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Crucial role of sea surface temperature
warming patterns in near-term high-
impact weather and climate projection

Check for updates

Ming Zhao & Thomas Knutson

Recent studies indicate that virtually all global climate models (GCMs) have had difficulty simulating
sea surface temperature (SST) trend patterns over the past four decades. GCMs produce enhanced
warming in the eastern Equatorial Pacific (EPAC) and Southern Ocean (SO) warming, while
observations show intensified warming in the Indo-PacificWarm Pool (IPWP) and slight cooling in the
eastern EPAC and SO. Using Geophysical Fluid Dynamics Laboratory’s latest higher resolution
atmospheric model and coupled prediction system, we show the model biases in SST trend pattern
have profound implications for near-term projections of high-impact storm statistics, including the
frequency of atmospheric rivers (AR), tropical storms (TS) andmesoscale convection systems (MCS),
as well as for hydrological and climate sensitivity. If the future SST warming pattern continues to
resemble the observed pattern from the past few decades rather than the GCM simulated/predicted
patterns, our results suggest (1) a drastically different future projection of high-impact storms and their
associated hydroclimate changes, especially over the Western Hemisphere, (2) a stronger global
hydrological sensitivity, and (3) substantially less global warming due to stronger negative feedback
and lower climate sensitivity. The roles of SST trend patterns over the EPAC, IPWP, SO, and the North
Atlantic tropical cyclone Main Development Region (AMDR) are isolated, quantified, and used to
understand the simulated differences. Specifically, SST trend patterns in the EPAC and AMDR are
crucial for modeled differences in AR and MCS frequency, while those in the IPWP and AMDR are
essential for differences in TS frequency over the North Atlantic.

Global climate models (GCMs) are one of the most important tools for
predicting future change in theEarth’s climate under anthropogenic forcings.
These models are not perfect and contain biases when evaluated against
observations. Somebiasesmaybemore important thanothers. It is important
to identify the key biases relevant to future predictions so that the modeling
community can focus on improvements. Recent studies suggest that essen-
tially all GCMs, including those with large ensemble (LE) simulations from
varying initial conditions have had difficulty simulating the observed sea
surface temperature (SST) trend patterns for the past few decades1–3. In the
historical simulations, GCMs generate intensified warming in the equatorial
eastern Pacific along with Southern Ocean (SO) warming while the obser-
vations exhibit intensified warming in the Indo-Pacific Warm Pool (IPWP)
and slight cooling in the eastern equatorial Pacific and Southern Ocean. The
nature of such misrepresentation is still unclear and under debate2–10.

The latest GCMs from the Geophysical Fluid Dynamics Laboratory
(GFDL) are no exception to these broad biases. For instance, in Fig. 1, we

present a comparison of several SST indices computed from the LE
simulations of the historical period (1979-2020) using GFDL’s Seamless
System for Prediction and EArth System Research (SPEAR)11 with the
observational estimates based on the HadISST, ERSSTv5, COBE, and
COBE2 dataset (see the Methods section for details). The SST indices
include (1) a Pacific zonal east-west gradient (hereafter referred to as
W-E index). (2) a poleward or equator off-equatorial gradient (hereafter
referred to as O-E index). (3) a spatial pattern correlation in SST trends
for the equatorial Pacific region as well as the entire global open ocean,
(4) a ratio in SST trend between the IPWP and the entire tropical ocean,
and (5) a ratio in SST trend between the SO and the entire global open
ocean. (Refer to the Methods section for the definition of each index).
Supplementary Fig. 1 shows the global distribution of the SST trend
patterns from each individual member of the SPEAR LE as well as the
observational estimates from the HadISST, ERSSTv5, COBE, and
COBE2 dataset.
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Figure 1a shows that except member 3 (members 11 and 26) all
individualmembers of the SPEARLE underestimate the trend of equatorial
Pacific east-west (poleward) SST gradient, indicating that the model pro-
duces excessive equatorial eastern Pacific SST warming relative to the
western Pacific and to the off-equatorial eastern Pacific. Choosing a nar-
rower equatorial region such as 3∘S-3∘N3 makes the model bias even worse.
The model’s biases in the east-west and poleward gradients are generally
correlated among the SPEAR members and the observational estimates,
indicating they may be originated from the same process. Figure 1b further
shows that none of the individual members of SPEAR LE reproduces the
observed ratio in SST trend between IPWP and the tropical ocean mean
SST.Moreover, except for one (member 16) all members produce excessive

relativewarming of the SO.The underestimation of the IPWPwarming and
overestimation of the SO warming are also long-standing biases among the
CMIPmodels1 and they appear to be strongly correlated among the SPEAR
ensemblemembers and theobservational estimates. It turnsout that the SST
trend biases in IPWP and SO are also correlated to the Pacific equatorial
east-west gradient despite with somewhat smaller correlation coefficients
(0.65 for IPWP, 0.58 for SO). This suggests potentially a global scale
coherence of the model’s systematic biases in SST trend patterns. Figure 1c
shows a scatter plot of the pattern correlation coefficient between the SST
trends from the model’s simulations (or alternative observations) and that
from the HadISST data for the equatorial Pacific region and for the entire
global openocean.None of the individualmembers of SPEARLE reproduce
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Fig. 1 | A comparison of SST trend pattern indices between SPEAR LE simula-
tions and several observational estimates. a Scatter plot of the trends (K decade−1)
in Pacific equatorial east-west (W-E index) and equator off-equatorial SST gradient
(O-E index) for the period of 1979-2020 from GFDL’s SPEAR LE simulations
(numbers: individual members’ ID; pentagram: ensemble mean) and the observa-
tional estimates based on HadISST (diamond), ERSSTv5 (circle), COBE (asterisk),
and COBE2 (square) SST dataset. bAs in (a) but for the ratio of SST trends between
the Indo-Pacific Warm Pool and the entire tropical ocean and that between the
Southern Ocean and the global open ocean. c As in (a) but for the spatial pattern

correlation in SST trends between the model simulations (or an alternative obser-
vational data) and theHadISST data for the Pacific equatorial region and that for the
entire global open ocean. d Scatter plots of the global open ocean area-weighted
mean SST trend and the different SST indices shown in panel (a, b), i.e., (black) the
SO warming ratio, (red) the IPWP warming ratio, and (blue) the Pacific equatorial
east-west SST gradient. Linear regression lines and their corresponding correlation
coefficient between various indices are shown in the legend. SeeMethods Section for
the definitions of each SST index.
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the pattern correlation coefficients between alternative observations and the
HadISST data. In particular, the SPEAR LE mean SST trend pattern shows
little correlation with the HadISST data over the equatorial Pacific region.
Despite its systematically lower correlation coefficients, the SST trend pat-
tern correlation over the equatorial Pacific region is generally correlated
with that over the global ocean among the SPEAR members and the
observational estimates.

Finally, Fig. 1d shows that the globalmeanSSTwarming rate is strongly
positively (negatively) correlated with the relative warming over the SO
(IPWP) among the individual members of SPEAR LE and different
observational data. Model members with less SOwarming andmore IPWP
warming (e.g., member 16) are more consistent with the observations. The
globalmeanSSTwarming rate across SPEARLE is alsonegatively correlated
with the equatorial Pacific east-west SST gradient despite with somewhat
weaker correlation coefficient. This result is generally consistent with the
notion that SST warming patterns are important to climate feedback and
climate sensitivity12–16. However, all individual members tend to over-
estimate the global mean SST warming rate. In particular, the global open
ocean mean SST warming trend averaged from the SPEAR LE is
0.18 K decade−1, which is about twice as large as that estimated based on the
HadISSTdata (0.09 K decade−1). In general, Fig. 1 demonstrates that similar
to otherGCMs,GFDL’s latest climatemodels have also trouble reproducing
the observed SST trend patterns for the past 42 years, for which global
observations of SSTs are most reliable. The various indices for measuring
model biases in SST trend patterns over different ocean basins are sig-
nificantly correlated. This indicates that the SST warming patterns in
SPEAR LE generally follow some global-scale coherent variability that is
spatially correlated and can strongly affect the global mean SST trend.
Moreover, the observational estimates appear to sit beyond the far tail of the
SPEAR ensemble spread. Figure 1 along with several recent studies1–3 raises
the question of how seriously one should take this systematic model bias in
terms of future climate prediction.

The primary focus of this study is to explore the implications of model
biases in the recent SST trend pattern on near-term future predictions, with
a special emphasis on high-impact storm statistics. We will also assess their
impact on hydrological and climate sensitivity, both of which are essential
factors for future climate projections. To achieve this, we utilize GFDL’s
high-resolution global atmospheric model AM4 (C192AM4), which is the
same atmospheric model used in the SPEAR LE simulations. See the
“Methods” section for details. This model has been demonstrated to rea-
listically simulate the climatological frequency of atmospheric rivers (ARs),
tropical storms (TSs), and mesoscale convective systems (MCSs), as well as
their associated precipitation when it is forced by the observed SSTs, sea-ice
concentrations, radiative gases and aerosol emissions17–20. We first con-
ducted three 101-year-long simulations, which include a present-day con-
trol simulation and two warmer climate simulations. In the warmer climate
simulations, the patterns of SST trends for the 1979–2020 period are
extrapolated into the future with the same global mean warming. The
observed-pattern simulation uses the observed trend from the HadISST
data, while the SPEAR pattern simulation uses the trend simulated by the
30-member ensemble mean (referred to as SPEAR-pattern M) of the
SPEAR model. To explore the impact of the internal variability of the
SPEAR LE, we conducted five additional simulations (SPEAR-patterns
A–E) based on the performance of individual SPEAR members in simu-
lating the observed Pacific equatorial zonal SST gradient. Furthermore, to
isolate and explore the effects of the various regional differences in SST trend
patterns between SPEAR-pattern M and the observed-pattern, we con-
ducted four further simulations. These simulations mirror SPEAR-pattern
M, except for replacing the SST anomalies in the Equatorial Pacific (EPAC),
the IPWP, the SO, or the Atlantic tropical cyclone Main Development
Region (AMDR) with those from the observed-pattern. Please refer to the
Methods section for a detailed description of the simulations.

While the SPEAR-pattern M is entirely consistent with its future
simulation/projection (not shown), our decision to extrapolate the observed
pattern is not intended to offer a more realistic future projection. Instead, it

merely serves as a hypothesis for studying the consequences if the model-
observationaldiscrepancypersists into futuredecades.The actual future SST
warming patternmay fall between the scenarioswe explored here, including
those of the various SPEAR patterns and the observed-pattern. To that
extent, the extrapolation of observed SST trend pattern would provide an
upper bound to estimate the impact of the models’ systematic biases in
future high-impact weather and climate prediction. Below, we demonstrate
that the disparity between themodeled and observed SSTwarming patterns
will have a profound impact on future predictions of regional changes in
high-impact storms, global and regional hydrological cycle, as well as the
global mean warming rate in response to greenhouse gas (GHG) increase.

Results
Impact of SST warming patterns on high-impact storms and
hydrological cycle
ARs, TSs, andMCSs are important weather phenomena that often threaten
society through heavy precipitation and strong winds. Ref. 19 shows that
despite their rare occurrence, ARs, TSs, and MCSs together account for
roughly 55% of global mean precipitation and 75%of extreme precipitation
with daily rates exceeding its local 99th percentile. Before delving into the
impact of SSTwarming patterns on these high-impact storms, Fig. 2a, bfirst
compares the spatial patterns of the SST warming anomalies from the two
different future climate simulations. Compared to the observed-pattern,
SPEAR-pattern M exhibits more relative warming (or less relative cooling)
in the tropical eastern Pacific and much muted relative warming over the
IPWP. The tropical Pacific east-west SST gradient is broadly weakened in
the SPEAR-patternM rather than strengthened as in the observed-pattern.
Interestingly, the strengthening of the east-west SST gradient in the
observed-pattern, compared to the SPEAR-patternM, can also be discerned
in the equatorial IndianOcean and theNorthAtlantic tropical cyclonemain
development region, albeit with amuch weakermagnitude. In addition, the
SPEAR-pattern M also displays much less relative SST cooling over the
broad southern oceans than the observed-pattern apart from the SWPacific
(0–30 ∘S), which shows relativewarming in observations. Figure 2c–h shows
the geographical distribution of the model-simulated changes in the
occurrence frequency of AR, TS, and MCS days (see “Methods” section for
the detection ofAR, TS, andMCSdays) from the SPEAR-patternMand the
observed-pattern of warmer climate simulations. They reveal striking dif-
ferences especially over thewestern hemisphere. For example, the observed-
pattern produces a much larger reduction in the frequency of AR days over
the northeastern Pacific, much of the continental US, as well as the sub-
tropical to middle latitudes of the South American continent. For TS days,
the observed-pattern produces a strong reduction in the subtropical central
to eastern North Pacific and a large increase in the Gulf of Mexico, Car-
ibbean Sea, and the west coast of Mexico while the SPEAR-pattern M
produces an increase in the subtropical central North Pacific, a small
reduction near the west coast of Mexico, a very mild increase in the Gulf of
Mexico, but a substantial increase in the broadNorthAtlantic. Globally, the
frequency of TS days decreases by 11%K−1 (−0.075/0.68) in the observed-
pattern simulation while increases slightly (0.6%K−1, 0.004/0.68) in the
SPEAR-pattern M simulation. For MCS days, the observed-pattern pro-
duces a large reduction over the continental US and tropical central to
eastern Pacific while the SPEAR-patternM yields amuch smaller reduction
in the continental US and an increase in the equatorial northeastern Pacific.
These results indicate the importance of SST warming patterns to future
projections of high-impact stormstatistics. In particular, if the future change
in SST warming patterns (including near-term changes from the next
decade to the next half century) continue to follow the observed pattern
from the past 42 years instead of that simulated or predicted by the current
climate models, we may experience a very different future occurrence fre-
quency of these high-impact storms than the current climate model pro-
jections, especially over the US and its surrounding Pacific and Atlantic
oceans.

To demonstrate the impact of SSTwarmingpatterns on future changes
in hydroclimate, Fig. 3 compares the model simulated changes in the
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geographical distribution of annual mean precipitation rate and its con-
tribution fromchanges inAR,TS, andMCSdays. The globalmean change is
shown on the top of each panel. The SPEAR-pattern M and observed-
pattern simulations result in an increase of 0.092mmday−1 K−1 (3.13%K−1)
and 0.124mmday−1 K−1 (4.22%K−1) in global mean precipitation, respec-
tively. These numbers are significantly larger than those obtained from
typical coupled simulations21. This is primarily because we did not change
the radiative gases in the warmer climate simulation, allowing us to focus
specifically on the impactof SSTwarming.Compared to the SPEAR-pattern
M, the observed-pattern produces roughly 35% [i.e., (0.124–0.092)/0.092]
larger increase in global mean precipitation, indicating a substantially
stronger global hydrological sensitivity to warming. Regionally, the
observed-pattern produces a large reduction in annual precipitation over

muchof the easternPacific, theUS, and the SouthAmerican continent and a
large increase in theGulf ofMexicoand theCaribbeanSeawhile the SPEAR-
pattern M produces a substantial increase in the equatorial eastern Pacific,
little change in the US, and only a modest increase over the Gulf of Mexico
and the Caribbean Sea. At the ocean basin scale, the observed-pattern tends
to produce broad westward shifts in precipitation in the tropical Pacific and
the tropical Indian Ocean with an enhanced large-scale zonal Walker cir-
culation. For example, Fig. 3b displays a substantial increase in precipitation
in the equatorial western Pacific east of the maritime continent, which
extends southeastward along the South Pacific Convergence Zone (SPCZ)
and a decrease to the east. Similarly, it also shows a large increase (decrease)
in precipitation in the equatorial western (eastern) IndianOcean. Although
the precipitation change over the Indian Ocean is qualitatively similar

Fig. 2 | SST warming patterns and their impact onmodel-simulated atmospheric
river (AR), tropical storm (TS), and mesoscale convective system (MCS) fre-
quencies are compared between simulations based on the SPEAR-patternM and
the observed pattern of SST trends. a, b SST warming anomalies [shown as nor-
malized values i.e., ðSSTA � SSTAÞ=SSTA (shading), overbar denotes global open
ocean area-weighted mean] derived from the SST trend of (a) the 30-member
ensemblemean of SPEARLE simulations and (b) theHadISST dataset for the period
of 1979–2020. SSTA = 0.92 K in both warmer climate simulations (see “Methods”
section for details). The black contours in panels (a, b) show the observed clima-
tological distribution of annualmean SSTs (280–302 Kwith a contour interval of 2K)

from the model’s control simulation. c, d Geographical distribution of model-
simulated changes in the occurrence frequency of AR days, normalized by the
change in globalmean surface air temperature (unit: %K−1) from (c) SPEAR-pattern
M and (d) Observed-pattern warmer climate simulations. e, f As in (c, d) but for TS
days. g, h As in (c, d) but for MCS days. The change in global area-weighted mean
frequency is shown on the top of panels (c–h). The global frequency of AR, TS and
MCS days from the control simulation is respectively 7.71%, 0.68%, and 4.92%.
Stippled areas in panels (c–h) indicate regions where the changes are not statistically
significant at a 95% confidence level based on z-test.
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between the observed-pattern and SPEAR-pattern M simulations, the
observed-pattern generates much stronger zonal dipole structure in pre-
cipitation change than the SPEAR-pattern M. Over the subtropical North
Atlantic, the observed-pattern simulation exhibits a substantially stronger
increase in precipitation over the Caribbean Sea and the Gulf of Mexico,
with a more significant reduction to the east compared to the SPEAR-
pattern M simulation.

The change in global mean and regional distribution of precipitation
between the two different SST warming pattern simulations can be
decomposed into precipitation changes associated with AR, TS, and MCS
days, as well as other daily weather regimes. Compared to the SPEAR-
pattern M simulation, the enhanced global hydrological cycle in the
observed-pattern simulation is due entirely to precipitation change asso-
ciated with storms. In particular, the global mean precipitation response to
warming increases by 0.032 mmday−1 K−1 (from 0.092 to
0.124mmday−1 K−1) while the global storm-associated (AR, TS, and MCS

together) precipitation increase by 0.034mm day−1 K−1 (from 0.046 to
0.08mmday−1 K−1). The enhanced response in global mean precipitation
and associated latent heating is nearly entirely balanced by an increase in the
response of atmospheric radiative cooling rate (the response in surface
sensible heat flux remains relatively unchanged), which is in turn caused by
the strengthening of tropical large-scale convective overturningmotion and
associated changes in weather regimes around the globe. Figure 3 further
shows that the large reduction in US precipitation in the observed-pattern
simulation is due primarily to the reduction in AR- and MCS-associated
precipitation while the large reduction in the equatorial eastern Pacific
(increase in precipitation in theGulf ofMexico, Caribbean Sea, and thewest
coast of Mexico) is caused by the reduction (increase) in MCS- and TS-
associated precipitation (comparing Fig. 3a, b with Fig. 3c–h). Note changes
in storm-associated precipitation depend on changes in both storm fre-
quency and their precipitation intensitywith the former usually dominating
the spatial variation of the total change19. In general, the difference in the

Fig. 3 | A comparison of simulated annual mean and storm-associated pre-
cipitation changes based on SST changes using the SPEAR-pattern M versus the
observed pattern. a, b Geographical distribution of model-simulated changes in
annual mean precipitation rate (shading, unit: mm day−1K−1), normalized by the
change in global mean surface air temperature from (a) SPEAR-pattern M and (b)
Observed-pattern warmer climate simulations. The cyan contours in panels a,b
display isolines (1, 5, and 9 mm day−1) of the climatological annual mean

precipitation simulated from the model’s control simulation. c, dAs in (a, b) but for
AR-associated precipitation change. e, f As in (a, b) but for TS-associated pre-
cipitation change. g, hAs in (a, b) but forMCS-associated precipitation change. The
global area-weightedmean value is shown on the top of each panel. Stippled areas in
panels (c, h) indicate regions where the changes are not statistically significant at a
95% confidence level based on z-test.
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global mean and regional distribution of annual precipitation between the
two different warmer climate simulations can be well understood through
the storm-associated precipitation with the AR-associated precipitation
dominating themiddle latitudes, MCS-associated precipitation dominating
the deep tropics, and TS-associated precipitation contributing significantly
in the subtropics.

ImpactofSSTwarmingpatternsonclimate feedbackandclimate
sensitivity
The differences in SST warming patterns have a profound impact on not
only regional changes in high-impact storms, global and regional hydro-
logical cycles, but also the model’s climate feedback and climate sensitivity.
Figure 4a, b compares the model simulated change in top-of-atmosphere
(TOA) net radiative flux from the SPEAR-pattern M and the observed-
pattern SST warming pattern simulations. While the SPEAR-pattern M
produces a global negative feedback of roughly −1.52Wm−2 K−1, the

observed-pattern yields a negative feedback (−2.73Wm−2 K−1), which is
nearly 80% larger inmagnitude, indicatingmuch less warming for the same
GHGradiative forcing at theTOA.This suggests that if SPEARLEproduced
the correct SST trend pattern for the past few decades, the model would
produce a much reduced global mean warming rate, which would be more
consistent with the HadISST observation. This is also important for future
climate projection because if the futurewarming pattern continues to follow
the observed pattern from the past few decades, it would suggest much less
future global mean warming than that projected by the model for a given
GHG and aerosol emission scenario.

Figure 4c, d further shows that among the additional−1.21Wm−2 K−1

global feedback from the observed pattern simulation, roughly 30%
(−0.36Wm−2 K−1) comes from the clear-sky and 70% (−0.85Wm−2 K−1)
from the cloud feedback, in which ~50% (−0.61Wm−2 K−1) is due to
shortwave (SW) feedback and 20% (−0.24Wm−2 K−1) is due to longwave
(LW) feedback. Regionally, most of the increase in negative feedback comes

Fig. 4 | A comparison of simulated TOA net radiative feedback and its decom-
position into clear-sky, LW, and SW cloud feedback based on SST changes using
the SPEAR-pattern M versus the observed pattern. a, b Geographical distribution
of model-simulated TOA net radiative feedback (unit: Wm−2K−1) from (a) SPEAR-
patternMand (b)Observed-pattern warmer climate simulations. c,dAs in (a,b) but
for TOA clear-sky radiative feedback. e, fAs in (a, b) but for TOASWcloud feedback

measured by changes in SW cloud radiative effect (CRE) per degree global mean
surface air temperature (SAT) warming. g, h As in (e, f) but for TOA LW cloud
feedback measured by changes in LW CRE per degree global mean SAT warming.
The global area-weighted mean value is shown on the top of each panel. Stippled
areas in panels (c–h) indicate regions where the changes are not statistically sig-
nificant at a 95% confidence level based on z-test.

https://doi.org/10.1038/s41612-024-00681-7 Article

npj Climate and Atmospheric Science |           (2024) 7:130 6



from the eastern Pacific and southern oceans, which is due primarily to an
increase in low cloud cover. Much of the regional changes in TOA radiative
fluxes in the tropics are directly related to changes in convection and
associated precipitation which affect spatial distribution of water vapor and
clouds. For example, compared to the SPEAR-pattern M, the increase (less
negative) in SW and decrease (less positive) in LW cloud radiative effect
(CRE), as well as the more negative clear-sky feedback in the central to
eastern equatorial Pacific is due to a reduction in convection and pre-
cipitation (see Fig. 3a, b), which are in turn caused by the relative cooling in
SSTs over this region. In contrast, the increase in convection and pre-
cipitation over the east of the maritime continent and the off-equatorial
regions of the western Pacific including those along the SPCZ lead to a
decrease (more negative) in SWand an increase (more positive) in LWCRE
there. Similarly, over the Indian Ocean, the strengthening of zonal dipole
structure in changes in SW and LW CRE is also caused by a reduction in
convection over the eastern Indian Ocean and maritime continent and an
increase in convection over the western Indian Ocean (see Fig. 3a, b, g, h).
The changes in spatial distribution of moist convection and precipitation in
response to the different SST warming patterns also affect TOA radiative
fluxes over the remote subsidence regions (e.g., eastern Pacific) by changing
low clouds and clear-sky OLR through changes in tropospheric static sta-
bility and moisture22–25. Globally, this may account for the majority of the
enhanced negative feedback in the observed-pattern simulation compared
to the SPEAR-pattern M simulation. Finally, local SST cooling over the
broad eastern Pacific and themiddle to high latitude oceans of the southern
hemisphere also appear to contribute substantially to themore negative SW
cloud feedback in the observed-pattern compared to the SPEAR-patternM
simulation.

Sensitivity to internal variability of SST trend patterns in
SPEAR LE
So far, we have explored the impact of SST warming patterns on the global
distributions of high-impact storm statistics and surface precipitation, as
well as TOA radiative feedback between the SPEAR-pattern M and the
observed-pattern simulations. However, the SPEAR-pattern M represents
the SST trend pattern averaged from the SPEAR LE, while the observed-

pattern comes from a single realization containing both forced signals and
internal variability. Ideally, conducting a simulation for each of the 30
members would provide the most comprehensive assessment, but this
would demand a large amount of computational resources. Therefore, as an
initial exploration of the role of internal variability within SPEAR LE in
explaining the modeled differences between the SPEAR-pattern M and
observed-pattern simulations, we conducted five additional simulations.
These simulations, referred to as SPEAR-patterns A, B, C, D, and E, were
based on the performance of individual SPEARmembers in simulating the
observed equatorial Pacific zonal SST gradient, with A denoting the best-
performing and E the worst-performing group (see theMethods section for
a detailed description of the experiments).

Figure 5 demonstrates that, compared to SPEAR-pattern M, SPEAR-
patternA shows only slightly better agreementwith the simulationusing the
observed SST pattern. For instance, compared to SPEAR-pattern M,
SPEAR-pattern A produces a greater reduction in AR frequency over the
northeastern Pacific near the west coast of the US and in the central and
southeastern US. It also generates a greater reduction in TS frequency and a
lesser increase in MCS frequency in parts of the eastern Pacific. However,
these differences are generally much smaller than their differences with the
observed-pattern simulation. The model-simulated changes in AR, TS, and
MCS frequency in SPEAR-patterns A to E simulations remain very similar
to those in the SPEAR-pattern M simulation when compared to the
simulation using the observed SST pattern. Supplementary Figs. 4 and 5,
respectively show the simulated changes in surface precipitation and TOA
radiative fluxes from the simulations of SPEAR-patterns A to E. These
results further confirm that the essential differences between the SPEAR-
pattern M and the observed-pattern simulations exist across the SPEAR-
patterns A to E simulations, indicating they likely arise primarily from the
model’s systematic biases in SST trend patterns.

Roles of regional SST trend patterns
To explore the key aspects of the differences in SST warming patterns
between SPEAR-pattern M and the observed-pattern that may cause the
simulated differences in changes in AR, TS, and MCS frequency, as well as
the global distribution of surface precipitation and TOA radiative feedback,

Fig. 5 | A comparison of SST warming patterns and model-simulated storm
frequency changes for the SPEAR-pattern A to E simulations.As in Fig. 2, but for
(from left to right columns) SPEAR-pattern A, B, C, D, and E simulations. The top

row (a–e) displays the SST warming patterns, while the second to fourth rows show
the simulated changes in the occurrence frequency of AR (f–j), TS (k–o), and MCS
(p–t) days, respectively.
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we carried out fourmore simulations. These simulations are the same as the
SPEAR-patternM, except for replacing the SST anomalies in the Equatorial
Pacific, the IPWP, the SO, and the AMDR with those from the observed-
pattern. (The SSTs outside of the replaced region may undergo minor
changes due to the rescaling of the global open oceanmean SST to the same
value. They are referred to as SPEAR-patterns EPACobs, IPWPobs, SOobs,
AMDRobs, respectively; see theMethods section for a detailed description of
the simulations.) Figure 6 shows that, compared to SPEAR-pattern M, the
SPEAR-pattern EPACobs simulation produces a large reduction in AR fre-
quency over the northeastern Pacific alongwith thewest coast of theUS, the
central and eastern US, and Australia, making it substantially more similar
to that in the observed-pattern simulation, particularly over the North
America continent, Australia, and their surrounding oceans. It also
enhances theAR frequency over parts of the northern high latitudes, such as
Alaska, the Bering Sea, and the part of Russia close to the Bering Sea. This
simulation also results in a substantial reduction in MCS frequency in the
central to eastern Pacific, the North and South America continents, further
aligning it with that of the observed-pattern simulation.However, its impact
on TS frequency appears relatively small, except over the southwest Pacific
and the west coast of Mexico. In contrast, the SPEAR-pattern IPWPobs
produces a large reduction inTS frequency in both the broadNorthAtlantic
and the eastern Pacific tropical cyclone main development region (MDR),
aligning the TS frequency change over these regions more closely with the
observed-pattern simulation. The SST anomalies in neither of these two
regions can account for the increase in TS frequency in the Caribbean Sea
andGulf ofMexico in the observed-pattern simulation. It turns out that this
can be explained by the SPEAR-pattern AMDRobs simulation. The
enhanced (reduced) warming over the western (eastern) portion of the
Atlantic tropical cyclone MDR in SPEAR-pattern AMDRobs tends to pro-
duce a westward shift of TS frequency and thus strong increase in TS
frequency over the Caribbean Sea and Gulf of Mexico. In addition, com-
pared to the SPEAR-pattern M and the observed-pattern simulations, the
SPEAR-pattern AMDRobs significantly contributes to the reduction in AR
frequency in the US, the northeastern Pacific, and the east coast of the US.
Furthermore, it also contributes to the increase in MCS frequency in the

Caribbean Sea, the west coast of Mexico, and parts of the Gulf of Mexico.
Thus, the SST trend patterns in the equatorial Pacific, the IPWP, and the
North Atlantic tropical cyclone MDR region are all important for future
projections of AR, TS, and MCS frequency, although their roles differ in
different regions and for different types of storms. Finally, the model-
simulated changes in storm frequency in the SPEAR-pattern SOobs simu-
lation look very similar to SPEAR-patternM, except for AR frequency over
the southern high latitude ocean and TS frequency over the southwest
Pacific near Australia. This suggests that the difference in SO SST trends
between the SPEAR-pattern M and the observed-pattern has a minimum
direct impact on storm frequency over remote regions.

Supplementary Fig. 6 showsboth total and individual storm-associated
surface precipitation from the SPEAR-pattern EPACobs, IPWPobs, SOobs,
andAMDRobs simulations. Consistentwith its simulated changes inARand
MCS frequency, the SPEAR-pattern EPACobs produces AR- and MCS-
associated precipitation changes more closely aligned with the observed-
pattern simulation. This includes a drying trend for AR-associated pre-
cipitation over the northeastern Pacific near thewest coast ofUS, the central
and eastern US, and Australia, and a wetting trend over the central North
and South Pacific ocean around 200∘E longitude. Additionally, there is a
large drying trend for MCS-associated precipitation in the tropical central
and eastern Pacific. These changes together make its pattern in total pre-
cipitation changemore similar to that from the observe-pattern simulation.
However, the SPEAR-pattern EPACobs does not help to explain the differ-
ence in TS-associated precipitation between SPEAR-pattern M and the
observed-pattern simulations, particularly over the eastern Pacific and
North Atlantic. In contrast, the SPEAR-pattern IPWPobs contributes to the
muted increase in TS-associated precipitation in much of the North
Atlantic, as well as the reduction in TS-associated precipitation over the
eastern Pacific tropical cyclone MDR region. Neither the SPEAR-pattern
EPACobs nor the SPEAR-pattern IPWPobs account for the increase in TS-
associated precipitation over the Caribbean Sea and Gulf of Mexico, which
can be accounted for through the SPEAR-pattern AMDRobs simulation.
Additionally, the SPEAR-pattern AMDRobs also explains the increase in
MCS precipitation over the Caribbean Sea and the west coast of Central

Fig. 6 | A comparison of SST warming patterns and model-simulated storm
frequency changes between the SPEAR-patternM and various modified SPEAR-
patternM simulations.As in Fig. 2, but for (from left to right columns) the SPEAR-
pattern M, EPACobs, IPWPobs, SOobs, and AMDRobs simulations. The top row (a–e)

displays the SST warming patterns, while the second to fourth rows show the
simulated changes in the occurrence frequency of AR (f–j), TS (k–o), andMCS (p–t)
days, respectively. The results from SPEAR-pattern M are reproduced in the left
column for easier comparison with the rest of the simulations.
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America in the observed-pattern simulation. Finally, compared to the rest of
the simulations, SPEAR-patternEPACobs appears to play a dominant role in
the increase of the global hydrological cycle from the SPEAR-pattern M to
the observed-pattern simulation.

Supplementary Fig. 7 further displays theTOAradiative feedback from
the SPEAR-pattern EPACobs, IPWPobs, SOobs, and AMDRobs simulations.
Compared to SPEAR-patternM, SPEAR-pattern EPACobs explainsmost of
the simulated differences in the patterns of clear-sky, LW and SW cloud
feedback particularly over the central to eastern Pacific. All three compo-
nents exhibit more negative or less positive feedback in response to the
warming pattern, aligning the response closer to that in the observed-
pattern simulation. Despite this, globally, only 43% of the increase in the
magnitude of the negative feedback between SPEAR-pattern M and the
observed-pattern is explained by the SPEAR-pattern EPACobs simulation.
This indicates that SST trends over other regions also play an important role
in the difference in global feedback strength between the SPEAR-patternM
and observed-pattern simulations. Indeed, the SPEAR-pattern IPWPobs
simulation also generates more negative feedback for all three components,
and together they also amount for roughly 40% of the total increase in the
magnitude of the negative feedback between the SPEAR-pattern M and
observed-pattern simulations. Regionally, the SPEAR-pattern IPWPobs
tends to provide a better explanation for TOA radiative feedback over the
Indian Ocean and West Pacific sector, particularly the enhanced zonal
dipole structure between the equatorial eastern Indian Ocean and the
equatorial western Indian Ocean and the Maritime Continent.

Compared to the SPEAR-patterns EPACobs and IPWPobs, the SPEAR-
pattern SOobs and AMDRobs simulations contribute only 13% and 4%,
respectively, to the increase in the magnitude of global negative feedback
from SPEAR-pattern M to the observed-pattern simulations, indicating
their relatively small direct impact on global radiative feedback in this
model. However, it is worth noting that although the SPEAR-pattern
EPACobs and IPWPobs simulations appear to reasonably describe both the
spatial distribution of the feedback and the global increase in themagnitude
of total negative feedback, they do not appear to explain the global change in
SW cloud feedback well. For example, the SPEAR-patterns EPACobs and
IPWPobs account for only 19% and 29%, respectively, of the decrease (more
negative) in SWcloud feedback from the SPEAR-patternMto theobserved-
pattern simulation. This indicates that local SST cooling trend over large
areas of the off-equatorial eastern Pacific and South Atlantic oceans (not
accounted for by any of the experiments) may also contribute substantially
to the enhanced negative SW cloud feedback.

Discussion
Recent studies suggest thatGCMshave had trouble simulating the observed
SST trend patterns for the past few decades for which global observations of
SSTs are most reliable. We have investigated the GFDL SPEAR LE simu-
lations of the historical period and found similar biases even considering the
modeled internal variability. The biases are spatially correlated indicating
global coherence of the systematic errors. Furthermore, we have explored
the potential impact of themodel’s biases in future climate predictions, with
a particular emphasis on high-impact storm statistics such as the frequency
ofAR-, TS-,MCS-days, their associated regional changes in precipitation, as
well as the global hydrological and climate sensitivity.

Since all current GCMs are performing poorly in simulating SST trend
patterns, we do not attempt to provide a best guess of future SST warming
patterns. Instead,wechoose to simply extrapolate themodeled andobserved
SST trends into future decades. This serves as our first step to explore the
possible impact of the different SSTwarming patterns on a range of socially
important questions.While the extrapolation of SPEAR’s SST trend into the
future is indeed consistent with the model’s simulation/projection of future
decades, it remains unknown how the actual SST warming pattern will
unfold in the coming decades, and it may fall somewhere between the
idealized scenarios explored here. To that extent, our results may provide a
rough upper bound for estimating the impact of the models’ systematic
biases on near-term climate projections. Our results indicate that if the

future SST trend pattern continues to resemble the observed pattern from
the past few decades rather than that simulated or predicted by climate
models, we would anticipate a drastically different picture of future changes
of high-impact storm statistics, especially the frequency occurrence of ARs,
TSs, and MCSs over the Western Hemisphere, a stronger global hydro-
logical sensitivity to warming, and substantially less global mean warming
due to stronger negative feedback and lower climate sensitivity. Each of
these is crucial for informative future climate projections.Whilewehavenot
conducted simulations with SST trend patterns derived from each of the 30
members of SPEAR LE, which would provide the most comprehensive
assessment, additional simulationswith SST trendpatterns derived from the
five groups ranging from thebest to theworst performance in simulating the
equatorial zonal SST gradient show that the differences in future predictions
persist across the spectrum, indicating that these differences likely stem
primarily from the model’s systematic errors in SST trend patterns.

To understand the simulated differences, we further conducted a series
of simulations to isolate and quantify the effects of several key regional
differences in SST trend patterns between the model and the observations.
These simulations reveal the various roles of SST trend pattern contribu-
tions over the EPAC, IPWP, SO, as well as AMDR. Themodel biases in SST
trend in both the EPACand theAMDR (i.e., a trend ofweakening instead of
strengthening of the east-west SST gradient) are important factors causing
the simulated differences in AR frequency, particularly in the US and its
surrounding oceans. Moreover, the former is also important for the mod-
eled differences in MCS frequency in the eastern Pacific, while the latter is
important forMCS frequency in the Caribbean Sea, theGulf ofMexico, and
the west coast of Mexico. However, the model bias in the EPAC does not
appear to explainwell the simulateddifferences inTS frequency, particularly
in the eastern Pacific and North Atlantic sector. In contrast, the SST trend
pattern in IPWP and AMDR together can explain these differences well. In
particular, compared to the SPEAR modeled SST warming pattern, the
enhanced relative warming over the IPWP in the observations tends to
suppress TS frequency over the entire North Atlantic and eastern Pacific.
Meanwhile, the enhanced relative warming over the Caribbean Sea and
relative cooling over the eastern portion of the AMDR tend to shift North
Atlantic TS towards the Caribbean Sea, the Gulf of Mexico, and the west
coast of Mexico. Compared to other regions, the model bias in SST trend
pattern over the SO has a minimal direct impact on storm frequency,
particularly over the remote regions. These regional differences in SST trend
pattern account for not only the model-simulated differences in storm
frequency but also for their associated precipitation, changes in the geo-
graphical distribution of annual climatological precipitation, as well as the
strengthened global hydrological cycle in the observed-pattern simulation.
Finally, the SST trend patterns in the EPAC and IPWP each contribute
roughly 40% of the difference in global radiative feedback between the
model (i.e., SPEAR-patternM) andobservedpattern simulations, indicating
that both are important to global climate feedback. However, they only
account for respectively 19% and 29% of the difference in SW cloud feed-
back, suggesting that local SST cooling over the broad off-equatorial eastern
Pacific and southern hemisphere middle to high latitude oceans are also
important to the enhanced negative SW cloud feedback in the observed-
pattern simulation. Given the enormous impact of model biases in these
regional SST trend patterns, it is essential to understand the origins of these
biases before we can make more accurate future projections. Our result is
consistent with a recent study that discussed the potential impact of coupled
Earth SystemModel biases on near-term tropical cyclone risk26. In addition,
our study explored an expanded set of key drivers of extreme precipitation
events in response to the SST warming patterns. This has only become
possible recently due to our advancements in high-resolution atmospheric
modeling, which not only enables reasonable representations of ARs, TSs,
and MCSs but also allows for simulations long enough (100 years) to study
changes in extreme storm statistics under various climate change
scenarios17–20.

While the global hydrological sensitivity does not directly impact local
communities, it has been a theoretical concern in climate science for a long
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time. Notably, its connections to global climate sensitivity, as revealed here,
are of particular interest. Previous studies suggest that climate models tend
to simultaneously produce overly strong climate sensitivity but weaker
hydrological sensitivity27–30. Ref. 30 hypothesizes that a missing iris effect in
themodelsmight be apossible causeof theirmutedhydrological change and
higher climate sensitivity. The hypothesis suggests that the dry and clear
regions of the tropical atmosphere might expand in a warmer climate and
thereby allow more infrared radiation to escape to space, resulting in less
warming and stronger hydrological sensitivity. This potential feedback has
been termed the iris effect, in analogy to the enlargement of the eye’s iris as
its pupil contracts under the influence of more light31. The iris effect was
often hypothesized and explored by assumptions of a particular change in
the inherent property of convection in response to warming30. Here, our
results suggest an iris-like effect can be achieved through changes in large-
scale SST warming patterns. However, the nature of this iris-like effect
differs significantly from the original hypothesis because much of the
enhancedoutgoing radiationoccurs through SWcloud reflection (Fig. 4e, f),
as a result of an increase in low cloud cover in the subsidence regions (e.g.,
tropical eastern Pacific). The increase in low clouds also contributes to the
increase in global total vertically-integrated atmospheric radiative cooling
rate by emitting additional downward LW radiation to the surface. This, in
turn, helps to amplify the global hydrological sensitivity.

Our results further indicate that the higher climate sensitivity and
muted hydrological sensitivity in current GCMs may be caused by
their inability to simulate the observed SST warming pattern for the
past few decades. Indeed, the models tend to produce excessive
warming in the eastern Pacific and the SO while the observations show
intensified warming in the IPWP. When the observed SST warming
pattern is imposed on our model, the enhanced warming over the
IPWP, which contains the highest SSTs already, tends to lead to more
convection aggregation over the warmest part of the oceans and sup-
press deep convection elsewhere. Hence, the model has the capacity to
induce an iris-like effect by reorganizing convection and associated
weather events spatially and temporally in response to shifts in SST
warming patterns. Our results are broadly consistent with recent
studies, which utilized highly idealized experiments to demonstrate
that climate models’ hydrological and climate sensitivities could be
altered by changing the locations of SST warming or radiative forcing
in the models32–38.

While this study demonstrates the paramount importance of
GCMs’ ability in simulating and predicting SST trend patterns, it is
beyond the scope of the present paper to explore the underlying causes of
the models’ systematic errors, especially over the equatorial Pacific.
Recent studies have pointed to various directions, which is often con-
fused by the different periods and regions used to estimate the trend of
the SST gradient. For example, in ref. 2, the authors calculated the 60-year
trends in Nino3.4 SST from 1958 to multiple ending years ranging from
2008 to 2017. They discovered a prominent model bias in all the periods
ending in these years, with the later ending years showing larger biases.
Furthermore, they argued that this bias is a result of the models’ errors in
response to the increase in GHG, which, in turn, stem from the models’
cold climatological SST biases in the equatorial cold tongue region.
However, in ref. 39, a different group of authors opted for a different time
period (1950–2010) and considered somewhat different regions when
calculating the Pacific zonal SST gradient. They concluded that the
observed change in this gradient could be attributed to the models’
internal variability. Ref. 1 focuses on the period from 1979 to 2020,
expanding the SST indices to include measures not only of the Pacific
equatorial SST gradient but also of the IPWP and Southern Ocean. The
study found that the models’ biases cannot be explained solely by the
models’ internal variability, especially when considering all the different
bias indices together. Our analysis of the various indices for SST trend
patterns simulated by the SPEAR LE shows that the observational esti-
mates generally align with the regression lines of the SPEAR LE results.
Thus, the observed SST trend pattern seems to agree with the coherence

of the SPEAR LE but falls beyond the models’ ensemble spread, sug-
gesting an underestimation of decadal internal climate variability in
the model.

In addition to the potential model biases in internal variability and the
forced response to GHG, other mechanisms and hypotheses have been
suggested to explain the GCMs’ inability to accurately simulate the recent
SST trendpattern. For example, ref. 5–7,9 suggests that thePacific equatorial
SST trend errormay arise in part from the absence of realistic Antarctic ice-
sheet meltwater in climate models. Ref. 8,40,41 shows that the model bias
may be affected by the models’ representation of SO heat uptake. Both
suggest the remote impact of the SO on the equatorial Pacific SST gradient.
On the other hand, ref. 42 indicates that the recent unprecedentedmultiyear
La Niña events may be attributed to the warming in the western Pacific.
Despite recent research, it remains unclear to what extent the models’ bias
may be attributed to: deficiencies in representing internal variability; the
forced response to changes inGHGand/orother climate forcing agents such
as aerosols or ozone; the models’ omission of important processes; or a
combination of different factors.We propose that coordinatedmulti-model
intercomparison experiments, testing various hypotheses along with
mechanism denial experiments, could provide a valuable avenue for the
modeling community to make progress on these issues.

Methods
Observations
We use several observational estimates of SSTs for comparison with the
SPEAR LE simulations. They include the Hadley Centre Sea Ice and Sea
Surface Temperature data set (HadISST, https://www.metoffice.gov.uk/
hadobs/hadisst/, the NOAA Extended Reconstructed SST Version 5
(ERSSTv5, https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html), the
COBE (https://psl.noaa.gov/data/gridded/data.cobe.html), and COBE2
(https://psl.noaa.gov/data/gridded/data.cobe2.html) SST dataset.

Definition of SST indices
In this study, we employedfive different SST indices to assess the differences
between observations and model simulations in the SST trend pattern.
These indices include (1) a zonal east-west gradient, referred to as theW-E
index and defined as the trend in SST difference between a western Pacific
box (110∘-180∘E, 10∘S-10∘N) and an eastern Pacific box (180∘–280∘E,
10∘S-10∘N)], (2) a poleward or equator off-equatorial gradient, referred to as
O-E index and defined as the trend in SST difference between the average of
off-equatorial boxes for latitudes 10∘-5∘S and 5∘-10∘N and an equatorial box
for latitude 5∘S-5∘N, all for longitudes 180∘-280∘E, (3) a spatial pattern cor-
relation in SST trends between a model’s simulation (or an alternative
observational estimate) and the HadISST dataset for the equatorial Pacific
region (110∘-280∘E, 10∘S-10∘N) as well as the entire global open ocean, (4) a
ratio in SST trend between the IPWP (30∘S-30∘N, 50∘-180∘E) and the entire
tropical ocean (30∘S-30∘N), and 5) a ratio in SST trend between the SO
(45–75∘S) and the entire global open ocean. The first three indices are
defined similarly as ref. 3 except with generally a larger region for each
defined box. The fourth and fifth indices are similar to those in ref. 1 except
with the SO indexdefined as a ratio toglobal openoceanmean insteadof the
absolute SO SST warming trend. The details in the definition of each index
do not affect the results and conclusion qualitatively.

Models
Themodelwe utilizedhere is a higher resolution version of theGFDL global
atmospheric model AM443,44. It has been referred to as C192AM417.
C192AM4employs a cubed-sphere topology for the atmospheric dynamical
core with 192 × 192 grid-boxes per cube face corresponding to
roughly ~ 50 km horizontal grid spacing. C192AM4 has been used for
GFDL’s participation in the CMIP6 High Resolution Model Inter-
comparison Project (HighResMIP)45. C192AM4 has also been used for
studies of ARs17, TSs46, and MCSs18, as well as their associated precipitation
and extreme precipitation19. In addition to C192AM4, we also used the SST
simulations from the SPEARmodel11. SPEAR is theGFDLnewly developed
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coupled seasonal to multi-decadal prediction system consisting of AM4-
LM4 atmosphere and land model, the MOM6 ocean and the SIS2 sea-ice
model47. SPEAR can be configured with three different atmospheric reso-
lutions [i.e., low (100 km), medium (50 km), and high (25 km)]. The par-
ticular version of SPEAR we used here is the medium resolution (SPEAR-
med), which uses C192AM4 as its atmospheric model.

Simulations
For this study, we conducted three 101-year-long simulations using
C192AM4.Thefirst is aControl simulation (referred to asControl)with the
model forced by the observed monthly varying present-day climatological
(1980–2014 average) SSTs, sea ice concentrations (SICs) from the HadISST
dataset, and with the radiative gases, aerosol emissions, and solar constant
fixed at the year 2010 condition. This kind of climatological run has long
been used in GFDL’s global atmospheric model development and it usually
corresponds well to the model’s present-day long-term climatology forced
by interannual varying SSTs, SICs, radiative gases, and aerosol emissions. In
addition to the Control simulation, we conducted two different warmer
climate simulations, which are identical to the Control except by adding
future SST warming anomalies to the HadISST climatological SSTs. We
hypothesized two different scenarios for SST warming to create the SST
anomalies. The first scenario, referred to as the SPEAR-pattern M (with M
denoting ensemble mean), assumes that the 1979-2020 annual mean SST
trend pattern from the ensemble mean of SPEAR LE will continue for the
next 50 years (i.e., SST trends in K decade−1 from panel e of Supplementary
Fig. 1 multiplied by 5). The global open oceanmean SST anomaly is 0.92 K.
The second scenario, referred to as the observed-pattern, assumes that the
observed 1979-2020 annual mean SST trend pattern will continue for the
next 50 years (i.e., SST trends from panel a of Supplementary Fig. 1 mul-
tiplied by 5). As we emphasize the impact of differences in SST warming
patterns rather than the magnitude of global mean SST warming, we
rescaled the SST anomalies from the observed pattern by multiplying them
by a constant to ensure that the global open ocean mean SST anomaly
matches that of the SPEAR-patternMSSTanomalies.Note that the seasonal
variation in SST trend patterns in both SPEAR simulation and observations
is generally small (see Supplementary Figs. 2, 3). Therefore, for simplicity,
we do not consider the seasonal variation of the added SST anomalies. Note
that the difference between thewarmer climate simulations and the Control
lies solely in their SSTs; there are no changes in theprescribed radiative gases
and aerosol emissions. The monthly varying SSTs are simply repeated
annually for 101 years, resulting in no interannual variability or long-term
trend in the SSTs.

In addition to the above two warmer climate simulations, we carried
out five additional simulations to assess the impact of the internal variability
of the SPEAR LE. We divided the 30-member SPEAR LE into five groups,
each containing sixmembers, based on their performance in simulating the
observed Pacific equatorial zonal east-west SST gradient, as defined above.
These groups are referred to as SPEARA,B,C,D, andE,withAdenoting the
best-performing and E the worst-performing group. Similar to the SPEAR
ensemble mean (i.e., SPEAR-pattern M), SST anomalies for each group are
derived based on their simulated trends from 1979–2020, averaged within
each group. These simulations are referred to as SPEAR-patternsA, B, C, D,
andE. To explore the impact of the various differences in SST trend patterns
between the SPEAR ensemble mean (SPEAR-pattern M) and the obser-
vation (observed-pattern), we conducted four more simulations. These
simulations mirror SPEAR-pattern M, except for replacing the SST
anomalies in the Equatorial Pacific (110∘–280∘E, 10∘S–10∘N), the IPWP
(50∘–180∘E, 30∘S–30∘N), the SO(0∘–360∘E, 45–75∘S), and theAtlantic tropical
cyclone Main Development Region (275∘-340∘E, 10-25∘N) with those from
the observed-pattern.We applied a 3-grid-point running average five times
along the edges (5 grid points) of each region to smooth the transition in SST
anomalies between the region and the surrounding oceans. These simula-
tions are denoted as SPEAR-patterns EPACobs, IPWPobs, SOobs, and
AMDRobs, respectively. They are used to assess how each of the regional
differences in SST trends may affect the model-simulated high-impact

storm statistics, as well as hydrological and climate sensitivity. Similar to the
observed-pattern simulation, the SST anomalies for each of the additional
SPEAR-pattern simulations are rescaled by multiplying them by a constant
so that the global open ocean mean SST anomaly matches that of SPEAR-
pattern M (0.92 K). Note that this rescaling can slightly modify the SST
anomalies outside of the replaced region for SPEAR-patterns EPACobs,
IPWPobs, SOobs, and AMDRobs. But the effect is very small. Finally, for all
simulations (one control and 11 warmer climate simulations), the model
was integrated for 101 years, with the last 100 years being used for analysis.
These extended simulations are essential for studying the extreme high-
impact storms.

Detection of AR, TS, and MCS days
The AR detection method is identical to the one used in refs. 17,19,48. The
algorithm employed 6-hourly outputs of zonal and meridional vertically
integrated vapor transport (IVT). It does not track individualARsover time,
so each IVT map is treated independently. The AR detection algorithm
provides the 6-hourly output of AR objects, along with some basic mea-
surements of each detected AR such as length, width, mean zonal and
meridional IVT, and the coherence of IVT direction. These AR objects are
used to identify grid cells experiencing AR conditions, which are further
utilized to determine the AR days.

The TS detectionmethod follows that used in refs. 49,50. In summary,
we first identify potential cyclones by locating local maxima of relative
vorticity exceeding a threshold value (3.5 × 10−5s−1). Subsequently, we
define the nearby local minima of sea level pressure as cyclone centers using
6-hourly instantaneous fields of 850-hPa relative vorticity and sea level
pressure. We then track individual tropical cyclones (TC) using their
6-hourly locations. The latitude of the first point (genesis location) of a TC
track must be within [30∘S-30∘N]. After identifying a TC track, it is cate-
gorized as a TS if it satisfies all of the following three criteria for at least three
days (not necessarily consecutive). (1) The maximum surface wind speed
≥17m s−1. (2) The maximum 850-hPa relative vorticity ≥1.6 × 10−4s−1. (3)
The warm-core temperature anomaly ≥2 K. We assume the 10∘ × 10∘ (lat x
lon) region centered at each TS’s center location as the area experiencing a
TS condition.

The MCS detection method follows the approach used in refs. 18,51,
with some modifications described in ref. 19. To give a brief summary, the
brightness temperature Tb is derived from the TOA outgoing longwave
radiation (OLR) based on the equations in ref. 52. The algorithm then
thresholds each 6-hourly instantaneous field of Tb by removing any grid
cells with Tb values greater than 233 K18,51. Because the spatial (temporal)
resolution of the data [i.e., 0.5∘ × 0.625∘ (lat x lon) and 6-hourly] is already
larger (longer) than the smallest (shortest) MCSs, we do not further apply a
size (duration) threshold forMCSs and simply consider any grid cellswhose
Tb values arebelow this threshold as regions experiencingMCSconditions19.
As described in ref. 19, to detect MCSs in middle or high latitudes, we
include an additional criterion by removing any grid cells whose Tb values
are not 30K smaller than the zonal mean values of the climatological Tb at
the same latitude and same time of year. The climatological Tb is computed
by taking a long-term (100-year) average of the 6-hourly Tb field at each
location and time of year. This additional criterion has little impact over the
tropics because the tropical zonal mean values of climatological Tb are
always at least 30 K greater than 233 K.We consider any grid cells whoseTb
values satisfy the above two criteria as regions in MCS conditions.

Finally, following ref. 19, for any given grid cells, if at least one AR/
TS/MCS condition is identified from the 6-hourly data during a calendar
day and the daily surface precipitation rate Pday ≥ 1 mm day−1, the day is
subsequently identified as an AR/TS/MCS day. We make AR, TS, and
MCS days mutually exclusive by setting a priority for each identified
phenomena. In particular, for any given grid cells, if a day satisfies
multiple conditions, it is first considered as a TS day, then anAR day, and
finally a MCS day. This priority choice is partly due to our confidence
level for detecting TS, AR, andMCS days. Among the three phenomena,
we have a relatively lower confidence for detecting MCS, thus we
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consider a day as a MCS day only when it is neither an AR or a TS day.
Using this classification, we conditionally sample the daily precipitation
to explore the contribution of each storm regime to global and regional
changes in precipitation.

Data availability
TheHadleyCentre Sea Ice and Sea SurfaceTemperature data set (HadISST)
is available at https://www.metoffice.gov.uk/hadobs/hadisst/. The NOAA
Extended Reconstructed SST Version 5 data set (ERSSTv5) is available at
https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html). The COBE SST
data set is available at https://psl.noaa.gov/data/gridded/data.cobe.html.The
COBE2 SST data set is available at https://psl.noaa.gov/data/gridded/data.
cobe2.html. The GFDL SPEAR Large Ensemble model outputs are publicly
available at https://noaa-gfdl-spear-large-ensembles-pds.s3.amazonaws.
com/index.html#SPEAR/GFDL-LARGE-ENSEMBLES/CMIP/NOAA-
GFDL/GFDL-SPEAR-MED/. The model experiments that support the
findings of this study, as well as the results of the control and future warmer
climate simulations, are available from the corresponding author upon
request.

Code availability
The GFDL AM4 model code used in this study is publicly available from
http://data1.gfdl.noaa.gov/nomads/forms/am4.0/.
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