2,3

Graph neural networks (GNNs) have emerged as a prominent approach for capturing graph topology
and modeling vertex-to-vertex relationships. They have been widely used in pattern recognition tasks
including node and graph label prediction. However, when dealing with graphs from non-Euclidean
domains, the relationships, and interdependencies between objects become more complex. Existing
GNNs face limitations in handling a large number of model parameters in such complex graphs. To
address this, we propose the integration of Geometric Algebra into graph neural networks, enabling
the generalization of GNNs within the geometric space to learn geometric embeddings for nodes
and graphs. Our proposed Graph Geometric Algebra Network (GGAN) enhances correlations among
nodes by leveraging relations within the Geometric Algebra space. This approach reduces model
complexity and improves the learning of graph representations. Through extensive experiments on
various benchmark datasets, we demonstrate that our models, utilizing the properties of Geometric
Algebra operations, outperform state-of-the-art methods in graph classification and semi-supervised
node classification tasks. Our theoretical findings are empirically validated, confirming that our model
achieves state-of-the-art performance.

Keywords  Geometric Algebra, Graph Neural network, Node classification, Graph classification, Feature
embedding

Graph embedding is a technique that aims to represent nodes as low-dimensional vectors, capturing their
graph position and the underlying structure of their local graph neighborhood1. It is a type of embedding
algorithm used in graph pre-processing with the goal of making graphs representing learning more efficiently.
In recent years, there has been a growing interest in utilizing Graph Neural Networks (GNNs) for learning graph
embeddings, leading to a wide range of applications, such as molecular networks2,3, social networks4,5, publication
networks6,7, etc. GNNs broadly follow a message-passing aggregation scheme, where each node sends its feature
representation to the nodes in its neighborhood nodes, and updates its feature representation by iteratively
aggregating the feature representation from the neighboring nodes. Many works have been proposed to improve
the message-passing aggregation scheme. For graph-level tasks8, presented a discriminative structural graph
neural network, where the authors designed new aggregation functions to maximize discrimination capacity
and learn discriminative graph representations9; leveraged masked self-attentional layers to aggregate different
weighted features for graph classification10; introduced a novel geometric aggregation scheme, known as Geom-
GCN, specifically designed to address the limitations of aggregation in graph neural networks; For node-level
tasks11, presented a general inductive framework, leveraging node feature information to efficiently generate
node embeddings for unseen data12. provided a characterization of all permutation invariant and equivariant
linear layers to approximate any neural aggregation network. Empirically, the design of new graph neural
networks (GNNs) has mainly been driven by intuition, heuristics, and iterative experimentation, without a
comprehensive theoretical understanding of their properties and limitations13. To tackle this issue13, introduced
a theoretical framework to analyze the expressive power of GNNs in capturing diverse graph structures. Though
GNNs have achieved enormous success on node and graph classification tasks, GNNs on Euclidean graph has
high distortion for modeling complex structures like molecular structures and social networks14. Moreover,
existing GNN models often encounter inefficiencies when dealing with high-dimensional structural data during
the inference process through multi-layer networks13.

Realizing that the most powerful aggregation functions suffer from a dimensionality curse, this paper focuses
on the discrimination capacity of aggregation functions to overcome the above problems. Our framework
draws inspiration from the work of13, which highlights the significant relationship between graph neural
networks (GNNs) and the Weisfeiler-Lehman (WL) graph isomorphism test15. In this paper, we develop a new

1Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen 518060, China.
2State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060,
China. 3College of Electronic and Information Engineering, Shenzhen University, Shenzhen 518060, China. email:
wmcao@szu.edu.cn

OPEN

Scientific Reports | (2025) 15:170 1| https://doi.org/10.1038/s41598-024-84483-0

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-84483-0&domain=pdf&date_stamp=2024-12-27

neighborhood aggregation scheme(Geometric Algebra Graph Neural Network(GGAN)) that learns to represent
and distinguish between different graph structures as the WL graph isomorphism test.

In GGAN, we harness the power of Geometric Algebra tools to capture meaningful graph embeddings.
Geometric Algebra is a powerful mathematical tool that has demonstrated remarkable success in various
applications, including computer vision16, Signal and Image Processing17, etc. We present two GA-based GNN
models to learn node and graph embeddings within the Geometric algebra space, including G3-GGAN and
G4-GGAN. In this geometric algebra space, Geometric Algebra (GA) enables the transformation of multi-
dimensional signals into multivectors, allowing for holistic handling within a new multi-dimensional GA space.
This approach helps to preserve the correlations among multiple dimensions and prevent information loss. In
addition, the input geometric components can be shared in the multiplication process so as to achieve highly
expressive calculations through geometric product. This operation can effectively reduce the parameters of the
model. Specifically, the output of the model is very sensitive to the input, and any slight change in the geometric
input components will obtain a completely different result. Therefore, the potential relationship between each
hidden layer and different hidden layers can be better captured, thereby improving the embedding quality.
Extensive experiments demonstrate the superior performance of our proposed GGAN over state-of-the-art
methods across various benchmark datasets. The key contributions of this paper are outlined as follows:

•	 We develop a new neighborhood aggregation scheme, Graph Geometric Algebra Network(GGAN), intro-
ducing geometric algebra to learn effective graph representation in geometric algebra space and solve high
distortion of graph structure in Euclidean space.

•	 In GGAN, we propose geometric algebra-based networks: G3-GGAN, and G4-GGAN, leveraging the advan-
tage of high-dimension division to learn and aggregate comprehensive graph features.

•	 We conduct extensive experiments to quantitatively and qualitatively verify that our GGAN outperforms
state-of-the-art methods for both node classification and graph classification. works

Related work
Geometric Algebraic and neural network
Geometric algebra, also known as Clifford algebra, expands the domain of neural networks from real numbers
to a more complex number domain. For instance, in the field of few-shot classification18, introduced a metric
network based on geometric algebra for cross-domain few-shot classification. In19, the authors constructed a
geometric algebra-based multi-view Interaction network to capture and aggregate motion features for human
motion prediction. Wang, et al. present a new type of convolutional neural network (CNN) based on Reduced
Geometric Algebra16. Based on previous research, Quaternion and Octonion are also widely used in neural
networks. In the work of20, Parcollet, et al. propose quaternion-based neural network(QRNN) and quaternion-
based LSTM, which achieve better performances than RNN and LSTM in automatic speech recognition. Zhu,
et al.21 and Wu, et al.22 propose quaternion-based convolutional neural network (QCNN) and Deep Octonion
networks (DONs) for image classification tasks, respectively.

Graph embedding learning
The graph is mainly embodied by nodes (vertex) and relationships (edges), which can be seen as a collection
of nodes and edges, and its advantage is to quickly solve complex relationship problems. In general, in graph
calculation, the basic data structure expression is: G = (V, E), where V represents node and E represents edge.

Node classification is the use of labeled nodes V in a given graph G to predict the category of unlabeled
nodes V ′, which is also called semi-supervised node classification.

Graph classification aims to classify graph structure data composed of nodes and edges, which does not rely
on the attributes of a specific node or a certain edge but starts from the overall structure of the graph. At present,
graph classification is mainly used in the field of natural science research, such as drug and molecules analysis.
Specifically, Let G = {gi, yi}

∑n

i=1 be a set of graph data, where gi is the graph, and yi is the corresponding
label, the task is to learn an embedding fe(gi) for each entire graph gi to predict its label ŷi.

Recent research advances have made progress in the deep learning field. Many large-scale neural networks
have been proposed9,23–26in the graph representing learning, which aims to utilize neural network models to map
different graphs into different representations in the embedding space. The graph neural network(GNN)23extended
conventional neural networks to process data represented in graph domains, leading to improved performance
compared to earlier approaches. Graph Convolutional Network (GCN)24 is the promotion of the convolutional
neural network (CNN) in the graphs. Hamilton et al.1 design the GraphSAGE to sample and aggregate node
features from the local neighbors of a node, and use these features information to efficiently generate embedding
for nodes that have not been seen before.

To make use of complex-valued embeddings, the authors in27proposed the concept of complex space in
knowledge graph embedding, capturing asymmetric relationships and maintaining the efficiency of dot product
operations. Some recent work goes beyond the complex-valued representations and uses more expressive and
hypercomplex representations to model the entities and relationships embedded in the knowledge graph. In
the work of28, a novel method called dual quaternion knowledge graph embeddings (DualE) was applied to
knowledge graph embeddings to gain a more complete set of relational information. To reduce the distortion
of complex graph data, Dai et al.29 proposed Quaternion Graph Neural Networks (QGNN) extend the existing
GCN models into the Quaternion space, enabling more expressive and powerful graph representation learning.
They embed nodes and graphs in quaternion space to enhance graph representation quality and decrease model
parameters.

Scientific Reports | (2025) 15:170 2| https://doi.org/10.1038/s41598-024-84483-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Geometric algebra background
Geometric Algebra(GA), known as Clifford Algebra30, provides a brand-new algebraic structure on high-
dimensional vector spaces. In GA space, a new product called geometric product is introduced. For vectors w
and z of Gn, the geometric product is defined as:

	 u ⊙ v = u · v + u ∧ v,� (1)

where u · v denotes the inner product producing a scalar element, u ∧ v denotes the outer product. The outer
product in GA represents a new quantity called bivector, which is used for representing an oriented and limited
plane. Suppose Gn is n-dimensional GA with an orthogonal basis of vectors n {ei} , i = 1, · · · , n. The ei vectors
are orthogonal, then ei ⊙ ej = eiej = ei · ej + ei ∧ ej = ei ∧ ej , which means that

	 n {1, {ei} , {eiej} , · · · , {e1e2 · · · en}} = n {1, {ei} , {eij} , · · · , {e1,2···n}} .� (2)

For instance in G3, suppose {e1, e2, e3} are orthonormal basis in G3 space. The geometric product is sensitive
to the order of the vector basis, which results in anti-commutative product:

	 eiej = eij = −ejei = −eji, (i, j = 1, 2, · · · , n, i ̸= j), � (3)

	 e2
i = −1, i = 1, · · · , n, � (4)

	 eieij = eieiej = ej , i, j = 1, · · · , n, i ̸= j, � (5)

For arbitrary multivector M in G3, M can be represented as

	 M = a0 + a1e1 + a2e2 + a3e3 + a4e12 + a5e23 + a6e13 + a7e123,� (6)

where a0, a1, a2, a3, a4, a5, a6 and a7 are real numbers, e12, e23, e13 is the outer product of two arbitrary
vectors. In GA, any multivector M ∈ Gn is described by

	
M =E0 +

∑
1⩽i⩽n

Ei(M)ei +
∑

1⩽i<j⩽n

Eij(M)eij + · · · + E1···n(M)e1···n, E(M) ∈ R.� (7)

Methods
In this work, we introduce Graph Geometric Algebra Networks (GGAN), a novel framework that leverages
Geometric Algebra (GA) to learn enhanced embeddings for graph-structured data. Our proposed GGAN
framework extends traditional Graph Convolutional Networks (GCNs) by incorporating the rich multi-
dimensional representations enabled by GA, offering a more expressive model within the GA space. The
architecture presented in Figure.1 illustrates the flow and key operations of the Graph Geometric Algebra
Network (GGAN). By utilizing GA-based operations, GGAN significantly reduces the model’s parameter count,
enabling efficient performance on large graphs while simultaneously improving the expressiveness and quality
of the learned graph representations.

Graph Geometric Algebra internal representation
In GA space, GA provides an element containing scalars, vectors, bivectors, trivectors, and any other elements
created by the geometric product, which we call it multivector. Multivctor can express any dimensional space
elements, and, thus, is the key we introduce GA for Graph neural networks. In GA-GNN, we initialize input
features in GA space by multivectors representation, which ensures GA aggregation for graphs. Given l-th
layer input feature X(l)

v ∈ RN×D , where we assume D is divisible by geometric algebra dimension 2n. We
splite X(l)

v into 2n sub-vectors, each of size D/2n, yielding D/2n dimensional GA features. Consequently, we
represent graph features X(l)

v by multivectors(refers to Eq.7), geometric algebra vector H(l),G
v , which contains

2n components as follows:

	 H(l),G
v = f

(
X(l)

v

)
= H

(l),G
v,0 + H

(l),G
v,1 + H

(l),G
v,2 , . . . , +H

(l),G
v,n−1,� (8)

where ⊕ denotes concatenation operation in 2n components.

Graph neural networks
GNNs utilize the graph structure and node features Xv to obtain a representation vector for each individual
node, denoted as hv , as well as for the entire graph, denoted as hG. Contemporary GNNs adopt a neighborhood
aggregation approach, wherein the node’s representation is iteratively updated by aggregating the representations
of its neighboring nodes. A node’s representation encapsulates the structural information from its L-hop network
neighborhood. Concretely, the l-th layer of GCL(Graph Convolutional Layer) in13 can be defined as:

	

a(k)
v = AGGREGATE(k) ({

h(k−1)
u : u ∈ N (v)

})
,

h(k)
v = COMBINE(k) (

h(k−1)
v , a(k)

v
)

,
� (9)

Scientific Reports | (2025) 15:170 3| https://doi.org/10.1038/s41598-024-84483-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

where h(0)
v = Xv , N (v) is a set of nodes adjacent to v. Existing works applied different kinds of

AGGREGATE(k)(·) and COMBINE(k)(·) for graph embedding.

Graph Geometric Algebra network
In this work, we aim to develop a novel architecture, Graph Geometric Algebra Network (GGAN), for
graph node updating. Our aim is to achieve the highest level of discriminative power among GNNs, thereby
maximizing their effectiveness. Firstly, we achieve feature extraction by first summing up all node features and
then introducing geometric algebra to model this process at the node level. Formally, GGAN updates node
representations for graph structure as:

	

H(l+1),G
v = GA(l)


 ∑

o∈O(v)

H(l)
o


 ,� (10)

where O(v) = {o | (u, v), u ∈ N(v)}, GArepresents geometric algebra-based operation. For the real-valued
graph networks, the vectors are multiplied with the weights using the scalar product. In GGAN, we develop a
geometrical algebra-based layer, geometric algebra graph convolutional layer(GA-GCL). The scalar product is
replaced by the geometric product for geometric neural networks. Concretely, at the graph level, we follow13 to
integrate AGGREGATE and COMBINE steps(shown in Eq.9) to update graph embeddings as:

	

H(l+1),G
v = σ

(∑
Bu,vf

(
w(l)) ⊗ f

(
X

(l)
v

))
, ∀u,v ∈ V

= σ
(∑

Bu,vW(l,G) ⊗ H
(l,G)
v

)
, ∀u,v ∈ V ,

� (11)

where ⊗ is the geometric product in GA space, B represents the adjacency matrix between nodes, W(l),G is a
geometric algebraic weight matrix, and H(l),G

v is the geometric algebra feature vector of node v at l-th layer. σ(·)
is an activation function such as ELU31. W(l),G and H(l),G

v can be expressed as follow formula:

	 H(l),G
v = H(l)

v,0 + H(l)
v,1e1 + H(l)

v,2e2 + · · · + H(l)
v,2n−1e12···n, k = 2n, � (12)

	 W(l),G = W(l)
0 + W(l)

1 e1 + W(l)
2 e2 + · · · + W(l)

2n−1e12···n, k = 2n. � (13)

Fig. 1.  Overview of Graph Geometric Algebra Network. It is designed to improve the effectiveness of graph
neural networks (GNNs) by leveraging Geometric Algebra (GA), which enhances the ability to capture
complex relationships in graph data while reducing model complexity.

Scientific Reports | (2025) 15:170 4| https://doi.org/10.1038/s41598-024-84483-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Splitting H(l),G
v into k parts in the geometric algebraic space, namely, H(l)

v,0, H(l)
v,1, · · · , H(l)

v,n−1 ∈ R and
corresponding basis vector e1, e2, · · · , e12···n ∈ Gn, same with W(l),G. We encode the geometric product of
W(l),G and H(l),G

v as follows:

	

W(l),G ⊗ H(l),G
v =




1
e1
e2
...

e12···k




⊤




W(l)
0 −W(l)

1 −W(l)
2 · · · −W(l)

n−1

W(l)
1 W(l)

0 W(l)
3 · · ·

...

W(l)
2 −W(l)

3
. . . W(l)

3 W(l)
2

... · · · −W(l)
3 W(l)

0 −W(l)
1

W(l)
n−1 · · · −W(l)

2 W(l)
1 W(l)

0







H(l)
v,0

H(l)
v,1

H(l)
v,2
...

H(l)
v,n−1




,� (14)

where W(l)
i is shared in the geometric product calculation process. Furthermore, for each H(l)

v,i as long as there
is a slight change, the output will be very different, resulting in different performance. This mechanism enables
the network to learn the potential relationship between each hidden layer, which effective learning of graph
representation to achieve better performance. In this paper, we introduce GGAN in the G3 and G4 space,
leading to the development of G3-GGAN and G4-GGAN, respectively. These models are designed to learn GA
graph embeddings by utilizing real-valued arithmetic to simulate geometric algebra arithmetic, specifically the
geometric product.

G3-GGAN
In G3-GGAN, graph features are split into 23 = 8 sub-vectors. Eq.12,13 can be expressed as the following form:

	 H(l),G
v =H

(l)
v,0 + H(l)

v,1e1 + H(l)
v,2e2 + H(l)

v,3e3 + H(l)
v,4e12 + H(l)

v,5e31 + H(l)
v,6e23 + H(l)

v,7e123, � (15)

	 W(l),G =W(l)
0 + W(l)

1 e1 + W(l)
2 e2 + W(l)

3 e3 + W(l)
4 e12 + W(l)

5 e31 + W(l)
6 e23 + W(l)

7 e123. � (16)

The geometric product of W(l),G and H(l),G
v can be encoded as follows according to Eq.14 and Eq.25:

	

H(l),G
v ⊙ W(l),G = e⊤MG

v H(l,G)
v =




1
e1
e2
e2
e12
e31
e23
e123




⊤




W(l)
0 W(l)

1 W(l)
2 W(l)

3 −W(l)
4 −W(l)

5 −W(l)
6 −W(l)

7
W(l)

1 W(l)
0 −W(l)

4 W(l)
6 W(l)

2 −W(l)
7 −W(l)

3 −W(l)
5

W(l)
2 W(l)

4 W(l)
0 W(l)

5 −W(l)
1 −W(l)

3 −W(l)
7 −W(l)

6
W(l)

3 −W(l)
6 W(l)

5 W(l)
0 −W(l)

7 −W(l)
2 W(l)

1 −W(l)
4

W(l)
4 W(l)

2 −W(l)
1 W(l)

7 W(l)
0 −W(l)

6 W(l)
5 W(l)

3
W(l)

5 W(l)
7 W(l)

3 −W(l)
2 W(l)

6 W(l)
0 −W(l)

4 W(l)
1

W(l)
6 −W(l)

3 W(l)
7 W(l)

1 −W(l)
5 W(l)

4 W(l)
0 W(l)

2
W(l)

7 W(l)
5 W(l)

6 W(l)
4 W(l)

3 W(l)
1 W(l)

2 W(l)
0







H(l)
v,0

H(l)
v,1

H(l)
v,2

H(l)
v,3

H(l)
v,4

H(l)
v,5

H(l)
v,6

H(l)
v,7




.� (17)

G4-GGAN
In G4-GGAN, graph features are split into 24 = 16 sub-vectors. According to Eq.12,13, W(l),G and H(l),G

v can
be expressed as:

	

H(l),G
v =H(l)

v,0 + H(l)
v,1e1 + H(l)

v,2e2 + H(l)
v,3e3 + H(l)

v,4e4 + H(l)
v,5e12 + H(l)

v,6e13+

H(l)
v,7e14 + H(l)

v,8e23 + H(l)
v,9e24 + H(l)

v,10e34 + H(l)
v,11e123 + H(l)

v,12e124+

H(l)
v,13e134 + H(l)

v,14e234 + H(l)
v,15e1234,

� (18)

	

W(l),G =W(l)
0 + W(l)

1 e1 + W(l)
2 e2 + W(l)

3 e3 + W(l)
4 e4 + H(l)

v,5e12 + W(l)
6 e13+

W(l)
7 e14 + W(l)

8 e23 + W(l)
9 e24 + W(l)

10 e34 + W(l)
11 e123 + W(l)

12 e124+

W(l)
13 e134 + W(l)

14 e234 + W(l)
15 e1234.

� (19)

The geometric product of W(l),G and H(l),G
v can be encoded according to Eq.14 and Eq.25.

GA-GNN for graph classification
Based on the proposed GA-GNN(see Figure.1), GA-GNN for graph classification comprises two main layers:
GCLs(Graph Convolutional Layers) and GA-GCLs (Geometric Algebra Graph Convolutional Layers). The GCLs
ensure that the graph channels meet the operational requirements within the GA space. We stack N GA-GCL
layers as the core component to learn graph embeddings. For the graph classification task, the graph structure will
be downsized when it is forwarded and finally aggregated into a point feature by multi-layer perceptrons(MLPs).
In our work, we follow a powerful and simple Graph Isomorphism Network(GIN)13 architecture chosen sum
pooling as Readout function to obtain the embedding Eg of the entire graph G by aggregating the node-level
representations:

Scientific Reports | (2025) 15:170 5| https://doi.org/10.1038/s41598-024-84483-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

	
Eg =

∑
v∈V

Ev =
∑
v∈V

[
H(1)

v ⊕ H(2)
v ⊕, . . . , ⊕H(L)

v
]

.� (20)

The Readout function is a critical component in graph neural networks for discriminative tasks. Its main objective
is to aggregate the node features from the final layer of the graph and produce a graph-level representation Hg :

	 Hg = Readout
({

H(l)
v , v ∈ V

})
,� (21)

where H(l)
v denotes the vector representation of node v at the l-th layer. We concatenate the vector representations

of node v on different layers to construct node embeddings Ev:

	 Ev = H(1)
v ⊕ H(2)

v ⊕, . . . , ⊕H(L)
v , ∀v ∈ V .� (22)

GGAN for node classification
The architecture for node classification shows a similar architecture as graph classification(see Figure.1). The
embedding update formula of the multilayer graph neural network can be expressed as follows:

	 H(l+1),G
v = σ

(
L̃symW(l),G ⊗ H(l),G

v
)

,� (23)

where Lsym = D̃− 1
2 ÃD̃− 1

2 is a re-normalized Laplacian matrix. It can effectively prevent the disappearance of
gradients that occur during multi-layer optimization. In addition, we perform a log-softmax operation on the
final output to get the probability distribution of different category labels. In GA-GCL, we introduce geometric
algebra space into knowledge graph embedding:

	
ŷv = log_softmax

(∑
L̃symW(l,G)H(l)

v

)
, ∀v ∈ V .� (24)

Geometric Algebra embedding generation
The following Algorithm 1 shows the details of how geometric algebra is introduced to embedding generation
beyond Euclidean space(we take node classification for instance).

Algorithm 1.  Geometric Algebraic Embedding Generation for graph classification.

Weight initialization strategy
Weight initialization
Weight initialization is a critical component in neural network training, which aims to prevent layer activation
outputs from exploding or vanishing during a forward and back pass. Loss gradients may become either too
large or too small when the weights are initialized with the same value, which leads to a longer convergence for
the network and fewer features the network can learn from training. Therefore, an adequate weight initialization
strategy is required to ensure the model converges stably and quickly. In this work, we follow22 using the Gaussian
random method for the GA weigh initialization.

Weight structure
For the selection of the sign(positive or negative) of W(l)

i in the Equation 14, we use the following formula to explain:
Let vector a = en1,n2,n3,··· ,nk , which means a is obtained by multiplying k basis vectors. b = em1,m2,m3,··· ,mi

, which means b is obtained by multiplying i basis vectors, where n1 < n2 <, · · · , < nk, m1 < m2 <, · · · , mk

Scientific Reports | (2025) 15:170 6| https://doi.org/10.1038/s41598-024-84483-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

. Suppose there are s equal basis vectors in the a and b vectors, namely e(ns1), e(ns2), · · · , e(nss) and
e(ms1), e(ms2), · · · , e(mss). Among them, nsi, msi, i = 1, 2, · · · , s are subscript indexes:

	
p = s · (nk+1) −

S∑
i=1

(nsi − msi + i) .� (25)

During the geometric algebraic product, the shared parameters W(l)
i (i ∈ 0, 1, 2 . . . , n) reduce the number of

parameter updates during network backpropagation. The output of the geometric algebraic product is sensitive
to h(l)

u,i(i ∈ 0, 1, 2 . . . , n)29. This enables the model to learn the underlying relationships between features more
effectively and enhance the expressive power of the network.

Experiments
We evaluate the effectiveness of our proposed GGAN(G3-GGAN, G4-GGAN) with State-of-the-Art methods.
We conduct extensive experiments for node classification on three public datasets and graph classification on
seven well-known datasets which are usually cited by researchers for graph classification. For the comparison
of model size, we make a run-time analysis between hypercomplex-based GNN, traditional GNN, and our GA-
GNNs given a fixed architecture on a specific dataset.

Experiment baselines
We compared our method with baselines consisting of 15 deep learning methods for graph classification,
which include GCAPS32, GIN13, DGCNN33, PPGN34, CapsGNN35, DSGC8, GFN36, MLC-GCN37,
QGNN29, CapsualGNN38, π−GNN39, GSN-v40, ARMA41, HGRL42, LPD-GCN43, LCNN44. Five up-to-date
baselines(QGNN29, Geom-GCN10, N-GCN45, Graph-MLP46, EM-GCN47) is for node classification. For the
aforementioned baseline methods, we report the accuracy values as provided in their respective original papers.

Graph classification
Datasets
There are a wide variety of benchmarks for graph classification. In this work, we use seven well-known datasets
consisting of three social network datasets (COLLAB, IMDB-Binary(IMDB-B) and IMDB-Multi(IMDB-M))48
and four biological datasets (MUTAG, PROTEINS, D&D, NELL, and PTC).

Metrics
To ensure a fair comparison with existing results, we adopt the evaluation methodology used in prior studies8,29,34.
Specifically, we employ 10-fold cross-validation for graph classification, where the datasets are divided into 10
subsets, with one subset reserved for testing and the remaining subsets used for training. We repeated 10 times
for this process and the final performance is reported as the average across the 10 iterations.

Experimental details
For all the experiments, we train our model with 6 GA-GNNS using the proposed G3-GGAN, G4-GGAN.
In addition, to illustrate the effectiveness of our models, We conduct additional experiments with varying the
number of hidden layers (1, 2, 3, 4, 5) and the hidden size (16 to 128) in our model. The models are trained for
a maximum of 150 epochs using the Adam optimizer51 with a learning rate ranging from 5e5 to e1. Since the
social network datasets lack node features, we adopt the approach proposed in33 where we use node degrees as
features for these datasets.

Comparisons
Table. 1 and 2present our comparative results to other methods on both social and biological graphs. In general,
we outperform most of the other methods with regards to the task of graph classification, as well as obtain
comparable results on datasets of MUTAG. Especially we achieve higher accuracy of 87.29%, 80.80%, 56.00% on
the social datasets, COLLAB, IMDA-B, IMDA-M, respectively, which outperforms the state-of-art results40by
a high margin(2.10%, 3.86%, 3.13%, respectively, and the traditional graphs networks36 by a margin of 7.10%,
10.68%, 8.11%, respectively.

Our research hypothesis concerning the proposed G3-GGAN, G4-GGAN, is that the increasing dimension
number for graph embedding and feature representation in GA space can significantly enhance the performance
of the traditional GNNs13,24,36. This attributes to certain datasets in our experiments exhibit characteristics that
inherently favor higher-dimensional representations. For example, datasets with more intricate graph topology
or richer feature information align well with the enhanced modeling capacity of G4-GGAN. Conversely,
G3-GGAN’s performance may be constrained on such datasets(shown in Table 1,2), especially when the
GA dimension is not fully aligned with the data complexity. We confirm it on most datasets except for PTC.
For example, the accuracy on PROTEINS obtained by G3-GGAN, G4-GGAN is gradually increasing and
outperforms the traditional GNNs by a margin of 4.05%, 6.03%, respectively. However, this rule does not apply
to PTC: G3-GGAN yields the best performance on PTC. This perhaps is because the input dimension is adjusted
to the size coordinating with GA dimension and graphs, thus losing the embedded parts feature. This would not
happen every time but in case the dataset is compared little-size. Overall, the experimental results on both social

Scientific Reports | (2025) 15:170 7| https://doi.org/10.1038/s41598-024-84483-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

and biological datasets indicate our approaches achieve a competitive performance on all benchmark datasets,
which implies representation learning in GA space can be significantly improved.

Node classification
Datasets
The node classification datasets used in this study consist of three widely recognized benchmarks: Cora, Citeseer,
and Pubmed52. These datasets are citation networks, with each dataset representing a collection of documents. The
Cora dataset comprises 2,708 machine learning publications that are categorized into 7 distinct classes. Similarly,
the Citeseer dataset consists of 3,327 scientific papers divided into 6 categories. In both Cora and Citeseer, each
paper is represented by a one-hot vector indicating the presence of specific words from a dictionary. On the
other hand, the Pubmed dataset comprises 19,717 publications related to diabetes. Each paper in the Pubmed
dataset is represented by a TF-IDF vector, which captures the importance of terms within the document. In all
of these datasets, each node corresponds to a document and is assigned a class label representing the document’s
main topic. The objective is to predict the correct class for each node in the dataset.

Model COLLAB IMDA-B IMDA-M Average

GCAPS32 77.71 ± 2.51 71.69 ± 3.40 48.50 ± 4.10 65.97

GIN13 80.20 ± 1.90 75.10 ± 5.10 52.30 ± 2.80 69.20

DGCNN33 73.61 ± 0.49 70.03 ± 0.86 47.83 ± 0.85 63.82

PPGN34 81.38 ± 1.42 73.00 ± 5.77 50.46 ± 3.59 68.28

CapsGNN35 79.62 ± 0.91 73.10 ± 4.83 50.27 ± 2.65 67.66

DSGC8 79.20 ± 1.60 73.20 ± 4.90 48.50 ± 4.80 66.97

GFN36 81.50 ± 2.42 73.00 ± 4.35 51.80 ± 5.16 68.77

MLC-GCN37 - 71.4 51.53 -

QGNN29 81.36 ± 1.31 77.56 ± 2.45 53.78 ± 3.83 70.90

CapsualGNN38 82.33 75.1 52.5 69.98

π-GNN39 75.70 ± 1.70 71.50 ± 4.00 48.50 ± 3.50 65.23

G-mixup50 - 73.93 ± 2.84 50.29 ± 2.30 -

GSN-v40 85.50 ± 1.20 77.80 ± 3.30 54.30 ± 3.30 72.53

G3-GGAN(Ours) 84.87 ± 1.11 75.31 ± 4.88 54.30 ± 3.46 71.49

G4-GGAN(Ours) 87.29±1.23 80.80±3.16 56.00±3.77 74.70

Table 2.  Performance results(%) of our methods on biological graphs compared with other baselines. The best
scores are in bold.

Model MUTAG PROTEINS PTC D&D NCI1

GCAPS32 - 76.40 ± 4.17 66.01 ± 5.91 77.62 ± 4.99 82.72 ± 2.38
GIN13 89.40 ± 5.60 76.20 ± 2.80 64.60 ± 7.00 - 82.70 ± 1.70
DGCNN33 85.83 ± 1.66 75.54 ± 0.94 58.59 ± 2.47 79.37 ± 0.94 74.44 ± 0.47
PPGN34 90.55 ± 8.70 77.20 ± 4.73 66.17 ± 6.54 - -

CapsGNN35 86.67 ± 6.88 76.28 ± 3.63 - 75.38 ± 4.17 78.45 ± 0.26
DSGC8 86.70 ± 7.60 74.20 ± 3.80 - 77.40 ± 6.40 79.80 ± 1.20
GFN36 90.84 ± 7.22 76.46 ± 4.06 - 78.78 ± 3.49 82.77 ± 1.49
MLC-GCN37 86.84 76.52 - 80.86 -

QGNN29 92.59 ± 3.59 78.47 ± 3.30 69.92 ± 2.59 79.92 ± 3.54 -

CapsualGNN38 93.13 - - - 81.2

LPD-GCN43 94.80 ± 4.3 - 74.6 ± 4.50 82.90 ± 2.4 82.90 ± 1.50
π-GNN39 86.10 ± 8.40 73.60 ± 3.5 - 78.10 ± 3.40 76.70 ± 1.70
GSN-v40 92.20 ± 7.50 76.60 ± 5.00 68.20 ± 7.20 - 83.50 ± 2.00
LCNN44 95.73±3.96 - 73.24 ± 3.35 - 82.05 ± 0.18
ARMA41 91.5 ± 4.20 73.70 ± 3.40 - 77.60 ± 2.70 -

DEFL49 - 79.46 ± 6.13 - 81.03 ± 5.82 80.03 ± 1.93
HGRL42 89.13 78.71 63.59 83.30 85.01

G3-GGAN(Ours) 93.57 ± 5.54 79.70 ± 2.80 75.86±4.78 84.46 ± 3.18 82.17 ± 1.64
G4-GGAN(Ours) 94.15±6.35 81.68±2.87 72.37 ± 4.62 85.23±2.86 85.86±1.86

Table 1.  Performance results(%) of our methods on biological graphs compared with other baselines. The best
scores are in bold.

Scientific Reports | (2025) 15:170 8| https://doi.org/10.1038/s41598-024-84483-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

Metrics
To ensure a fair comparison, we adopt the same experimental setup as29 by using identical 10 random data splits
and a 10-fold cross-validation scheme. Each data split is divided into three sets: training, validation, and testing.
The proportions of nodes in each class are equally distributed among the sets. Specifically, 60% of the nodes
are allocated for training, 20% for validation, and the remaining 20% for testing. This consistent data-splitting
strategy allows for reliable and comparable evaluations of different models across multiple experiments.

Experimental details
To illustrate the effectiveness of our models, we compare with the baselines QGNN29, Geom-GCN10, N-GCN45,
Graph-MLP46, EM-GCN47. We apply the same architecture as29, Geom-GCN10, which is a 2-layer GCN with 16
hidden outputs for CORA, CITESEER, and 64 for PUBMED, but replace the GCL with our proposed GA-GCL.
All models to be trained are set to a maximum of 500 epochs using the Adam optimizer14. The learning rate is
initially set to 0.05, and decay by multiplying 0.8 for every step size epoch of 50 from the 50-th epoch.

Comparisons
Table.3 presents the results of our methods and the state-of-art models on the benchmark datasets. Overall,
our methods demonstrate superior performance on larger datasets. Specifically, on the CORA benchmark
dataset, our proposed G3-GGAN and G4-GGAN outperform recent works. Notably, G3-GGAN exhibits
better performance compared to G4-GGAN (despite having a higher GA dimension), which can be attributed
to the same reason explained in Section 2.6. On the second-largest benchmark dataset (CITESEER), G3-
GGAN achieves an accuracy of 81.95%, surpassing EM-GCN by 1.67%. For the PUBMED dataset, G3-GGAN
outperforms all other approaches.

Interestingly, the application of a low GA dimension in GA-GNN does not yield notable improvements
until G4-GGAN achieves a competitive accuracy result (92.21%), surpassing EM-GCN. The occasional
underperformance of G3-GGAN relative to baseline models can be explained by its sensitivity to input
dimension and graph size. G3-GGAN requires that input features be split into sub-vectors matching the GA
dimension (23 = 8 components in G3 space). In cases where the input dimensionality or dataset size(e.g.,
IMDB-M, IMDB-B) is small, this alignment can lead to loss of feature granularity or uneven distribution of
information across GA components. This issue is particularly evident in smaller datasets, where G3-GGAN’s
restricted expressiveness in lower-dimensional GA spaces may limit its ability to outperform baselines with
simpler architectures optimized for such settings.

Qualitative Analysis: To visually demonstrate the learning of node embeddings in our proposed GGAN,
we utilize t-SNE53to visualize the learned node features from the middle layer of our methods, namely Geom-
GNN10and QGNN29. Figure 2 illustrates the clustering effect on the CORA dataset, where points with different
colors represent different groups. Comparing the node representation distributions obtained by Geom-GNN and
QGNN, we observe that the group centers of each class obtained by G3-GGAN and G4-GGAN are significantly
distant from other classes. Moreover, the nodes within each class are closely clustered together, indicating that
our methods produce high-quality learned node embeddings.

Ablations study
Model size and computational cost comparisons
To verify the applicability of the proposed GGAN, We compared the computational cost of G3-GGAN and G4-
GGAN (our models) with traditional GNNs, including Geom-GNN and QGNN, across different network depths
(Layer-1 to Layer-5). The hidden dimension is set to 128. The metrics include model size, running time(ms), and
FLOPs(G). We have several observations as follows(see Table 4):

•	 All models with a 1-layer architecture possess an identical number of parameters. This similarity arises from
the models sharing the same output dimension for a given dataset.

•	 Our models exhibit significantly lower model sizes compared to traditional GNNs, particularly in deeper lay-
ers. For instance, at Layer-5, G4-GGAN achieves the smallest size (0.039M), reducing memory requirements
by over 84% compared to Geom-GNN(0.250M) and by 69% compared to QGNN (0.125M).

•	 In terms of running time, our models perform comparably with traditional GNNs for shallow layers (Layer-1
to Layer-3).

•	 G4-GGAN also requires fewer FLOPs as the network deepens. For example, at Layer-5, it reduces FLOPs by
25% compared to Geom-GNN (42.11G vs. 31.13G).

Model CORA CITESEER PUBMED Average

Geom-GNN10 85.77 73.68 88.13 82.53

N-GCN45 83.00 72.20 79.50 78.23

Graph-MLP46 79.50 73.10 79.70 77.43

QGNN29 87.48 ± 1.08 76.03 ± 1.89 87.65 ± 0.47 83.72

EM-GCN47 88.70 ± 0.04 80.60 ± 0.10 91.10 ± 0.10 86.8

G3-GGAN(Ours) 89.59±1.35 78.78 ± 1.29 88.98 ± 0.56 85.78

G4-GGAN(Ours) 87.54 ± 1.17 81.95±1.74 92.21±0.56 87.23

Table 3.  Graph classification performance(%) of our method are presented. The best are in bold.

Scientific Reports | (2025) 15:170 9| https://doi.org/10.1038/s41598-024-84483-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

We can conclude that GGAN models are computationally efficient, particularly regarding memory usage and
FLOPs. The computational performance demonstrates that our GGAN aids in parameter reduction. G3-GGAN
and G4-GGAN’s compactness is due to their optimized geometric algebra(GA) representation, which achieves
high expressiveness with fewer parameters. As the GGAN dimension increases, the parameters decrease due
to the inherent weight-sharing mechanism. The compactness of our models ensures scalability to larger graphs
without a linear increase in memory or computational requirements. For example, G4-GGAN’s smaller model
size (0.039M at Layer-5) enables its deployment on large-scale graphs while maintaining efficiency. Additionally,
the structure of GA-based models allows for the natural partitioning of graph data. This facilitates parallel
processing and distributed computation, critical for handling larger graphs.

The effect of model depth
To examine the impact of model layer depth (number of layers) on classification performance, we evaluate the
results on CORA dataset using QGNN29, G3-GGAN, G4-GGAN, and the standard Geom-GNN10models. We
vary the number of layers from 1 to 5 in our experiments. We follow the experimental setting of29for QGNN
and10 for GCN. The hyperparameters are chosen as follows: 0.5 for the dropout rate, 500 epochs for training

Methods

Layer-1 Layer-2 Layer-3

Model size(M) Run time(ms) FLOPs(G) Model size(M) Run time(ms) FLOPs(G) Model size(M) Run time(ms) FLOPs(G)

Geom-GNN10 0.022 10.94 1.25 0.237 11.42 35.12 0.242 14.31 36.48

QGNN29 0.022 10.87 1.25 0.119 11.35 31.52 0.121 14.36 34.21

G3-GGAN(Ours) 0.022 10.89 1.25 0.062 11.29 28.58 0.065 14.60 31.52

G4-GGAN(Ours) 0.022 10.93 1.25 0.033 11.95 26.72 0.035 14.35 28.19

Methods

Layer-4 Layer-5

Model size(M) Run time(ms) FLOPs(G) Model size(M) Run time(ms) FLOPs(G)

Geom-GNN10 0.246 16.39 38.85 0.250 22.25 42.11

QGNN29 0.123 16.46 37.25 0.125 22.79 40.58

G3-GGAN(Ours) 0.071 16.57 33.87 0.074 20.50 36.87

G4-GGAN(Ours) 0.039 16.04 29.66 0.042 22.36 31.13

Table 4.  Comparison of running time, model size, and computational cost.

Fig. 2.  The figure shows the node representation comparison on dataset CORA. All categories on CORA are
represented by different colors. T-SNE methods are used to visualize the node representation performance. We
concatenate the components of the G3-GGAN, G4-GGAN node embeddings as the real-valued vector inputs
of t-SNE.

Scientific Reports | (2025) 15:170 10| https://doi.org/10.1038/s41598-024-84483-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

using the Adam optimizer, 0.05 for the learning rate, and 16 for the number of the hidden layer. Fig 3(a) reports
the result.

We observe that the performance of all models on classification reaches the peak when model layers are
set to 2 and decline at a different rate when model layers increase. It should be noted that the training for a
deeper model can become obviously tricky due to over-smoothing, a phenomenon of the node features tending
to converge to the same vector. Compared with GGAN, however, the performance of Geom-GNN decreases
sharper. Therefore, we make a conclusion that the introduction of geometric algebra may probably slow down
the over-smoothing phenomenon of the GNN model.

Detailed performances with different hidden layer size
Different hidden layer dimensions would affect classification performance. The results are reported in Fig 3(b).
We utilize a fixed 2-layer architecture and change the hidden layer dimension. The other hyperparameters are
the same as the experiments investigating the influence of layer depth on model performance. As Fig 3 shows,
There is no correlation between the increasing of hidden layer dimension with fixed network architecture and
model performance. However, G3-GGAN and G4-GGAN show better performance compared with Geom-
GNN, which implied that the model performance had been strengthened when introducing Geometric algebra.

Conclusion
This paper presents a novel neighborhood aggregation scheme, which develops geometric algebra into graph
neural networks to learn graph embedding representation and reduce the parameter count in the model. We
proposed a Graph Geometric Algebra Network(GGAN) consisting of G3-GGAN, and G4-GGAN to learn node
and graph embeddings within Geometric Algebra space. By leveraging the properties of GA operation, our
models achieve the most advanced performance on a range of well-known benchmark datasets for the two main
tasks of node classification, and graph classification.

In future work, we will explore the extension of geometric algebra to dynamic graphs and time-series data
for capturing temporal dynamics and evolving patterns. In addition, the application of geometric algebra in
deeper graph convolutional networks will be further investigated to enhance representation learning and model
capacity.

Discussion
The proposed Graph Geometric Algebra Network(GGAN) presents promising opportunities for advancing
graph representation learning in various real-world applications. For instance, GGAN can enhance tasks in social
network analysis, such as community detection and influence modeling, by capturing complex user interactions.
In molecular and biomedical fields, its ability to handle high-dimensional and non-Euclidean structures makes
it suitable for drug discovery, molecular property prediction, and biological network analysis. Additionally,
GGAN’s expressive embeddings can improve performance in knowledge graph tasks like link prediction and
semantic search. Beyond these, GGAN has potential in cybersecurity for detecting fraud and cyber threats, as
well as in optimizing infrastructure networks, including traffic prediction and logistics management.

However, the use of GGAN raises important ethical considerations, particularly in sensitive domains. For
example, when applied to social networks, there is a risk of compromising user privacy through unintended

Fig. 3.  node classification results comparison on CITESEER by investigating the influence of model
depth(shown in (a)) and hidden layer(shown in (b)) dimension to model performance.

Scientific Reports | (2025) 15:170 11| https://doi.org/10.1038/s41598-024-84483-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports

information leakage in embeddings. Bias in training data may also be amplified, affecting fairness in applications
like hiring or financial systems. Furthermore, the potential for misuse in surveillance or profiling underscores
the need for responsible deployment with clear regulatory oversight. Addressing these concerns requires
incorporating privacy-preserving techniques, fairness-aware training, and improving the interpretability of
GGAN’s predictions. By balancing its technical potential with ethical responsibility, GGAN can contribute
meaningfully to both research and practice while minimizing risks.

Data availability
All data generated or analyzed during this study are included in this paper. The data of this work is available on
request from the authors. The validated dataset are also available in the public repository, which can be found in
https://github.com/daiquocnguyen/QGNN.

Received: 18 September 2024; Accepted: 24 December 2024

References
	 1.	 Hamilton, W. L., Ying, R. & Leskovec, J. Representation learning on graphs: Methods and applications. arXiv preprint

arXiv:1709.05584 (2017).
	 2.	 Liu, K. et al. Chemi-net: a molecular graph convolutional network for accurate drug property prediction. International journal of

molecular sciences 20, 3389 (2019).
	 3.	 Wenzel, J., Matter, H. & Schmidt, F. Predictive multitask deep neural network models for adme-tox properties: learning from large

data sets. Journal of chemical information and modeling 59, 1253–1268 (2019).
	 4.	 Wang, Y. et al. User identity linkage across social networks via linked heterogeneous network embedding. World Wide Web 22,

2611–2632 (2019).
	 5.	 CAI, T. et al. Target-aware holistic influence maximization in spatial social networks. IEEE Transactions on Knowledge and Data

Engineering 1–1 (2020).
	 6.	 West, J. D., Wesley-Smith, I. & Bergstrom, C. T. A recommendation system based on hierarchical clustering of an article-level

citation network. IEEE Transactions on Big Data 2, 113–123 (2016).
	 7.	 Zhang, J. & Zhu, L. Citation recommendation using semantic representation of cited papers’ relations and content. Expert Systems

with Applications 115826 (2021).
	 8.	 Seo, Y., Loukas, A. & Perraudin, N. Discriminative structural graph classification. arXiv preprint arXiv:1905.13422 (2019).
	 9.	 Veličković, P. et al. Graph attention networks. arXiv preprint arXiv:1710.10903 (2017).
	10.	 Pei, H., Wei, B., Chang, K. C.-C., Lei, Y. & Yang, B. Geom-gcn: Geometric graph convolutional networks. arXiv preprint

arXiv:2002.05287 (2020).
	11.	 Hamilton, W. L., Ying, R. & Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the 31st International

Conference on Neural Information Processing Systems, 1025–1035 (2017).
	12.	 Maron, H., Ben-Hamu, H., Shamir, N. & Lipman, Y. Invariant and equivariant graph networks. arXiv preprint arXiv:1812.09902

(2018).
	13.	 Xu, K., Hu, W., Leskovec, J. & Jegelka, S. How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).
	14.	 Liu, Q., Nickel, M. & Kiela, D. Hyperbolic graph neural networks. Advances in neural information processing systems 32 (2019).
	15.	 Leman, A. & Weisfeiler, B. A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-

Technicheskaya Informatsiya 2, 12–16 (1968).
	16.	 Wang, R., Shen, M., Wang, X. & Cao, W. Rga-cnns: Convolutional neural networks based on reduced geometric algebra. Sci. China

Inf. Sci. 64, 1–3 (2021).
	17.	 Su, H. & Bo, Z. Conformal geometric algebra based band selection and classification for hyperspectral imagery. In 2016 8th

Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 1–4 (IEEE, 2016).
	18.	 Liu, Q. & Cao, W. Geometric algebra graph neural network for cross-domain few-shot classification. Applied Intelligence. 52,

12422–12435 (2022).
	19.	 Zhong, J. & Cao, W. Geometric algebra-based multiview interaction networks for 3d human motion prediction. Pattern Recognition.

138, 109427 (2023).
	20.	 Parcollet, T. et al. Quaternion recurrent neural networks. arXiv preprint arXiv:1806.04418 (2018).
	21.	 Zhu, X., Xu, Y., Xu, H. & Chen, C. Quaternion convolutional neural networks. In Proceedings of the European Conference on

Computer Vision (ECCV), 631–647 (2018).
	22.	 Wu, J. et al. Deep octonion networks. Neurocomputing. 397, 179–191 (2020).
	23.	 Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M. & Monfardini, G. The graph neural network model. IEEE transactions on

neural networks 20, 61–80 (2008).
	24.	 Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907

(2016).
	25.	 Zheng, R., Chen, W. & Feng, G. Semi-supervised node classification via adaptive graph smoothing networks. Pattern Recognition.

124, 108492 (2022).
	26.	 Lin, X. et al. Exploratory adversarial attacks on graph neural networks for semi-supervised node classification. Pattern Recognition

133, 109042 (2023).
	27.	 Trouillon, T., Welbl, J., Riedel, S., Gaussier, É. & Bouchard, G. Complex embeddings for simple link prediction. In International

Conference on Machine Learning, 2071–2080 (PMLR, 2016).
	28.	 Cao, Z., Xu, Q., Yang, Z., Cao, X. & Huang, Q. Dual quaternion knowledge graph embeddings. In Proceedings of the AAAI

Conference on Artificial Intelligence 35, 6894–6902 (2021).
	29.	 Nguyen, D. Q., Nguyen, T. D. & Phung, D. Quaternion graph neural networks. arXiv preprint arXiv:2008.05089 (2020).
	30.	 Dorst, L. & Mann, S. Geometric algebra: a computational framework for geometrical applications. IEEE Computer Graphics and

Applications 22, 24–31 (2002).
	31.	 Clevert, D.-A., Unterthiner, T. & Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus). arXiv

preprint arXiv:1511.07289 (2015).
	32.	 Verma, S. & Zhang, Z.-L. Graph capsule convolutional neural networks. ArXiv[SPACE]arXiv: 1805.08090 (2018).
	33.	 Zhang, M., Cui, Z., Neumann, M. & Chen, Y. An end-to-end deep learning architecture for graph classification. In Thirty-Second

AAAI Conference on Artificial Intelligence, 4438–4445 (2018).
	34.	 Maron, H., Ben-Hamu, H., Serviansky, H. & Lipman, Y. Provably powerful graph networks. Advances in neural information

processing systems 32 (2019).
	35.	 Xinyi, Z. & Chen, L. Capsule graph neural network. In International conference on learning representations (2019).

Scientific Reports | (2025) 15:170 12| https://doi.org/10.1038/s41598-024-84483-0

www.nature.com/scientificreports/

https://github.com/daiquocnguyen/QGNN.
http://arxiv.org/abs/1709.05584
http://arxiv.org/abs/1905.13422
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/2002.05287
http://arxiv.org/abs/1812.09902
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1806.04418
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/2008.05089
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1805.08090
http://www.nature.com/scientificreports

	36.	 Chen, T., Bian, S. & Sun, Y. Are powerful graph neural nets necessary? a dissection on graph classification. arXiv preprint
arXiv:1905.04579 (2019).

	37.	 Xie, Y., Yao, C., Gong, M., Chen, C. & Qin, A. K. Graph convolutional networks with multi-level coarsening for graph classification.
Knowledge-Based Systems. 194, 105578 (2020).

	38.	 Wang, Y., Wang, H., Jin, H., Huang, X. & Wang, X. Exploring graph capsual network for graph classification. Information Sciences.
581, 932–950 (2021).

	39.	 Nikolentzos, G., Dasoulas, G. & Vazirgiannis, M. Permute me softly: learning soft permutations for graph representations. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2022).

	40.	 Bouritsas, G., Frasca, F., Zafeiriou, S. & Bronstein, M. M. Improving graph neural network expressivity via subgraph isomorphism
counting. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 657–668 (2022).

	41.	 Bianchi, F. M., Grattarola, D., Livi, L. & Alippi, C. Graph neural networks with convolutional arma filters. IEEE transactions on
pattern analysis and machine intelligence 44, 3496–3507 (2021).

	42.	 Yu, B., Xu, X., Wen, C., Xie, Y. & Zhang, C. Hierarchical graph representation learning with structural attention for graph
classification. In Artificial Intelligence: Second CAAI International Conference, CICAI 2022, Beijing, China, August 27–28, 2022,
Revised Selected Papers, Part II, 473–484 (Springer, 2023).

	43.	 Liu, W. et al. Locality preserving dense graph convolutional networks with graph context-aware node representations. Neural
Networks. 143, 108–120 (2021).

	44.	 Wang, Z. et al. Location-aware convolutional neural networks for graph classification. Neural Networks. 155, 74–83 (2022).
	45.	 Abu-El-Haija, S., Kapoor, A., Perozzi, B. & Lee, J. N-gcn: Multi-scale graph convolution for semi-supervised node classification. In

uncertainty in artificial intelligence, 841–851 (PMLR, 2020).
	46.	 Hu, Y. et al. Graph-mlp: Node classification without message passing in graph. arXiv preprint arXiv:2106.04051 (2021).
	47.	 Yang, R., Dai, W., Li, C., Zou, J. & Xiong, H. Tackling over-smoothing in graph convolutional networks with em-based joint

topology optimization and node classification. IEEE Transactions on Signal and Information Processing over Networks 9, 123–139
(2023).

	48.	 Yanardag, P. & Vishwanathan, S. Deep graph kernels. In Proceedings of the 21th ACM SIGKDD international conference on
knowledge discovery and data mining, 1365–1374 (2015).

	49.	 Yi, Y., Lu, X., Gao, S., Robles-Kelly, A. & Zhang, Y. Graph classification via discriminative edge feature learning. Pattern Recognition.
143, 109799 (2023).

	50.	 Han, X., Jiang, Z., Liu, N. & Hu, X. G-mixup: Graph data augmentation for graph classification. In International Conference on
Machine Learning, 8230–8248 (PMLR, 2022).

	51.	 Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
	52.	 Sen, P. et al. Collective classification in network data. AI magazine 29, 93–93 (2008).
	53.	 Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. Journal of machine learning research. 9 (2008).

Acknowledgements
This work was supported by National Natural Science Foundation of China under grant 61771322 and the Fun-
damental Research Foundation of Shenzhen under Grant JCYJ20220531100814033.

Author contributions
JQ.Zhong: Investigation, Formal analysis, Software, Methodology; WM.Cao: Supervision, Methodology, Fund-
ing acquisition.

Declarations

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to W.C.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide
a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have
permission under this licence to share adapted material derived from this article or parts of it. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​
n​s​.​o​r​g​/​l​i​c​e​n​s​e​s​/​b​y​-​n​c​-​n​d​/​4​.​0​/​​​​​.​​

© The Author(s) 2024

Scientific Reports | (2025) 15:170 13| https://doi.org/10.1038/s41598-024-84483-0

www.nature.com/scientificreports/

http://arxiv.org/abs/1905.04579
http://arxiv.org/abs/2106.04051
http://arxiv.org/abs/1412.6980
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.nature.com/scientificreports

	﻿Graph Geometric Algebra networks for graph representation learning
	﻿Related work
	﻿Geometric Algebraic and neural network
	﻿Graph embedding learning

	﻿Geometric algebra background
	﻿Methods
	﻿Graph Geometric Algebra internal representation
	﻿Graph neural networks
	﻿Graph Geometric Algebra network
	﻿G3-GGAN
	﻿G4-GGAN
	﻿GA-GNN for graph classification
	﻿GGAN for node classification
	﻿Geometric Algebra embedding generation

	﻿Weight initialization strategy
	﻿Weight initialization
	﻿Weight structure

	﻿Experiments
	﻿Experiment baselines
	﻿Graph classification
	﻿Datasets
	﻿Metrics
	﻿Experimental details
	﻿Comparisons

	﻿Node classification

